A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures
•Physics-informed neural network (PINN) is built for creep-fatigue life prediction.•Physics-informed feature engineering and physics-informed loss function are applied.•PINN exhibits better prediction capacity than conventional machine learning models. Physics-informed neural network has strong gene...
Saved in:
Published in | Engineering fracture mechanics Vol. 258; p. 108130 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0013-7944 1873-7315 |
DOI | 10.1016/j.engfracmech.2021.108130 |
Cover
Abstract | •Physics-informed neural network (PINN) is built for creep-fatigue life prediction.•Physics-informed feature engineering and physics-informed loss function are applied.•PINN exhibits better prediction capacity than conventional machine learning models.
Physics-informed neural network has strong generalization ability for small dataset, due to the inclusion of underlying physical knowledge. Two strategies are enforced to incorporate physics constraints to a deep neural network in this work. One is to obtain extended features through physics-informed feature engineering, and the other is to incorporate physics-informed loss function into deep neural network as constraints. Conventional machine learning models, deep neural network and physics-informed neural network are applied to predict creep-fatigue life of 316 stainless steel. Results show that physics-informed neural network presents better prediction accuracy than deep neural network and conventional machine learning models. |
---|---|
AbstractList | •Physics-informed neural network (PINN) is built for creep-fatigue life prediction.•Physics-informed feature engineering and physics-informed loss function are applied.•PINN exhibits better prediction capacity than conventional machine learning models.
Physics-informed neural network has strong generalization ability for small dataset, due to the inclusion of underlying physical knowledge. Two strategies are enforced to incorporate physics constraints to a deep neural network in this work. One is to obtain extended features through physics-informed feature engineering, and the other is to incorporate physics-informed loss function into deep neural network as constraints. Conventional machine learning models, deep neural network and physics-informed neural network are applied to predict creep-fatigue life of 316 stainless steel. Results show that physics-informed neural network presents better prediction accuracy than deep neural network and conventional machine learning models. Physics-informed neural network has strong generalization ability for small dataset, due to the inclusion of underlying physical knowledge. Two strategies are enforced to incorporate physics constraints to a deep neural network in this work. One is to obtain extended features through physics-informed feature engineering, and the other is to incorporate physics-informed loss function into deep neural network as constraints. Conventional machine learning models, deep neural network and physics-informed neural network are applied to predict creep-fatigue life of 316 stainless steel. Results show that physics-informed neural network presents better prediction accuracy than deep neural network and conventional machine learning models. |
ArticleNumber | 108130 |
Author | Gong, Jian-Guo Zhang, Xiao-Cheng Xuan, Fu-Zhen |
Author_xml | – sequence: 1 givenname: Xiao-Cheng surname: Zhang fullname: Zhang, Xiao-Cheng – sequence: 2 givenname: Jian-Guo surname: Gong fullname: Gong, Jian-Guo email: jggong@ecust.edu.cn – sequence: 3 givenname: Fu-Zhen surname: Xuan fullname: Xuan, Fu-Zhen email: fzxuan@ecust.edu.cn |
BookMark | eNqNkE1P5DAMQCMEEsPHfwjac4ckDU17WqER7CIhcYFzlMk4kNImxUlB_HsyGg6I05xsWfaz_U7IYYgBCLngbMkZby77JYRnh8aOYF-Wggle6i2v2QFZ8FbVlar51SFZMMZL3kl5TE5S6hljqmnZgvTXdHr5TN6mygcXcYQNDTCjGUrIHxFfaalSiwBT5Uz2zzPQwTugE8LG2-xjoNFRG8epXBZyoiZTGODd5ILKME6AJs8I6YwcOTMkOP-Op-Tp9uZx9b-6f_h3t7q-r6xQXa6EqDu-dp10HJS0tRQM1q1bN9A1TFkm25orUJYz07TdpikPNu0VSFm3Ukkl6lPyZ8edML7NkLLu44yhrNSi4R0XRQUvXd2uy2JMCcHpCf1o8FNzprdqda9_qNVbtXqntsz-_TVrfTZbFRmNH_YirHYEKCLePaBO1kOwRSmCzXoT_R6ULzyun4Y |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2024_109233 crossref_primary_10_1016_j_engfracmech_2023_109412 crossref_primary_10_1016_j_engfracmech_2023_109456 crossref_primary_10_1016_j_mtcomm_2024_110260 crossref_primary_10_1016_j_engfracmech_2023_109331 crossref_primary_10_1016_j_finmec_2022_100141 crossref_primary_10_2174_0115701794295930240902050855 crossref_primary_10_1016_j_energy_2024_131822 crossref_primary_10_1016_j_ijfatigue_2023_107917 crossref_primary_10_1016_j_ijfatigue_2024_108608 crossref_primary_10_1016_j_conbuildmat_2023_132679 crossref_primary_10_1016_j_ijfatigue_2024_108725 crossref_primary_10_3724_j_GTER_20240002 crossref_primary_10_1016_j_cnsns_2024_108242 crossref_primary_10_1016_j_ijfatigue_2024_108402 crossref_primary_10_1111_ffe_13895 crossref_primary_10_1016_j_ijfatigue_2024_108445 crossref_primary_10_1016_j_ijfatigue_2022_107270 crossref_primary_10_1016_j_ijfatigue_2024_108487 crossref_primary_10_1080_09603409_2025_2453321 crossref_primary_10_1016_j_oceaneng_2024_118826 crossref_primary_10_3390_ma16186279 crossref_primary_10_1016_j_engfracmech_2023_109737 crossref_primary_10_1016_j_ijfatigue_2024_108283 crossref_primary_10_1016_j_tws_2023_110908 crossref_primary_10_1016_j_ijhydene_2022_05_124 crossref_primary_10_1016_j_ijpvp_2023_105051 crossref_primary_10_1016_j_engfracmech_2023_109103 crossref_primary_10_3390_s23146346 crossref_primary_10_1016_j_engfracmech_2025_111026 crossref_primary_10_1115_1_4064449 crossref_primary_10_1155_2022_4145219 crossref_primary_10_1016_j_ijfatigue_2023_107648 crossref_primary_10_1108_IJSI_10_2024_0170 crossref_primary_10_1016_j_ijfatigue_2022_107147 crossref_primary_10_1016_j_ijfatigue_2023_107645 crossref_primary_10_1016_j_ijfatigue_2025_108933 crossref_primary_10_1016_j_ijfatigue_2024_108633 crossref_primary_10_1111_ffe_14557 crossref_primary_10_1016_j_engfracmech_2022_108918 crossref_primary_10_1016_j_ijfatigue_2024_108634 crossref_primary_10_1016_j_ress_2023_109852 crossref_primary_10_1016_j_ijfatigue_2023_107962 crossref_primary_10_1016_j_ijfatigue_2023_108012 crossref_primary_10_1016_j_ymssp_2024_111120 crossref_primary_10_1098_rsta_2022_0406 crossref_primary_10_3390_applmech4010019 crossref_primary_10_3390_app13084972 crossref_primary_10_1016_j_engfracmech_2025_110989 crossref_primary_10_1016_j_engfracmech_2023_109433 crossref_primary_10_1007_s10853_023_08259_z crossref_primary_10_1016_j_engfracmech_2023_109630 crossref_primary_10_1016_j_ijpvp_2023_105022 crossref_primary_10_1111_ffe_13792 crossref_primary_10_1111_ffe_14123 crossref_primary_10_1002_adem_202201430 crossref_primary_10_1016_j_ijfatigue_2024_108509 crossref_primary_10_1016_j_net_2023_03_009 crossref_primary_10_1016_j_engfailanal_2024_108875 crossref_primary_10_1016_j_ijpvp_2023_105068 crossref_primary_10_1016_j_ijpvp_2024_105341 crossref_primary_10_1016_j_jcsr_2024_109000 crossref_primary_10_1016_j_ijhydene_2024_10_325 crossref_primary_10_1016_j_ijfatigue_2024_108669 crossref_primary_10_1016_j_ijfatigue_2025_108943 crossref_primary_10_1016_j_ijfatigue_2023_107730 crossref_primary_10_1016_j_ijfatigue_2024_108389 crossref_primary_10_1002_adem_202401889 crossref_primary_10_1016_j_ijmecsci_2023_108314 crossref_primary_10_1016_j_ijfatigue_2024_108187 crossref_primary_10_1038_s41524_023_01173_7 crossref_primary_10_1016_j_eng_2024_12_034 crossref_primary_10_1063_5_0229859 crossref_primary_10_1016_j_eswa_2024_124678 crossref_primary_10_1016_j_engfracmech_2023_109242 crossref_primary_10_1016_j_istruc_2025_108721 crossref_primary_10_1038_s41598_024_61189_x crossref_primary_10_1007_s40843_024_3204_5 crossref_primary_10_1016_j_compositesa_2024_108474 crossref_primary_10_1016_j_engfracmech_2024_110215 crossref_primary_10_1115_1_4065356 crossref_primary_10_1016_j_tws_2024_111963 crossref_primary_10_1016_j_euromechsol_2022_104889 crossref_primary_10_3390_met13091630 crossref_primary_10_1016_j_ijfatigue_2022_106996 crossref_primary_10_1016_j_ijfatigue_2022_107327 crossref_primary_10_1016_j_ijfatigue_2025_108832 crossref_primary_10_1016_j_ijfatigue_2022_107324 crossref_primary_10_1016_j_tws_2024_112495 crossref_primary_10_3389_fmats_2024_1399292 crossref_primary_10_1016_j_ijfatigue_2022_107483 crossref_primary_10_1080_10589759_2024_2335528 crossref_primary_10_1111_ffe_14618 crossref_primary_10_1016_j_cma_2025_117924 crossref_primary_10_1016_j_ijmecsci_2022_107331 |
Cites_doi | 10.1111/ffe.12158 10.1115/1.1343911 10.1016/j.engfracmech.2020.107508 10.1007/BF02655121 10.1016/j.ijpvp.2019.104014 10.1016/j.matdes.2020.108708 10.1016/j.ijfatigue.2021.106236 10.1016/S0142-1123(03)00064-1 10.1016/j.matdes.2015.09.007 10.1088/1009-1963/11/6/315 10.1186/2193-9772-3-8 10.1016/j.nucengdes.2006.09.017 10.1016/j.ijfatigue.2012.07.016 10.1007/s11661-013-1631-0 10.1111/j.1460-2695.1981.tb01115.x 10.1111/j.1460-2695.1993.tb00760.x 10.1088/0965-0393/8/2/302 10.1111/j.1460-2695.1987.tb00467.x 10.1007/s11837-020-04438-4 10.1016/j.actamat.2006.04.013 10.1103/PhysRevB.70.174105 10.1145/1961189.1961199 10.1016/j.ijfatigue.2021.106317 10.1016/j.mser.2009.03.001 10.1016/j.matdes.2018.11.060 10.1016/j.ijfatigue.2016.03.005 10.1016/j.engfracmech.2020.106933 10.1016/j.apmt.2020.100898 10.1107/S1600576714007109 10.1038/s41524-020-00407-2 10.1016/j.ijpvp.2007.11.013 10.1023/A:1022627411411 10.1115/1.4043843 10.1115/1.4049695 10.1016/j.matdes.2020.109199 10.1023/A:1010933404324 10.1038/s42254-021-00314-5 10.1007/s00170-021-06640-3 10.1016/j.engfracmech.2015.05.007 10.1080/09603409.2019.1647949 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2021 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.engfracmech.2021.108130 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-7315 |
ExternalDocumentID | 10_1016_j_engfracmech_2021_108130 S0013794421005361 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SR 7TB 8BQ 8FD AFXIZ AGRNS BNPGV FR3 JG9 KR7 SSH |
ID | FETCH-LOGICAL-c279t-22391bf94f1e74c3420eb8fb6e9607c048317e7c10a689d6731685e4438474723 |
IEDL.DBID | AIKHN |
ISSN | 0013-7944 |
IngestDate | Fri Jul 25 06:26:05 EDT 2025 Thu Sep 18 00:23:15 EDT 2025 Thu Apr 24 23:01:15 EDT 2025 Fri Feb 23 02:37:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Life prediction Deep neural network Physics-informed Creep-fatigue Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c279t-22391bf94f1e74c3420eb8fb6e9607c048317e7c10a689d6731685e4438474723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2619120131 |
PQPubID | 2045482 |
ParticipantIDs | proquest_journals_2619120131 crossref_primary_10_1016_j_engfracmech_2021_108130 crossref_citationtrail_10_1016_j_engfracmech_2021_108130 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2021_108130 |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Engineering fracture mechanics |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Feng, Zhou, Dong (b0075) 2019; 162 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b0080) 2021; 3 Vitos, Nilsson, Johansson (b0185) 2006; 54 Takahashi, Dogan, Gandy (b0030) 2013 Mu, Rahaman, Rios, Odqvist, Hedström (b0090) 2021; 197 Takahashi, Shibamoto, Inoue (b0140) 2008; 238 Breiman (b0230) 2001; 45 Srinivasan, Valsan, Bhanu Sankara Rao, Mannan, Raj (b0135) 2003; 25 Wareing (b0145) 1981; 4 Zimmerman, Gao, Abraham (b0195) 2000; 8 Yan, Wang, Wang (b0190) 2004; 70 Agrawal, Deshpande, Cecen, Basavarsu, Choudhary, Kalidindi (b0055) 2014; 3 Kapusuzoglu, Mahadevan (b0110) 2020; 72 Liu, Kappes, Amin-ahmadi, Benafan, Zhang, Stebner (b0095) 2021; 22 Chang, Lin (b0225) 2011; 2 Peng, Yamamoto, Hawk, Lara-Curzio, Shin (b0085) 2020; 6 Xuan, Gong (b0005) 2020 Liu, Liu, Zhang (b0100) 2021; 113 Goodfellow, Bengio, Courville (b0045) 2016 ASME. Section III, Rules for construction of nuclear facility components, Division 1 - Subsection NH. 2015. Yagi, Kanemaru, Kubo, Tanaka (b0150) 1987; 9 Cedro Iii, Garcia, Render (b0210) 2019; 36 Gong, Gong, Xuan, Chen (b0010) 2019; 141 Dourado, Viana (b0105) 2020; 20 Zhang, Gong, Xuan (b0070) 2021; 148 Ohta, Maeda, Suzuki (b0165) 1993; 16 Zhang, Gong, Gao, Xuan (b0025) 2021; 143 Liang, Liu, Fan, Zhu, Bi, Zhang (b0050) 2020; 179 Cortes, Vapnik (b0220) 1995; 20 Kim, Chang, Ryu (b0125) 2008; 85 Brinkman (b0115) 2001; 123 Hormozi, Biglari, Nikbin (b0120) 2015; 141 Dai, Wang, Cheng, Luo (b0200) 2002; 11 Hu, Su, Liu, Mao, Shan, Wang (b0060) 2020; 229 Lo, Shek, Lai (b0175) 2009; 65 Bao, Wu, Wu, Kang, Peng, Withers (b0065) 2021; 242 Chopra, Stevens (b0205) 2018 Carroll, Cabet, Carroll, Wright (b0015) 2013; 47 Wu, Wu, Bao, Qian, Karabal, Sun (b0020) 2021; 151 Wang, Zhang, Tu, Zhu, Zhang (b0035) 2016; 90 AFCEN (b0235) 2015 Reddy, Sandhya, Sankaran, Parameswaran, Laha (b0130) 2015; 88 Yamaguchi, Kanazawa (b0155) 1980; 11 Hu, Wu, Withers, Zhang, Bao, Fu (b0040) 2020; 192 Pang, Li, Wang, Zhang (b0160) 2014; 37 Rafaja, Krbetschek, Ullrich, Martin (b0180) 2014; 47 Tamura, Abe, Shiba, Sakasegawa, Tanigawa (b0215) 2013; 44 Yan (10.1016/j.engfracmech.2021.108130_b0190) 2004; 70 Srinivasan (10.1016/j.engfracmech.2021.108130_b0135) 2003; 25 Goodfellow (10.1016/j.engfracmech.2021.108130_b0045) 2016 Rafaja (10.1016/j.engfracmech.2021.108130_b0180) 2014; 47 Gong (10.1016/j.engfracmech.2021.108130_b0010) 2019; 141 Wang (10.1016/j.engfracmech.2021.108130_b0035) 2016; 90 Kim (10.1016/j.engfracmech.2021.108130_b0125) 2008; 85 Chopra (10.1016/j.engfracmech.2021.108130_b0205) 2018 Wu (10.1016/j.engfracmech.2021.108130_b0020) 2021; 151 Yamaguchi (10.1016/j.engfracmech.2021.108130_b0155) 1980; 11 Bao (10.1016/j.engfracmech.2021.108130_b0065) 2021; 242 Takahashi (10.1016/j.engfracmech.2021.108130_b0140) 2008; 238 Yagi (10.1016/j.engfracmech.2021.108130_b0150) 1987; 9 Peng (10.1016/j.engfracmech.2021.108130_b0085) 2020; 6 AFCEN (10.1016/j.engfracmech.2021.108130_b0235) 2015 Hu (10.1016/j.engfracmech.2021.108130_b0060) 2020; 229 Liu (10.1016/j.engfracmech.2021.108130_b0100) 2021; 113 Feng (10.1016/j.engfracmech.2021.108130_b0075) 2019; 162 Dourado (10.1016/j.engfracmech.2021.108130_b0105) 2020; 20 Breiman (10.1016/j.engfracmech.2021.108130_b0230) 2001; 45 Takahashi (10.1016/j.engfracmech.2021.108130_b0030) 2013 Lo (10.1016/j.engfracmech.2021.108130_b0175) 2009; 65 Hu (10.1016/j.engfracmech.2021.108130_b0040) 2020; 192 Pang (10.1016/j.engfracmech.2021.108130_b0160) 2014; 37 Vitos (10.1016/j.engfracmech.2021.108130_b0185) 2006; 54 10.1016/j.engfracmech.2021.108130_b0170 Carroll (10.1016/j.engfracmech.2021.108130_b0015) 2013; 47 Zhang (10.1016/j.engfracmech.2021.108130_b0070) 2021; 148 Kapusuzoglu (10.1016/j.engfracmech.2021.108130_b0110) 2020; 72 Tamura (10.1016/j.engfracmech.2021.108130_b0215) 2013; 44 Xuan (10.1016/j.engfracmech.2021.108130_b0005) 2020 Reddy (10.1016/j.engfracmech.2021.108130_b0130) 2015; 88 Cortes (10.1016/j.engfracmech.2021.108130_b0220) 1995; 20 Brinkman (10.1016/j.engfracmech.2021.108130_b0115) 2001; 123 Liu (10.1016/j.engfracmech.2021.108130_b0095) 2021; 22 Cedro Iii (10.1016/j.engfracmech.2021.108130_b0210) 2019; 36 Agrawal (10.1016/j.engfracmech.2021.108130_b0055) 2014; 3 Ohta (10.1016/j.engfracmech.2021.108130_b0165) 1993; 16 Liang (10.1016/j.engfracmech.2021.108130_b0050) 2020; 179 Wareing (10.1016/j.engfracmech.2021.108130_b0145) 1981; 4 Zhang (10.1016/j.engfracmech.2021.108130_b0025) 2021; 143 Hormozi (10.1016/j.engfracmech.2021.108130_b0120) 2015; 141 Chang (10.1016/j.engfracmech.2021.108130_b0225) 2011; 2 Dai (10.1016/j.engfracmech.2021.108130_b0200) 2002; 11 Karniadakis (10.1016/j.engfracmech.2021.108130_b0080) 2021; 3 Zimmerman (10.1016/j.engfracmech.2021.108130_b0195) 2000; 8 Mu (10.1016/j.engfracmech.2021.108130_b0090) 2021; 197 |
References_xml | – volume: 11 start-page: 2019 year: 1980 end-page: 2027 ident: b0155 article-title: Effect of strain wave shape on high temperature fatigue life of a type 316 steel and application of the strain range partitioning method publication-title: Metall Trans A – volume: 47 start-page: 115 year: 2013 end-page: 125 ident: b0015 article-title: The development of microstructural damage during high temperature creep-fatigue of a nickel alloy publication-title: Int J Fatigue – volume: 143 year: 2021 ident: b0025 article-title: An Improved Creep-Fatigue Life Model Involving the Cyclic Softening/Hardening and Stress Relaxation Effect publication-title: J Pressure Vessel Technol – volume: 85 start-page: 378 year: 2008 end-page: 384 ident: b0125 article-title: Evaluation of the creep–fatigue damage mechanism of Type 316L and Type 316LN stainless steel publication-title: Int J Press Vessels Pip – volume: 192 start-page: 108708 year: 2020 ident: b0040 article-title: The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures publication-title: Mater Des – volume: 151 start-page: 106317 year: 2021 ident: b0020 article-title: The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion publication-title: Int J Fatigue – volume: 197 start-page: 109199 year: 2021 ident: b0090 article-title: Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning publication-title: Mater Des – volume: 37 start-page: 958 year: 2014 end-page: 976 ident: b0160 article-title: Relations between fatigue strength and other mechanical properties of metallic materials publication-title: Fatigue Fract Engng Mater Struct – volume: 47 start-page: 936 year: 2014 end-page: 947 ident: b0180 article-title: Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending publication-title: J Appl Crystallogr – volume: 242 start-page: 107508 year: 2021 ident: b0065 article-title: A machine-learning fatigue life prediction approach of additively manufactured metals publication-title: Engng Fract Mech – volume: 162 start-page: 300 year: 2019 end-page: 310 ident: b0075 article-title: Using deep neural network with small dataset to predict material defects publication-title: Mater Des – year: 2018 ident: b0205 article-title: Effect of LWR Water Environments on the Fatigue Life of Reactor Materials – volume: 22 start-page: 100898 year: 2021 ident: b0095 article-title: Physics-informed machine learning for composition – process – property design: Shape memory alloy demonstration publication-title: Appl Mater Today – volume: 141 start-page: 19 year: 2015 end-page: 43 ident: b0120 article-title: Experimental and numerical creep–fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time publication-title: Engng Fract Mech – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0230 article-title: Random forests publication-title: Mach Learn – volume: 148 start-page: 106236 year: 2021 ident: b0070 article-title: A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions publication-title: Int J Fatigue – volume: 113 start-page: 1943 year: 2021 end-page: 1958 ident: b0100 article-title: A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing publication-title: Int J Adv Manuf Technol – volume: 11 start-page: 596 year: 2002 end-page: 600 ident: b0200 article-title: Stacking fault energy of cryogenic austenitic steels publication-title: Chin Phys – volume: 88 start-page: 972 year: 2015 end-page: 982 ident: b0130 article-title: Creep–fatigue interaction behavior of 316LN austenitic stainless steel with varying nitrogen content publication-title: Mater Des – volume: 25 start-page: 1327 year: 2003 end-page: 1338 ident: b0135 article-title: Low cycle fatigue and creep–fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach publication-title: Int J Fatigue – volume: 36 start-page: 511 year: 2019 end-page: 530 ident: b0210 article-title: Use of the Wilshire equation to correlate and extrapolate creep rupture data of Incoloy 800 and 304H stainless steel publication-title: Mater High Temp – volume: 6 start-page: 141 year: 2020 ident: b0085 article-title: Coupling physics in machine learning to predict properties of high-temperatures alloys publication-title: npj Comput Mater – volume: 229 start-page: 106933 year: 2020 ident: b0060 article-title: Bayesian-based probabilistic fatigue crack growth evaluation combined with machine-learning-assisted GPR publication-title: Engng Fract Mech – year: 2015 ident: b0235 article-title: Design and construction rules for mechanical components of nuclear installations: high temperature, research and fusion reactors publication-title: RCC-MRx. – volume: 238 start-page: 322 year: 2008 end-page: 335 ident: b0140 article-title: Study on creep-fatigue life prediction methods for low-carbon nitrogen-controlled 316 stainless steel (316FR) publication-title: Nucl Engng Des – volume: 4 start-page: 131 year: 1981 end-page: 145 ident: b0145 article-title: Creep-fatigue behavior of four casts of type 316 stainless steel publication-title: Fatigue Fract Engng Mater Struct – volume: 141 year: 2019 ident: b0010 article-title: Notch Effect on Structural Strength of Components at Elevated Temperature Under Creep, Fatigue, and Creep-Fatigue Loading Conditions: Phenomenon and Mechanism publication-title: J Pressure Vessel Technol-Trans ASME – year: 2016 ident: b0045 article-title: Deep learning publication-title: MIT press – volume: 54 start-page: 3821 year: 2006 end-page: 3826 ident: b0185 article-title: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory publication-title: Acta Mater – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: b0225 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans Intell Syst Technol (TIST) – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: b0080 article-title: Physics-informed machine learning publication-title: Nat Rev Phys – volume: 16 start-page: 473 year: 1993 end-page: 479 ident: b0165 article-title: Effect of Yield strength on the basic fatigue strength of welded joints publication-title: Fatigue Fract Engng Mater Struct – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0220 article-title: Support-vector networks publication-title: Mach Learn – volume: 90 start-page: 12 year: 2016 end-page: 22 ident: b0035 article-title: A modified strain energy density exhaustion model for creep–fatigue life prediction publication-title: Int J Fatigue – volume: 72 start-page: 4695 year: 2020 end-page: 4705 ident: b0110 article-title: Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication publication-title: Jom – volume: 65 start-page: 39 year: 2009 end-page: 104 ident: b0175 article-title: Recent developments in stainless steels publication-title: Mater Sci Eng R-Reports – volume: 9 start-page: 395 year: 1987 end-page: 408 ident: b0150 article-title: Life prediction of 316 stainless steel under creep-fatigue loading publication-title: Fatigue Fract Engng Mater Struct – volume: 70 year: 2004 ident: b0190 article-title: Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study publication-title: Phys Rev B – volume: 179 start-page: 104014 year: 2020 ident: b0050 article-title: Prediction of long-term creep life of 9Cr–1Mo–V–Nb steel using artificial neural network publication-title: Int J Press Vessels Pip – volume: 20 year: 2020 ident: b0105 article-title: Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue publication-title: J Comput Inf Sci Engng – year: 2020 ident: b0005 article-title: Fundamental and approaches for damage mode-based design of pressure vessels – volume: 8 start-page: 103 year: 2000 end-page: 115 ident: b0195 article-title: Generalized stacking fault energies for embedded atom FCC metals publication-title: Modell Simul Mater Sci Engng – volume: 3 start-page: 90 year: 2014 end-page: 108 ident: b0055 article-title: Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters publication-title: Integrating Mater Manuf Innov – volume: 44 start-page: 2645 year: 2013 end-page: 2661 ident: b0215 article-title: Larson-Miller Constant of Heat-Resistant Steel publication-title: Metallur Mater Trans A – volume: 123 start-page: 75 year: 2001 end-page: 80 ident: b0115 article-title: Elevated-temperature mechanical properties of an advanced-type 316 stainless steel publication-title: J Pressure Vessel Technol-Trans Asme – reference: ASME. Section III, Rules for construction of nuclear facility components, Division 1 - Subsection NH. 2015. – start-page: 1461 year: 2013 end-page: 1470 ident: b0030 article-title: Systematic evaluation of creep-fatigue life prediction methods for various alloys publication-title: ASME 2009 Pressure Vessels and Piping Conference – volume: 37 start-page: 958 issue: 9 year: 2014 ident: 10.1016/j.engfracmech.2021.108130_b0160 article-title: Relations between fatigue strength and other mechanical properties of metallic materials publication-title: Fatigue Fract Engng Mater Struct doi: 10.1111/ffe.12158 – volume: 123 start-page: 75 issue: 1 year: 2001 ident: 10.1016/j.engfracmech.2021.108130_b0115 article-title: Elevated-temperature mechanical properties of an advanced-type 316 stainless steel publication-title: J Pressure Vessel Technol-Trans Asme doi: 10.1115/1.1343911 – volume: 242 start-page: 107508 year: 2021 ident: 10.1016/j.engfracmech.2021.108130_b0065 article-title: A machine-learning fatigue life prediction approach of additively manufactured metals publication-title: Engng Fract Mech doi: 10.1016/j.engfracmech.2020.107508 – volume: 11 start-page: 2019 issue: 12 year: 1980 ident: 10.1016/j.engfracmech.2021.108130_b0155 article-title: Effect of strain wave shape on high temperature fatigue life of a type 316 steel and application of the strain range partitioning method publication-title: Metall Trans A doi: 10.1007/BF02655121 – volume: 179 start-page: 104014 year: 2020 ident: 10.1016/j.engfracmech.2021.108130_b0050 article-title: Prediction of long-term creep life of 9Cr–1Mo–V–Nb steel using artificial neural network publication-title: Int J Press Vessels Pip doi: 10.1016/j.ijpvp.2019.104014 – volume: 192 start-page: 108708 year: 2020 ident: 10.1016/j.engfracmech.2021.108130_b0040 article-title: The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures publication-title: Mater Des doi: 10.1016/j.matdes.2020.108708 – volume: 148 start-page: 106236 year: 2021 ident: 10.1016/j.engfracmech.2021.108130_b0070 article-title: A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2021.106236 – volume: 25 start-page: 1327 issue: 12 year: 2003 ident: 10.1016/j.engfracmech.2021.108130_b0135 article-title: Low cycle fatigue and creep–fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach publication-title: Int J Fatigue doi: 10.1016/S0142-1123(03)00064-1 – volume: 88 start-page: 972 year: 2015 ident: 10.1016/j.engfracmech.2021.108130_b0130 article-title: Creep–fatigue interaction behavior of 316LN austenitic stainless steel with varying nitrogen content publication-title: Mater Des doi: 10.1016/j.matdes.2015.09.007 – ident: 10.1016/j.engfracmech.2021.108130_b0170 – volume: 11 start-page: 596 issue: 6 year: 2002 ident: 10.1016/j.engfracmech.2021.108130_b0200 article-title: Stacking fault energy of cryogenic austenitic steels publication-title: Chin Phys doi: 10.1088/1009-1963/11/6/315 – volume: 3 start-page: 90 issue: 1 year: 2014 ident: 10.1016/j.engfracmech.2021.108130_b0055 article-title: Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters publication-title: Integrating Mater Manuf Innov doi: 10.1186/2193-9772-3-8 – volume: 238 start-page: 322 issue: 2 year: 2008 ident: 10.1016/j.engfracmech.2021.108130_b0140 article-title: Study on creep-fatigue life prediction methods for low-carbon nitrogen-controlled 316 stainless steel (316FR) publication-title: Nucl Engng Des doi: 10.1016/j.nucengdes.2006.09.017 – volume: 47 start-page: 115 year: 2013 ident: 10.1016/j.engfracmech.2021.108130_b0015 article-title: The development of microstructural damage during high temperature creep-fatigue of a nickel alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2012.07.016 – volume: 44 start-page: 2645 issue: 6 year: 2013 ident: 10.1016/j.engfracmech.2021.108130_b0215 article-title: Larson-Miller Constant of Heat-Resistant Steel publication-title: Metallur Mater Trans A doi: 10.1007/s11661-013-1631-0 – volume: 4 start-page: 131 issue: 2 year: 1981 ident: 10.1016/j.engfracmech.2021.108130_b0145 article-title: Creep-fatigue behavior of four casts of type 316 stainless steel publication-title: Fatigue Fract Engng Mater Struct doi: 10.1111/j.1460-2695.1981.tb01115.x – volume: 16 start-page: 473 issue: 5 year: 1993 ident: 10.1016/j.engfracmech.2021.108130_b0165 article-title: Effect of Yield strength on the basic fatigue strength of welded joints publication-title: Fatigue Fract Engng Mater Struct doi: 10.1111/j.1460-2695.1993.tb00760.x – volume: 8 start-page: 103 issue: 2 year: 2000 ident: 10.1016/j.engfracmech.2021.108130_b0195 article-title: Generalized stacking fault energies for embedded atom FCC metals publication-title: Modell Simul Mater Sci Engng doi: 10.1088/0965-0393/8/2/302 – volume: 9 start-page: 395 issue: 6 year: 1987 ident: 10.1016/j.engfracmech.2021.108130_b0150 article-title: Life prediction of 316 stainless steel under creep-fatigue loading publication-title: Fatigue Fract Engng Mater Struct doi: 10.1111/j.1460-2695.1987.tb00467.x – volume: 72 start-page: 4695 issue: 12 year: 2020 ident: 10.1016/j.engfracmech.2021.108130_b0110 article-title: Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication publication-title: Jom doi: 10.1007/s11837-020-04438-4 – volume: 54 start-page: 3821 issue: 14 year: 2006 ident: 10.1016/j.engfracmech.2021.108130_b0185 article-title: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory publication-title: Acta Mater doi: 10.1016/j.actamat.2006.04.013 – volume: 70 issue: 17 year: 2004 ident: 10.1016/j.engfracmech.2021.108130_b0190 article-title: Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study publication-title: Phys Rev B doi: 10.1103/PhysRevB.70.174105 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.engfracmech.2021.108130_b0225 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans Intell Syst Technol (TIST) doi: 10.1145/1961189.1961199 – volume: 151 start-page: 106317 year: 2021 ident: 10.1016/j.engfracmech.2021.108130_b0020 article-title: The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2021.106317 – year: 2016 ident: 10.1016/j.engfracmech.2021.108130_b0045 article-title: Deep learning publication-title: MIT press – volume: 65 start-page: 39 issue: 4–6 year: 2009 ident: 10.1016/j.engfracmech.2021.108130_b0175 article-title: Recent developments in stainless steels publication-title: Mater Sci Eng R-Reports doi: 10.1016/j.mser.2009.03.001 – volume: 162 start-page: 300 year: 2019 ident: 10.1016/j.engfracmech.2021.108130_b0075 article-title: Using deep neural network with small dataset to predict material defects publication-title: Mater Des doi: 10.1016/j.matdes.2018.11.060 – start-page: 1461 year: 2013 ident: 10.1016/j.engfracmech.2021.108130_b0030 article-title: Systematic evaluation of creep-fatigue life prediction methods for various alloys – volume: 90 start-page: 12 year: 2016 ident: 10.1016/j.engfracmech.2021.108130_b0035 article-title: A modified strain energy density exhaustion model for creep–fatigue life prediction publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.03.005 – volume: 229 start-page: 106933 year: 2020 ident: 10.1016/j.engfracmech.2021.108130_b0060 article-title: Bayesian-based probabilistic fatigue crack growth evaluation combined with machine-learning-assisted GPR publication-title: Engng Fract Mech doi: 10.1016/j.engfracmech.2020.106933 – volume: 22 start-page: 100898 year: 2021 ident: 10.1016/j.engfracmech.2021.108130_b0095 article-title: Physics-informed machine learning for composition – process – property design: Shape memory alloy demonstration publication-title: Appl Mater Today doi: 10.1016/j.apmt.2020.100898 – volume: 47 start-page: 936 year: 2014 ident: 10.1016/j.engfracmech.2021.108130_b0180 article-title: Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending publication-title: J Appl Crystallogr doi: 10.1107/S1600576714007109 – year: 2020 ident: 10.1016/j.engfracmech.2021.108130_b0005 – volume: 6 start-page: 141 issue: 1 year: 2020 ident: 10.1016/j.engfracmech.2021.108130_b0085 article-title: Coupling physics in machine learning to predict properties of high-temperatures alloys publication-title: npj Comput Mater doi: 10.1038/s41524-020-00407-2 – volume: 85 start-page: 378 issue: 6 year: 2008 ident: 10.1016/j.engfracmech.2021.108130_b0125 article-title: Evaluation of the creep–fatigue damage mechanism of Type 316L and Type 316LN stainless steel publication-title: Int J Press Vessels Pip doi: 10.1016/j.ijpvp.2007.11.013 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.engfracmech.2021.108130_b0220 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1023/A:1022627411411 – volume: 141 issue: 5 year: 2019 ident: 10.1016/j.engfracmech.2021.108130_b0010 article-title: Notch Effect on Structural Strength of Components at Elevated Temperature Under Creep, Fatigue, and Creep-Fatigue Loading Conditions: Phenomenon and Mechanism publication-title: J Pressure Vessel Technol-Trans ASME doi: 10.1115/1.4043843 – volume: 143 issue: 4 year: 2021 ident: 10.1016/j.engfracmech.2021.108130_b0025 article-title: An Improved Creep-Fatigue Life Model Involving the Cyclic Softening/Hardening and Stress Relaxation Effect publication-title: J Pressure Vessel Technol doi: 10.1115/1.4049695 – volume: 197 start-page: 109199 year: 2021 ident: 10.1016/j.engfracmech.2021.108130_b0090 article-title: Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning publication-title: Mater Des doi: 10.1016/j.matdes.2020.109199 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.engfracmech.2021.108130_b0230 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – year: 2015 ident: 10.1016/j.engfracmech.2021.108130_b0235 article-title: Design and construction rules for mechanical components of nuclear installations: high temperature, research and fusion reactors publication-title: RCC-MRx. – volume: 3 start-page: 422 issue: 6 year: 2021 ident: 10.1016/j.engfracmech.2021.108130_b0080 article-title: Physics-informed machine learning publication-title: Nat Rev Phys doi: 10.1038/s42254-021-00314-5 – volume: 113 start-page: 1943 issue: 7-8 year: 2021 ident: 10.1016/j.engfracmech.2021.108130_b0100 article-title: A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06640-3 – year: 2018 ident: 10.1016/j.engfracmech.2021.108130_b0205 – volume: 141 start-page: 19 year: 2015 ident: 10.1016/j.engfracmech.2021.108130_b0120 article-title: Experimental and numerical creep–fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time publication-title: Engng Fract Mech doi: 10.1016/j.engfracmech.2015.05.007 – volume: 20 issue: 6 year: 2020 ident: 10.1016/j.engfracmech.2021.108130_b0105 article-title: Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue publication-title: J Comput Inf Sci Engng – volume: 36 start-page: 511 issue: 6 year: 2019 ident: 10.1016/j.engfracmech.2021.108130_b0210 article-title: Use of the Wilshire equation to correlate and extrapolate creep rupture data of Incoloy 800 and 304H stainless steel publication-title: Mater High Temp doi: 10.1080/09603409.2019.1647949 |
SSID | ssj0007680 |
Score | 2.6111917 |
Snippet | •Physics-informed neural network (PINN) is built for creep-fatigue life prediction.•Physics-informed feature engineering and physics-informed loss function are... Physics-informed neural network has strong generalization ability for small dataset, due to the inclusion of underlying physical knowledge. Two strategies are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108130 |
SubjectTerms | Artificial neural networks Constraint modelling Creep fatigue Deep neural network Fatigue life Hierarchies High temperature Life prediction Machine learning Neural networks Physics Physics-informed Stainless steels |
Title | A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures |
URI | https://dx.doi.org/10.1016/j.engfracmech.2021.108130 https://www.proquest.com/docview/2619120131 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7cEWQ9iI9ddH3QgtdoOt1JpmEvgyijoicFb036JSMah5nxur99q6Y7vvAgeExDJaGqUo_0118BHBjncifyflaLRmSSAISNFVVmrMf80DgTf-ZcXlXDG3l-W94uwHF3FoZglSn2x5g-j9Zp5Shp82g8GtEZXy7QmyQ2LehJ1AItFkJVZQ8WB2cXw6uXgIwVdd4NMiCBJdh_hXn59i5MGvvo51sTBSfQHSdM9Odp6kPAnmeh01VYSeUjG8Q3XIMF367D8htSwQ24H7D4u2KaRVZU7xixVqJYGzHfDFcZVot-nAU0zN2zZw-j4Nl4Qrs2ZCn2FBiBzZ9awlmwZsboGDqWpY4Rl1UiYp7-gpvTk-vjYZYmKmS2qNUsw1pAcROUDNzX0gpZ5N70g6k8NjK1JXp5Xvva8ryp-spV87FWpZdSYBKTdSF-Q6_FR28Cc9iY8aCEslLJUlkicm8aazBeOhdMuQX9ToHaJrpxmnrxoDtc2b1-o3tNutdR91tQvIiOI-fGV4T-dlbS7xxIY274ivhOZ1mdvuKppu6SF8RI9Od7d9-Gn3QVYTA70JtNnv0uFjMzswc_Dv_xveSy_wH7lvWU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6i4HIQV1xGjeC12jRpOwUvIsq4zJwUvIVmkxnGWmY6V3-77zWtGx4Er2lfW957fUvy5QshJ8qY0PCwG6Q854FAAGGueRIobSE_5Eb5yZz-IOk9itun-GmOXLZ7YRBW2cR-H9PraN2MnDXaPCuHQ9zjyzh4k4CmBTwJW6AFEfMUcX2nb584D6inw_YYA7x9kRx_grxs8ewmuX6x9cJExBByxxAR_XuS-hGu6xx0vUZWm-KRXvjvWydzttggK18oBTfJ6IL6yYpp4DlRraHIWQlihUd8UxilUCvaMnBglueZpeOhs7Sc4JoN2om-OopQ89cCURY0ryhuQoei1FBksmpomKdb5PH66uGyFzTnKQQ6SrMqgEogY8plwjGbCs1FFFrVdSqx0MakGsnlWWpTzcI86WYmqQ-1iq0QHFKYSCO-TeYLePUOoQbaMuYynmmRiTjTSOOe51pBtDTGqXiXdFsFSt2QjeOZF2PZospG8ovuJepeet3vkuhDtPSMG38ROm-tJL-5j4TM8BfxTmtZ2fzDU4m9JYuQj2jvf08_Iku9h_69vL8Z3O2TZbziATEdMl9NZvYAyppKHdZu-w4S__Zf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physics-informed+neural+network+for+creep-fatigue+life+prediction+of+components+at+elevated+temperatures&rft.jtitle=Engineering+fracture+mechanics&rft.au=Zhang%2C+Xiao-Cheng&rft.au=Gong%2C+Jian-Guo&rft.au=Xuan%2C+Fu-Zhen&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=258&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engfracmech.2021.108130&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |