A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures

•Physics-informed neural network (PINN) is built for creep-fatigue life prediction.•Physics-informed feature engineering and physics-informed loss function are applied.•PINN exhibits better prediction capacity than conventional machine learning models. Physics-informed neural network has strong gene...

Full description

Saved in:
Bibliographic Details
Published inEngineering fracture mechanics Vol. 258; p. 108130
Main Authors Zhang, Xiao-Cheng, Gong, Jian-Guo, Xuan, Fu-Zhen
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0013-7944
1873-7315
DOI10.1016/j.engfracmech.2021.108130

Cover

Abstract •Physics-informed neural network (PINN) is built for creep-fatigue life prediction.•Physics-informed feature engineering and physics-informed loss function are applied.•PINN exhibits better prediction capacity than conventional machine learning models. Physics-informed neural network has strong generalization ability for small dataset, due to the inclusion of underlying physical knowledge. Two strategies are enforced to incorporate physics constraints to a deep neural network in this work. One is to obtain extended features through physics-informed feature engineering, and the other is to incorporate physics-informed loss function into deep neural network as constraints. Conventional machine learning models, deep neural network and physics-informed neural network are applied to predict creep-fatigue life of 316 stainless steel. Results show that physics-informed neural network presents better prediction accuracy than deep neural network and conventional machine learning models.
AbstractList •Physics-informed neural network (PINN) is built for creep-fatigue life prediction.•Physics-informed feature engineering and physics-informed loss function are applied.•PINN exhibits better prediction capacity than conventional machine learning models. Physics-informed neural network has strong generalization ability for small dataset, due to the inclusion of underlying physical knowledge. Two strategies are enforced to incorporate physics constraints to a deep neural network in this work. One is to obtain extended features through physics-informed feature engineering, and the other is to incorporate physics-informed loss function into deep neural network as constraints. Conventional machine learning models, deep neural network and physics-informed neural network are applied to predict creep-fatigue life of 316 stainless steel. Results show that physics-informed neural network presents better prediction accuracy than deep neural network and conventional machine learning models.
Physics-informed neural network has strong generalization ability for small dataset, due to the inclusion of underlying physical knowledge. Two strategies are enforced to incorporate physics constraints to a deep neural network in this work. One is to obtain extended features through physics-informed feature engineering, and the other is to incorporate physics-informed loss function into deep neural network as constraints. Conventional machine learning models, deep neural network and physics-informed neural network are applied to predict creep-fatigue life of 316 stainless steel. Results show that physics-informed neural network presents better prediction accuracy than deep neural network and conventional machine learning models.
ArticleNumber 108130
Author Gong, Jian-Guo
Zhang, Xiao-Cheng
Xuan, Fu-Zhen
Author_xml – sequence: 1
  givenname: Xiao-Cheng
  surname: Zhang
  fullname: Zhang, Xiao-Cheng
– sequence: 2
  givenname: Jian-Guo
  surname: Gong
  fullname: Gong, Jian-Guo
  email: jggong@ecust.edu.cn
– sequence: 3
  givenname: Fu-Zhen
  surname: Xuan
  fullname: Xuan, Fu-Zhen
  email: fzxuan@ecust.edu.cn
BookMark eNqNkE1P5DAMQCMEEsPHfwjac4ckDU17WqER7CIhcYFzlMk4kNImxUlB_HsyGg6I05xsWfaz_U7IYYgBCLngbMkZby77JYRnh8aOYF-Wggle6i2v2QFZ8FbVlar51SFZMMZL3kl5TE5S6hljqmnZgvTXdHr5TN6mygcXcYQNDTCjGUrIHxFfaalSiwBT5Uz2zzPQwTugE8LG2-xjoNFRG8epXBZyoiZTGODd5ILKME6AJs8I6YwcOTMkOP-Op-Tp9uZx9b-6f_h3t7q-r6xQXa6EqDu-dp10HJS0tRQM1q1bN9A1TFkm25orUJYz07TdpikPNu0VSFm3Ukkl6lPyZ8edML7NkLLu44yhrNSi4R0XRQUvXd2uy2JMCcHpCf1o8FNzprdqda9_qNVbtXqntsz-_TVrfTZbFRmNH_YirHYEKCLePaBO1kOwRSmCzXoT_R6ULzyun4Y
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109233
crossref_primary_10_1016_j_engfracmech_2023_109412
crossref_primary_10_1016_j_engfracmech_2023_109456
crossref_primary_10_1016_j_mtcomm_2024_110260
crossref_primary_10_1016_j_engfracmech_2023_109331
crossref_primary_10_1016_j_finmec_2022_100141
crossref_primary_10_2174_0115701794295930240902050855
crossref_primary_10_1016_j_energy_2024_131822
crossref_primary_10_1016_j_ijfatigue_2023_107917
crossref_primary_10_1016_j_ijfatigue_2024_108608
crossref_primary_10_1016_j_conbuildmat_2023_132679
crossref_primary_10_1016_j_ijfatigue_2024_108725
crossref_primary_10_3724_j_GTER_20240002
crossref_primary_10_1016_j_cnsns_2024_108242
crossref_primary_10_1016_j_ijfatigue_2024_108402
crossref_primary_10_1111_ffe_13895
crossref_primary_10_1016_j_ijfatigue_2024_108445
crossref_primary_10_1016_j_ijfatigue_2022_107270
crossref_primary_10_1016_j_ijfatigue_2024_108487
crossref_primary_10_1080_09603409_2025_2453321
crossref_primary_10_1016_j_oceaneng_2024_118826
crossref_primary_10_3390_ma16186279
crossref_primary_10_1016_j_engfracmech_2023_109737
crossref_primary_10_1016_j_ijfatigue_2024_108283
crossref_primary_10_1016_j_tws_2023_110908
crossref_primary_10_1016_j_ijhydene_2022_05_124
crossref_primary_10_1016_j_ijpvp_2023_105051
crossref_primary_10_1016_j_engfracmech_2023_109103
crossref_primary_10_3390_s23146346
crossref_primary_10_1016_j_engfracmech_2025_111026
crossref_primary_10_1115_1_4064449
crossref_primary_10_1155_2022_4145219
crossref_primary_10_1016_j_ijfatigue_2023_107648
crossref_primary_10_1108_IJSI_10_2024_0170
crossref_primary_10_1016_j_ijfatigue_2022_107147
crossref_primary_10_1016_j_ijfatigue_2023_107645
crossref_primary_10_1016_j_ijfatigue_2025_108933
crossref_primary_10_1016_j_ijfatigue_2024_108633
crossref_primary_10_1111_ffe_14557
crossref_primary_10_1016_j_engfracmech_2022_108918
crossref_primary_10_1016_j_ijfatigue_2024_108634
crossref_primary_10_1016_j_ress_2023_109852
crossref_primary_10_1016_j_ijfatigue_2023_107962
crossref_primary_10_1016_j_ijfatigue_2023_108012
crossref_primary_10_1016_j_ymssp_2024_111120
crossref_primary_10_1098_rsta_2022_0406
crossref_primary_10_3390_applmech4010019
crossref_primary_10_3390_app13084972
crossref_primary_10_1016_j_engfracmech_2025_110989
crossref_primary_10_1016_j_engfracmech_2023_109433
crossref_primary_10_1007_s10853_023_08259_z
crossref_primary_10_1016_j_engfracmech_2023_109630
crossref_primary_10_1016_j_ijpvp_2023_105022
crossref_primary_10_1111_ffe_13792
crossref_primary_10_1111_ffe_14123
crossref_primary_10_1002_adem_202201430
crossref_primary_10_1016_j_ijfatigue_2024_108509
crossref_primary_10_1016_j_net_2023_03_009
crossref_primary_10_1016_j_engfailanal_2024_108875
crossref_primary_10_1016_j_ijpvp_2023_105068
crossref_primary_10_1016_j_ijpvp_2024_105341
crossref_primary_10_1016_j_jcsr_2024_109000
crossref_primary_10_1016_j_ijhydene_2024_10_325
crossref_primary_10_1016_j_ijfatigue_2024_108669
crossref_primary_10_1016_j_ijfatigue_2025_108943
crossref_primary_10_1016_j_ijfatigue_2023_107730
crossref_primary_10_1016_j_ijfatigue_2024_108389
crossref_primary_10_1002_adem_202401889
crossref_primary_10_1016_j_ijmecsci_2023_108314
crossref_primary_10_1016_j_ijfatigue_2024_108187
crossref_primary_10_1038_s41524_023_01173_7
crossref_primary_10_1016_j_eng_2024_12_034
crossref_primary_10_1063_5_0229859
crossref_primary_10_1016_j_eswa_2024_124678
crossref_primary_10_1016_j_engfracmech_2023_109242
crossref_primary_10_1016_j_istruc_2025_108721
crossref_primary_10_1038_s41598_024_61189_x
crossref_primary_10_1007_s40843_024_3204_5
crossref_primary_10_1016_j_compositesa_2024_108474
crossref_primary_10_1016_j_engfracmech_2024_110215
crossref_primary_10_1115_1_4065356
crossref_primary_10_1016_j_tws_2024_111963
crossref_primary_10_1016_j_euromechsol_2022_104889
crossref_primary_10_3390_met13091630
crossref_primary_10_1016_j_ijfatigue_2022_106996
crossref_primary_10_1016_j_ijfatigue_2022_107327
crossref_primary_10_1016_j_ijfatigue_2025_108832
crossref_primary_10_1016_j_ijfatigue_2022_107324
crossref_primary_10_1016_j_tws_2024_112495
crossref_primary_10_3389_fmats_2024_1399292
crossref_primary_10_1016_j_ijfatigue_2022_107483
crossref_primary_10_1080_10589759_2024_2335528
crossref_primary_10_1111_ffe_14618
crossref_primary_10_1016_j_cma_2025_117924
crossref_primary_10_1016_j_ijmecsci_2022_107331
Cites_doi 10.1111/ffe.12158
10.1115/1.1343911
10.1016/j.engfracmech.2020.107508
10.1007/BF02655121
10.1016/j.ijpvp.2019.104014
10.1016/j.matdes.2020.108708
10.1016/j.ijfatigue.2021.106236
10.1016/S0142-1123(03)00064-1
10.1016/j.matdes.2015.09.007
10.1088/1009-1963/11/6/315
10.1186/2193-9772-3-8
10.1016/j.nucengdes.2006.09.017
10.1016/j.ijfatigue.2012.07.016
10.1007/s11661-013-1631-0
10.1111/j.1460-2695.1981.tb01115.x
10.1111/j.1460-2695.1993.tb00760.x
10.1088/0965-0393/8/2/302
10.1111/j.1460-2695.1987.tb00467.x
10.1007/s11837-020-04438-4
10.1016/j.actamat.2006.04.013
10.1103/PhysRevB.70.174105
10.1145/1961189.1961199
10.1016/j.ijfatigue.2021.106317
10.1016/j.mser.2009.03.001
10.1016/j.matdes.2018.11.060
10.1016/j.ijfatigue.2016.03.005
10.1016/j.engfracmech.2020.106933
10.1016/j.apmt.2020.100898
10.1107/S1600576714007109
10.1038/s41524-020-00407-2
10.1016/j.ijpvp.2007.11.013
10.1023/A:1022627411411
10.1115/1.4043843
10.1115/1.4049695
10.1016/j.matdes.2020.109199
10.1023/A:1010933404324
10.1038/s42254-021-00314-5
10.1007/s00170-021-06640-3
10.1016/j.engfracmech.2015.05.007
10.1080/09603409.2019.1647949
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2021
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.engfracmech.2021.108130
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-7315
ExternalDocumentID 10_1016_j_engfracmech_2021_108130
S0013794421005361
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
7TB
8BQ
8FD
AFXIZ
AGRNS
BNPGV
FR3
JG9
KR7
SSH
ID FETCH-LOGICAL-c279t-22391bf94f1e74c3420eb8fb6e9607c048317e7c10a689d6731685e4438474723
IEDL.DBID AIKHN
ISSN 0013-7944
IngestDate Fri Jul 25 06:26:05 EDT 2025
Thu Sep 18 00:23:15 EDT 2025
Thu Apr 24 23:01:15 EDT 2025
Fri Feb 23 02:37:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Life prediction
Deep neural network
Physics-informed
Creep-fatigue
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-22391bf94f1e74c3420eb8fb6e9607c048317e7c10a689d6731685e4438474723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2619120131
PQPubID 2045482
ParticipantIDs proquest_journals_2619120131
crossref_primary_10_1016_j_engfracmech_2021_108130
crossref_citationtrail_10_1016_j_engfracmech_2021_108130
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2021_108130
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Engineering fracture mechanics
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Feng, Zhou, Dong (b0075) 2019; 162
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b0080) 2021; 3
Vitos, Nilsson, Johansson (b0185) 2006; 54
Takahashi, Dogan, Gandy (b0030) 2013
Mu, Rahaman, Rios, Odqvist, Hedström (b0090) 2021; 197
Takahashi, Shibamoto, Inoue (b0140) 2008; 238
Breiman (b0230) 2001; 45
Srinivasan, Valsan, Bhanu Sankara Rao, Mannan, Raj (b0135) 2003; 25
Wareing (b0145) 1981; 4
Zimmerman, Gao, Abraham (b0195) 2000; 8
Yan, Wang, Wang (b0190) 2004; 70
Agrawal, Deshpande, Cecen, Basavarsu, Choudhary, Kalidindi (b0055) 2014; 3
Kapusuzoglu, Mahadevan (b0110) 2020; 72
Liu, Kappes, Amin-ahmadi, Benafan, Zhang, Stebner (b0095) 2021; 22
Chang, Lin (b0225) 2011; 2
Peng, Yamamoto, Hawk, Lara-Curzio, Shin (b0085) 2020; 6
Xuan, Gong (b0005) 2020
Liu, Liu, Zhang (b0100) 2021; 113
Goodfellow, Bengio, Courville (b0045) 2016
ASME. Section III, Rules for construction of nuclear facility components, Division 1 - Subsection NH. 2015.
Yagi, Kanemaru, Kubo, Tanaka (b0150) 1987; 9
Cedro Iii, Garcia, Render (b0210) 2019; 36
Gong, Gong, Xuan, Chen (b0010) 2019; 141
Dourado, Viana (b0105) 2020; 20
Zhang, Gong, Xuan (b0070) 2021; 148
Ohta, Maeda, Suzuki (b0165) 1993; 16
Zhang, Gong, Gao, Xuan (b0025) 2021; 143
Liang, Liu, Fan, Zhu, Bi, Zhang (b0050) 2020; 179
Cortes, Vapnik (b0220) 1995; 20
Kim, Chang, Ryu (b0125) 2008; 85
Brinkman (b0115) 2001; 123
Hormozi, Biglari, Nikbin (b0120) 2015; 141
Dai, Wang, Cheng, Luo (b0200) 2002; 11
Hu, Su, Liu, Mao, Shan, Wang (b0060) 2020; 229
Lo, Shek, Lai (b0175) 2009; 65
Bao, Wu, Wu, Kang, Peng, Withers (b0065) 2021; 242
Chopra, Stevens (b0205) 2018
Carroll, Cabet, Carroll, Wright (b0015) 2013; 47
Wu, Wu, Bao, Qian, Karabal, Sun (b0020) 2021; 151
Wang, Zhang, Tu, Zhu, Zhang (b0035) 2016; 90
AFCEN (b0235) 2015
Reddy, Sandhya, Sankaran, Parameswaran, Laha (b0130) 2015; 88
Yamaguchi, Kanazawa (b0155) 1980; 11
Hu, Wu, Withers, Zhang, Bao, Fu (b0040) 2020; 192
Pang, Li, Wang, Zhang (b0160) 2014; 37
Rafaja, Krbetschek, Ullrich, Martin (b0180) 2014; 47
Tamura, Abe, Shiba, Sakasegawa, Tanigawa (b0215) 2013; 44
Yan (10.1016/j.engfracmech.2021.108130_b0190) 2004; 70
Srinivasan (10.1016/j.engfracmech.2021.108130_b0135) 2003; 25
Goodfellow (10.1016/j.engfracmech.2021.108130_b0045) 2016
Rafaja (10.1016/j.engfracmech.2021.108130_b0180) 2014; 47
Gong (10.1016/j.engfracmech.2021.108130_b0010) 2019; 141
Wang (10.1016/j.engfracmech.2021.108130_b0035) 2016; 90
Kim (10.1016/j.engfracmech.2021.108130_b0125) 2008; 85
Chopra (10.1016/j.engfracmech.2021.108130_b0205) 2018
Wu (10.1016/j.engfracmech.2021.108130_b0020) 2021; 151
Yamaguchi (10.1016/j.engfracmech.2021.108130_b0155) 1980; 11
Bao (10.1016/j.engfracmech.2021.108130_b0065) 2021; 242
Takahashi (10.1016/j.engfracmech.2021.108130_b0140) 2008; 238
Yagi (10.1016/j.engfracmech.2021.108130_b0150) 1987; 9
Peng (10.1016/j.engfracmech.2021.108130_b0085) 2020; 6
AFCEN (10.1016/j.engfracmech.2021.108130_b0235) 2015
Hu (10.1016/j.engfracmech.2021.108130_b0060) 2020; 229
Liu (10.1016/j.engfracmech.2021.108130_b0100) 2021; 113
Feng (10.1016/j.engfracmech.2021.108130_b0075) 2019; 162
Dourado (10.1016/j.engfracmech.2021.108130_b0105) 2020; 20
Breiman (10.1016/j.engfracmech.2021.108130_b0230) 2001; 45
Takahashi (10.1016/j.engfracmech.2021.108130_b0030) 2013
Lo (10.1016/j.engfracmech.2021.108130_b0175) 2009; 65
Hu (10.1016/j.engfracmech.2021.108130_b0040) 2020; 192
Pang (10.1016/j.engfracmech.2021.108130_b0160) 2014; 37
Vitos (10.1016/j.engfracmech.2021.108130_b0185) 2006; 54
10.1016/j.engfracmech.2021.108130_b0170
Carroll (10.1016/j.engfracmech.2021.108130_b0015) 2013; 47
Zhang (10.1016/j.engfracmech.2021.108130_b0070) 2021; 148
Kapusuzoglu (10.1016/j.engfracmech.2021.108130_b0110) 2020; 72
Tamura (10.1016/j.engfracmech.2021.108130_b0215) 2013; 44
Xuan (10.1016/j.engfracmech.2021.108130_b0005) 2020
Reddy (10.1016/j.engfracmech.2021.108130_b0130) 2015; 88
Cortes (10.1016/j.engfracmech.2021.108130_b0220) 1995; 20
Brinkman (10.1016/j.engfracmech.2021.108130_b0115) 2001; 123
Liu (10.1016/j.engfracmech.2021.108130_b0095) 2021; 22
Cedro Iii (10.1016/j.engfracmech.2021.108130_b0210) 2019; 36
Agrawal (10.1016/j.engfracmech.2021.108130_b0055) 2014; 3
Ohta (10.1016/j.engfracmech.2021.108130_b0165) 1993; 16
Liang (10.1016/j.engfracmech.2021.108130_b0050) 2020; 179
Wareing (10.1016/j.engfracmech.2021.108130_b0145) 1981; 4
Zhang (10.1016/j.engfracmech.2021.108130_b0025) 2021; 143
Hormozi (10.1016/j.engfracmech.2021.108130_b0120) 2015; 141
Chang (10.1016/j.engfracmech.2021.108130_b0225) 2011; 2
Dai (10.1016/j.engfracmech.2021.108130_b0200) 2002; 11
Karniadakis (10.1016/j.engfracmech.2021.108130_b0080) 2021; 3
Zimmerman (10.1016/j.engfracmech.2021.108130_b0195) 2000; 8
Mu (10.1016/j.engfracmech.2021.108130_b0090) 2021; 197
References_xml – volume: 11
  start-page: 2019
  year: 1980
  end-page: 2027
  ident: b0155
  article-title: Effect of strain wave shape on high temperature fatigue life of a type 316 steel and application of the strain range partitioning method
  publication-title: Metall Trans A
– volume: 47
  start-page: 115
  year: 2013
  end-page: 125
  ident: b0015
  article-title: The development of microstructural damage during high temperature creep-fatigue of a nickel alloy
  publication-title: Int J Fatigue
– volume: 143
  year: 2021
  ident: b0025
  article-title: An Improved Creep-Fatigue Life Model Involving the Cyclic Softening/Hardening and Stress Relaxation Effect
  publication-title: J Pressure Vessel Technol
– volume: 85
  start-page: 378
  year: 2008
  end-page: 384
  ident: b0125
  article-title: Evaluation of the creep–fatigue damage mechanism of Type 316L and Type 316LN stainless steel
  publication-title: Int J Press Vessels Pip
– volume: 192
  start-page: 108708
  year: 2020
  ident: b0040
  article-title: The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures
  publication-title: Mater Des
– volume: 151
  start-page: 106317
  year: 2021
  ident: b0020
  article-title: The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion
  publication-title: Int J Fatigue
– volume: 197
  start-page: 109199
  year: 2021
  ident: b0090
  article-title: Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning
  publication-title: Mater Des
– volume: 37
  start-page: 958
  year: 2014
  end-page: 976
  ident: b0160
  article-title: Relations between fatigue strength and other mechanical properties of metallic materials
  publication-title: Fatigue Fract Engng Mater Struct
– volume: 47
  start-page: 936
  year: 2014
  end-page: 947
  ident: b0180
  article-title: Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending
  publication-title: J Appl Crystallogr
– volume: 242
  start-page: 107508
  year: 2021
  ident: b0065
  article-title: A machine-learning fatigue life prediction approach of additively manufactured metals
  publication-title: Engng Fract Mech
– volume: 162
  start-page: 300
  year: 2019
  end-page: 310
  ident: b0075
  article-title: Using deep neural network with small dataset to predict material defects
  publication-title: Mater Des
– year: 2018
  ident: b0205
  article-title: Effect of LWR Water Environments on the Fatigue Life of Reactor Materials
– volume: 22
  start-page: 100898
  year: 2021
  ident: b0095
  article-title: Physics-informed machine learning for composition – process – property design: Shape memory alloy demonstration
  publication-title: Appl Mater Today
– volume: 141
  start-page: 19
  year: 2015
  end-page: 43
  ident: b0120
  article-title: Experimental and numerical creep–fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time
  publication-title: Engng Fract Mech
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0230
  article-title: Random forests
  publication-title: Mach Learn
– volume: 148
  start-page: 106236
  year: 2021
  ident: b0070
  article-title: A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions
  publication-title: Int J Fatigue
– volume: 113
  start-page: 1943
  year: 2021
  end-page: 1958
  ident: b0100
  article-title: A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing
  publication-title: Int J Adv Manuf Technol
– volume: 11
  start-page: 596
  year: 2002
  end-page: 600
  ident: b0200
  article-title: Stacking fault energy of cryogenic austenitic steels
  publication-title: Chin Phys
– volume: 88
  start-page: 972
  year: 2015
  end-page: 982
  ident: b0130
  article-title: Creep–fatigue interaction behavior of 316LN austenitic stainless steel with varying nitrogen content
  publication-title: Mater Des
– volume: 25
  start-page: 1327
  year: 2003
  end-page: 1338
  ident: b0135
  article-title: Low cycle fatigue and creep–fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach
  publication-title: Int J Fatigue
– volume: 36
  start-page: 511
  year: 2019
  end-page: 530
  ident: b0210
  article-title: Use of the Wilshire equation to correlate and extrapolate creep rupture data of Incoloy 800 and 304H stainless steel
  publication-title: Mater High Temp
– volume: 6
  start-page: 141
  year: 2020
  ident: b0085
  article-title: Coupling physics in machine learning to predict properties of high-temperatures alloys
  publication-title: npj Comput Mater
– volume: 229
  start-page: 106933
  year: 2020
  ident: b0060
  article-title: Bayesian-based probabilistic fatigue crack growth evaluation combined with machine-learning-assisted GPR
  publication-title: Engng Fract Mech
– year: 2015
  ident: b0235
  article-title: Design and construction rules for mechanical components of nuclear installations: high temperature, research and fusion reactors
  publication-title: RCC-MRx.
– volume: 238
  start-page: 322
  year: 2008
  end-page: 335
  ident: b0140
  article-title: Study on creep-fatigue life prediction methods for low-carbon nitrogen-controlled 316 stainless steel (316FR)
  publication-title: Nucl Engng Des
– volume: 4
  start-page: 131
  year: 1981
  end-page: 145
  ident: b0145
  article-title: Creep-fatigue behavior of four casts of type 316 stainless steel
  publication-title: Fatigue Fract Engng Mater Struct
– volume: 141
  year: 2019
  ident: b0010
  article-title: Notch Effect on Structural Strength of Components at Elevated Temperature Under Creep, Fatigue, and Creep-Fatigue Loading Conditions: Phenomenon and Mechanism
  publication-title: J Pressure Vessel Technol-Trans ASME
– year: 2016
  ident: b0045
  article-title: Deep learning
  publication-title: MIT press
– volume: 54
  start-page: 3821
  year: 2006
  end-page: 3826
  ident: b0185
  article-title: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory
  publication-title: Acta Mater
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: b0225
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans Intell Syst Technol (TIST)
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: b0080
  article-title: Physics-informed machine learning
  publication-title: Nat Rev Phys
– volume: 16
  start-page: 473
  year: 1993
  end-page: 479
  ident: b0165
  article-title: Effect of Yield strength on the basic fatigue strength of welded joints
  publication-title: Fatigue Fract Engng Mater Struct
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0220
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 90
  start-page: 12
  year: 2016
  end-page: 22
  ident: b0035
  article-title: A modified strain energy density exhaustion model for creep–fatigue life prediction
  publication-title: Int J Fatigue
– volume: 72
  start-page: 4695
  year: 2020
  end-page: 4705
  ident: b0110
  article-title: Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication
  publication-title: Jom
– volume: 65
  start-page: 39
  year: 2009
  end-page: 104
  ident: b0175
  article-title: Recent developments in stainless steels
  publication-title: Mater Sci Eng R-Reports
– volume: 9
  start-page: 395
  year: 1987
  end-page: 408
  ident: b0150
  article-title: Life prediction of 316 stainless steel under creep-fatigue loading
  publication-title: Fatigue Fract Engng Mater Struct
– volume: 70
  year: 2004
  ident: b0190
  article-title: Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study
  publication-title: Phys Rev B
– volume: 179
  start-page: 104014
  year: 2020
  ident: b0050
  article-title: Prediction of long-term creep life of 9Cr–1Mo–V–Nb steel using artificial neural network
  publication-title: Int J Press Vessels Pip
– volume: 20
  year: 2020
  ident: b0105
  article-title: Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue
  publication-title: J Comput Inf Sci Engng
– year: 2020
  ident: b0005
  article-title: Fundamental and approaches for damage mode-based design of pressure vessels
– volume: 8
  start-page: 103
  year: 2000
  end-page: 115
  ident: b0195
  article-title: Generalized stacking fault energies for embedded atom FCC metals
  publication-title: Modell Simul Mater Sci Engng
– volume: 3
  start-page: 90
  year: 2014
  end-page: 108
  ident: b0055
  article-title: Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters
  publication-title: Integrating Mater Manuf Innov
– volume: 44
  start-page: 2645
  year: 2013
  end-page: 2661
  ident: b0215
  article-title: Larson-Miller Constant of Heat-Resistant Steel
  publication-title: Metallur Mater Trans A
– volume: 123
  start-page: 75
  year: 2001
  end-page: 80
  ident: b0115
  article-title: Elevated-temperature mechanical properties of an advanced-type 316 stainless steel
  publication-title: J Pressure Vessel Technol-Trans Asme
– reference: ASME. Section III, Rules for construction of nuclear facility components, Division 1 - Subsection NH. 2015.
– start-page: 1461
  year: 2013
  end-page: 1470
  ident: b0030
  article-title: Systematic evaluation of creep-fatigue life prediction methods for various alloys
  publication-title: ASME 2009 Pressure Vessels and Piping Conference
– volume: 37
  start-page: 958
  issue: 9
  year: 2014
  ident: 10.1016/j.engfracmech.2021.108130_b0160
  article-title: Relations between fatigue strength and other mechanical properties of metallic materials
  publication-title: Fatigue Fract Engng Mater Struct
  doi: 10.1111/ffe.12158
– volume: 123
  start-page: 75
  issue: 1
  year: 2001
  ident: 10.1016/j.engfracmech.2021.108130_b0115
  article-title: Elevated-temperature mechanical properties of an advanced-type 316 stainless steel
  publication-title: J Pressure Vessel Technol-Trans Asme
  doi: 10.1115/1.1343911
– volume: 242
  start-page: 107508
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108130_b0065
  article-title: A machine-learning fatigue life prediction approach of additively manufactured metals
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2020.107508
– volume: 11
  start-page: 2019
  issue: 12
  year: 1980
  ident: 10.1016/j.engfracmech.2021.108130_b0155
  article-title: Effect of strain wave shape on high temperature fatigue life of a type 316 steel and application of the strain range partitioning method
  publication-title: Metall Trans A
  doi: 10.1007/BF02655121
– volume: 179
  start-page: 104014
  year: 2020
  ident: 10.1016/j.engfracmech.2021.108130_b0050
  article-title: Prediction of long-term creep life of 9Cr–1Mo–V–Nb steel using artificial neural network
  publication-title: Int J Press Vessels Pip
  doi: 10.1016/j.ijpvp.2019.104014
– volume: 192
  start-page: 108708
  year: 2020
  ident: 10.1016/j.engfracmech.2021.108130_b0040
  article-title: The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.108708
– volume: 148
  start-page: 106236
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108130_b0070
  article-title: A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2021.106236
– volume: 25
  start-page: 1327
  issue: 12
  year: 2003
  ident: 10.1016/j.engfracmech.2021.108130_b0135
  article-title: Low cycle fatigue and creep–fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach
  publication-title: Int J Fatigue
  doi: 10.1016/S0142-1123(03)00064-1
– volume: 88
  start-page: 972
  year: 2015
  ident: 10.1016/j.engfracmech.2021.108130_b0130
  article-title: Creep–fatigue interaction behavior of 316LN austenitic stainless steel with varying nitrogen content
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.09.007
– ident: 10.1016/j.engfracmech.2021.108130_b0170
– volume: 11
  start-page: 596
  issue: 6
  year: 2002
  ident: 10.1016/j.engfracmech.2021.108130_b0200
  article-title: Stacking fault energy of cryogenic austenitic steels
  publication-title: Chin Phys
  doi: 10.1088/1009-1963/11/6/315
– volume: 3
  start-page: 90
  issue: 1
  year: 2014
  ident: 10.1016/j.engfracmech.2021.108130_b0055
  article-title: Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters
  publication-title: Integrating Mater Manuf Innov
  doi: 10.1186/2193-9772-3-8
– volume: 238
  start-page: 322
  issue: 2
  year: 2008
  ident: 10.1016/j.engfracmech.2021.108130_b0140
  article-title: Study on creep-fatigue life prediction methods for low-carbon nitrogen-controlled 316 stainless steel (316FR)
  publication-title: Nucl Engng Des
  doi: 10.1016/j.nucengdes.2006.09.017
– volume: 47
  start-page: 115
  year: 2013
  ident: 10.1016/j.engfracmech.2021.108130_b0015
  article-title: The development of microstructural damage during high temperature creep-fatigue of a nickel alloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2012.07.016
– volume: 44
  start-page: 2645
  issue: 6
  year: 2013
  ident: 10.1016/j.engfracmech.2021.108130_b0215
  article-title: Larson-Miller Constant of Heat-Resistant Steel
  publication-title: Metallur Mater Trans A
  doi: 10.1007/s11661-013-1631-0
– volume: 4
  start-page: 131
  issue: 2
  year: 1981
  ident: 10.1016/j.engfracmech.2021.108130_b0145
  article-title: Creep-fatigue behavior of four casts of type 316 stainless steel
  publication-title: Fatigue Fract Engng Mater Struct
  doi: 10.1111/j.1460-2695.1981.tb01115.x
– volume: 16
  start-page: 473
  issue: 5
  year: 1993
  ident: 10.1016/j.engfracmech.2021.108130_b0165
  article-title: Effect of Yield strength on the basic fatigue strength of welded joints
  publication-title: Fatigue Fract Engng Mater Struct
  doi: 10.1111/j.1460-2695.1993.tb00760.x
– volume: 8
  start-page: 103
  issue: 2
  year: 2000
  ident: 10.1016/j.engfracmech.2021.108130_b0195
  article-title: Generalized stacking fault energies for embedded atom FCC metals
  publication-title: Modell Simul Mater Sci Engng
  doi: 10.1088/0965-0393/8/2/302
– volume: 9
  start-page: 395
  issue: 6
  year: 1987
  ident: 10.1016/j.engfracmech.2021.108130_b0150
  article-title: Life prediction of 316 stainless steel under creep-fatigue loading
  publication-title: Fatigue Fract Engng Mater Struct
  doi: 10.1111/j.1460-2695.1987.tb00467.x
– volume: 72
  start-page: 4695
  issue: 12
  year: 2020
  ident: 10.1016/j.engfracmech.2021.108130_b0110
  article-title: Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication
  publication-title: Jom
  doi: 10.1007/s11837-020-04438-4
– volume: 54
  start-page: 3821
  issue: 14
  year: 2006
  ident: 10.1016/j.engfracmech.2021.108130_b0185
  article-title: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.04.013
– volume: 70
  issue: 17
  year: 2004
  ident: 10.1016/j.engfracmech.2021.108130_b0190
  article-title: Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.70.174105
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.engfracmech.2021.108130_b0225
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans Intell Syst Technol (TIST)
  doi: 10.1145/1961189.1961199
– volume: 151
  start-page: 106317
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108130_b0020
  article-title: The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2021.106317
– year: 2016
  ident: 10.1016/j.engfracmech.2021.108130_b0045
  article-title: Deep learning
  publication-title: MIT press
– volume: 65
  start-page: 39
  issue: 4–6
  year: 2009
  ident: 10.1016/j.engfracmech.2021.108130_b0175
  article-title: Recent developments in stainless steels
  publication-title: Mater Sci Eng R-Reports
  doi: 10.1016/j.mser.2009.03.001
– volume: 162
  start-page: 300
  year: 2019
  ident: 10.1016/j.engfracmech.2021.108130_b0075
  article-title: Using deep neural network with small dataset to predict material defects
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.11.060
– start-page: 1461
  year: 2013
  ident: 10.1016/j.engfracmech.2021.108130_b0030
  article-title: Systematic evaluation of creep-fatigue life prediction methods for various alloys
– volume: 90
  start-page: 12
  year: 2016
  ident: 10.1016/j.engfracmech.2021.108130_b0035
  article-title: A modified strain energy density exhaustion model for creep–fatigue life prediction
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.03.005
– volume: 229
  start-page: 106933
  year: 2020
  ident: 10.1016/j.engfracmech.2021.108130_b0060
  article-title: Bayesian-based probabilistic fatigue crack growth evaluation combined with machine-learning-assisted GPR
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2020.106933
– volume: 22
  start-page: 100898
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108130_b0095
  article-title: Physics-informed machine learning for composition – process – property design: Shape memory alloy demonstration
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2020.100898
– volume: 47
  start-page: 936
  year: 2014
  ident: 10.1016/j.engfracmech.2021.108130_b0180
  article-title: Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending
  publication-title: J Appl Crystallogr
  doi: 10.1107/S1600576714007109
– year: 2020
  ident: 10.1016/j.engfracmech.2021.108130_b0005
– volume: 6
  start-page: 141
  issue: 1
  year: 2020
  ident: 10.1016/j.engfracmech.2021.108130_b0085
  article-title: Coupling physics in machine learning to predict properties of high-temperatures alloys
  publication-title: npj Comput Mater
  doi: 10.1038/s41524-020-00407-2
– volume: 85
  start-page: 378
  issue: 6
  year: 2008
  ident: 10.1016/j.engfracmech.2021.108130_b0125
  article-title: Evaluation of the creep–fatigue damage mechanism of Type 316L and Type 316LN stainless steel
  publication-title: Int J Press Vessels Pip
  doi: 10.1016/j.ijpvp.2007.11.013
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.engfracmech.2021.108130_b0220
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1023/A:1022627411411
– volume: 141
  issue: 5
  year: 2019
  ident: 10.1016/j.engfracmech.2021.108130_b0010
  article-title: Notch Effect on Structural Strength of Components at Elevated Temperature Under Creep, Fatigue, and Creep-Fatigue Loading Conditions: Phenomenon and Mechanism
  publication-title: J Pressure Vessel Technol-Trans ASME
  doi: 10.1115/1.4043843
– volume: 143
  issue: 4
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108130_b0025
  article-title: An Improved Creep-Fatigue Life Model Involving the Cyclic Softening/Hardening and Stress Relaxation Effect
  publication-title: J Pressure Vessel Technol
  doi: 10.1115/1.4049695
– volume: 197
  start-page: 109199
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108130_b0090
  article-title: Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.109199
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.engfracmech.2021.108130_b0230
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– year: 2015
  ident: 10.1016/j.engfracmech.2021.108130_b0235
  article-title: Design and construction rules for mechanical components of nuclear installations: high temperature, research and fusion reactors
  publication-title: RCC-MRx.
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108130_b0080
  article-title: Physics-informed machine learning
  publication-title: Nat Rev Phys
  doi: 10.1038/s42254-021-00314-5
– volume: 113
  start-page: 1943
  issue: 7-8
  year: 2021
  ident: 10.1016/j.engfracmech.2021.108130_b0100
  article-title: A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-021-06640-3
– year: 2018
  ident: 10.1016/j.engfracmech.2021.108130_b0205
– volume: 141
  start-page: 19
  year: 2015
  ident: 10.1016/j.engfracmech.2021.108130_b0120
  article-title: Experimental and numerical creep–fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2015.05.007
– volume: 20
  issue: 6
  year: 2020
  ident: 10.1016/j.engfracmech.2021.108130_b0105
  article-title: Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue
  publication-title: J Comput Inf Sci Engng
– volume: 36
  start-page: 511
  issue: 6
  year: 2019
  ident: 10.1016/j.engfracmech.2021.108130_b0210
  article-title: Use of the Wilshire equation to correlate and extrapolate creep rupture data of Incoloy 800 and 304H stainless steel
  publication-title: Mater High Temp
  doi: 10.1080/09603409.2019.1647949
SSID ssj0007680
Score 2.6111917
Snippet •Physics-informed neural network (PINN) is built for creep-fatigue life prediction.•Physics-informed feature engineering and physics-informed loss function are...
Physics-informed neural network has strong generalization ability for small dataset, due to the inclusion of underlying physical knowledge. Two strategies are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108130
SubjectTerms Artificial neural networks
Constraint modelling
Creep fatigue
Deep neural network
Fatigue life
Hierarchies
High temperature
Life prediction
Machine learning
Neural networks
Physics
Physics-informed
Stainless steels
Title A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures
URI https://dx.doi.org/10.1016/j.engfracmech.2021.108130
https://www.proquest.com/docview/2619120131
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7cEWQ9iI9ddH3QgtdoOt1JpmEvgyijoicFb036JSMah5nxur99q6Y7vvAgeExDJaGqUo_0118BHBjncifyflaLRmSSAISNFVVmrMf80DgTf-ZcXlXDG3l-W94uwHF3FoZglSn2x5g-j9Zp5Shp82g8GtEZXy7QmyQ2LehJ1AItFkJVZQ8WB2cXw6uXgIwVdd4NMiCBJdh_hXn59i5MGvvo51sTBSfQHSdM9Odp6kPAnmeh01VYSeUjG8Q3XIMF367D8htSwQ24H7D4u2KaRVZU7xixVqJYGzHfDFcZVot-nAU0zN2zZw-j4Nl4Qrs2ZCn2FBiBzZ9awlmwZsboGDqWpY4Rl1UiYp7-gpvTk-vjYZYmKmS2qNUsw1pAcROUDNzX0gpZ5N70g6k8NjK1JXp5Xvva8ryp-spV87FWpZdSYBKTdSF-Q6_FR28Cc9iY8aCEslLJUlkicm8aazBeOhdMuQX9ToHaJrpxmnrxoDtc2b1-o3tNutdR91tQvIiOI-fGV4T-dlbS7xxIY274ivhOZ1mdvuKppu6SF8RI9Od7d9-Gn3QVYTA70JtNnv0uFjMzswc_Dv_xveSy_wH7lvWU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6i4HIQV1xGjeC12jRpOwUvIsq4zJwUvIVmkxnGWmY6V3-77zWtGx4Er2lfW957fUvy5QshJ8qY0PCwG6Q854FAAGGueRIobSE_5Eb5yZz-IOk9itun-GmOXLZ7YRBW2cR-H9PraN2MnDXaPCuHQ9zjyzh4k4CmBTwJW6AFEfMUcX2nb584D6inw_YYA7x9kRx_grxs8ewmuX6x9cJExBByxxAR_XuS-hGu6xx0vUZWm-KRXvjvWydzttggK18oBTfJ6IL6yYpp4DlRraHIWQlihUd8UxilUCvaMnBglueZpeOhs7Sc4JoN2om-OopQ89cCURY0ryhuQoei1FBksmpomKdb5PH66uGyFzTnKQQ6SrMqgEogY8plwjGbCs1FFFrVdSqx0MakGsnlWWpTzcI86WYmqQ-1iq0QHFKYSCO-TeYLePUOoQbaMuYynmmRiTjTSOOe51pBtDTGqXiXdFsFSt2QjeOZF2PZospG8ovuJepeet3vkuhDtPSMG38ROm-tJL-5j4TM8BfxTmtZ2fzDU4m9JYuQj2jvf08_Iku9h_69vL8Z3O2TZbziATEdMl9NZvYAyppKHdZu-w4S__Zf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physics-informed+neural+network+for+creep-fatigue+life+prediction+of+components+at+elevated+temperatures&rft.jtitle=Engineering+fracture+mechanics&rft.au=Zhang%2C+Xiao-Cheng&rft.au=Gong%2C+Jian-Guo&rft.au=Xuan%2C+Fu-Zhen&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=258&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engfracmech.2021.108130&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon