A comparative analysis of machine learning techniques for detecting probing attack with SHAP algorithm
Internet-based network safety has transformed into a major global issue because of the rising dependency of people, businesses, and countries. Therefore, it is vitally important for individuals to use an intrusion detection system (IDS) that may protect computer networks from potential threats and d...
Saved in:
| Published in | Expert systems with applications Vol. 271; p. 126718 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.05.2025
|
| Online Access | Get full text |
| ISSN | 0957-4174 |
| DOI | 10.1016/j.eswa.2025.126718 |
Cover
| Abstract | Internet-based network safety has transformed into a major global issue because of the rising dependency of people, businesses, and countries. Therefore, it is vitally important for individuals to use an intrusion detection system (IDS) that may protect computer networks from potential threats and data leakage. It is gradually improving with the growth of machine learning (ML) methods. In this research, we present an intrusion detection method utilizing several ML algorithms to detect probe attacks using the NSL-KDD dataset. This attack targets the potential weak point of the network to get an idea about the structure and vulnerabilities. Therefore, the objective of this study is to build a best-performed ML model that provides the lowest possible false positive rate, the lowest run time, and the highest possible F1 score. To that end, different ML models have been developed, such as Neural Network (NN), Random Forest (RF), K-Nearest Neighbor (KNN), Bagging Classifier, and Extreme Gradient Boosting Classifier (XGBoost). Furthermore, cross-validation, sampling methods, and hyperparameter tuning were conducted on those ML models to improve their efficiency. Moreover, a SHAP algorithm has been conducted to interpret the prediction of the ML models and figure out the most influential features that affect cyber-attack detection. We performed a comparative analysis among all ML models that we built, and it shows the XGBoost model is the best-performing model that outperformed all other models with a 92.93% F1 score, the lowest 2.35% false positive rate, and with a minimum runtime of 13 s. Furthermore, our feature importance study shows that the “src_bytes” or source bytes feature, which offers information on the number of bytes an attacker sends to each port during the scanning phase, has the greatest influence on identifying probing attacks. Compared to existing research on probe attack detection, our proposed model demonstrates an excellent example in terms of fast and accurate anomaly detection with negligible false positives. Additionally, it outperforms traditional probe attack detection in terms of computational efficiency and handling diverse network scenarios in the presence of high traffic volumes and dynamic environments. |
|---|---|
| AbstractList | Internet-based network safety has transformed into a major global issue because of the rising dependency of people, businesses, and countries. Therefore, it is vitally important for individuals to use an intrusion detection system (IDS) that may protect computer networks from potential threats and data leakage. It is gradually improving with the growth of machine learning (ML) methods. In this research, we present an intrusion detection method utilizing several ML algorithms to detect probe attacks using the NSL-KDD dataset. This attack targets the potential weak point of the network to get an idea about the structure and vulnerabilities. Therefore, the objective of this study is to build a best-performed ML model that provides the lowest possible false positive rate, the lowest run time, and the highest possible F1 score. To that end, different ML models have been developed, such as Neural Network (NN), Random Forest (RF), K-Nearest Neighbor (KNN), Bagging Classifier, and Extreme Gradient Boosting Classifier (XGBoost). Furthermore, cross-validation, sampling methods, and hyperparameter tuning were conducted on those ML models to improve their efficiency. Moreover, a SHAP algorithm has been conducted to interpret the prediction of the ML models and figure out the most influential features that affect cyber-attack detection. We performed a comparative analysis among all ML models that we built, and it shows the XGBoost model is the best-performing model that outperformed all other models with a 92.93% F1 score, the lowest 2.35% false positive rate, and with a minimum runtime of 13 s. Furthermore, our feature importance study shows that the “src_bytes” or source bytes feature, which offers information on the number of bytes an attacker sends to each port during the scanning phase, has the greatest influence on identifying probing attacks. Compared to existing research on probe attack detection, our proposed model demonstrates an excellent example in terms of fast and accurate anomaly detection with negligible false positives. Additionally, it outperforms traditional probe attack detection in terms of computational efficiency and handling diverse network scenarios in the presence of high traffic volumes and dynamic environments. |
| ArticleNumber | 126718 |
| Author | Rabbi, Fazla Ibne Hossain, Niamat Ullah Das, Saikat |
| Author_xml | – sequence: 1 givenname: Fazla surname: Rabbi fullname: Rabbi, Fazla organization: Department of Engineering Management, Arkansas State University, AR 72467, USA – sequence: 2 givenname: Niamat Ullah surname: Ibne Hossain fullname: Ibne Hossain, Niamat Ullah email: nibnehossain@astate.edu organization: Department of Engineering Management, Arkansas State University, AR 72467, USA – sequence: 3 givenname: Saikat surname: Das fullname: Das, Saikat organization: Department of Computer Science, Utah Valley University, Orem, UT 84058, USA |
| BookMark | eNp9kMFOwzAMhnMYEtvgBTjlBVqSrGkaics0AUOaBBJwjtLE2TLaZiRl096eVuPM6ZdtfZb9zdCkCx0gdEdJTgkt7_c5pJPOGWE8p6wUtJqgKZFcZAUVxTWapbQnhApCxBS5JTahPeioe38ErDvdnJNPODjcarPzHeAGdOx8t8U9mF3nv38gYRcitjA0-nFwiKEeU_e9Nl_45Psdfl8v37ButiEOVXuDrpxuEtz-5Rx9Pj1-rNbZ5vX5ZbXcZIYJ2WeMFJZr5ySxIG1Z28LqypBSSEG5464wFacSeCGYXTAwUFWmhkryui4LJheLOWKXvSaGlCI4dYi-1fGsKFGjHbVXox012lEXOwP0cIFguOzoIapkPHQGrI_Dh8oG_x_-C2o4c9I |
| Cites_doi | 10.1016/j.eswa.2012.07.009 10.1613/jair.953 10.1007/3-540-45014-9_1 10.1109/ICCCNT.2018.8494186 10.1109/TNSM.2021.3138457 10.1007/978-981-10-6602-3_3 10.22266/ijies2020.0630.39 10.1007/978-981-16-8059-5_22 10.1109/NOMS.2018.8406212 10.1016/j.cose.2007.10.002 10.1016/j.jnca.2016.01.008 10.1016/j.ecolmodel.2019.06.002 10.1109/ICOSEC49089.2020.9215232 10.47738/jads.v5i4.280 10.1109/ACCESS.2019.2923640 10.1109/TSMC.1976.5409182 10.1109/CISDA.2009.5356528 10.1109/AICI.2009.235 10.1109/CUBE.2013.31 10.1093/mnras/stv373 10.3390/s23042333 10.1016/j.eswa.2011.07.032 10.1007/978-3-319-66939-7_17 10.1109/TSMCA.2009.2029559 10.1093/comjnl/bxx101 10.1109/ICHIT.2006.253508 10.1023/A:1010933404324 10.1007/s10115-008-0139-1 10.1142/S0218001409007326 10.1016/B978-0-12-809633-8.20349-X 10.1016/j.neucom.2020.07.061 10.1016/j.procs.2016.06.016 10.1016/j.jnca.2011.01.002 10.1007/BF00058655 10.1109/ARES.2006.73 10.24251/HICSS.2020.795 10.1016/S2212-5671(15)01077-1 10.1007/978-3-662-44851-9_15 10.1007/s11036-019-01353-0 10.1145/2939672.2939785 10.1109/ACCESS.2020.3048198 10.1109/SSPD.2017.8233268 10.1080/095281300146272 10.1109/ICCICT.2015.7045674 10.1016/j.comnet.2020.107247 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2025.126718 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2025_126718 S0957417425003409 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYWO AAYXX ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c279t-204d5aff90de9d6bd4da8c0679715f5f4c8519e5472d32ece88cbe895bb642933 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Wed Oct 01 08:25:04 EDT 2025 Sat Apr 26 15:42:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c279t-204d5aff90de9d6bd4da8c0679715f5f4c8519e5472d32ece88cbe895bb642933 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_126718 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126718 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Narkhede (b0325) 2018 Zeng, Martinez (b0505) 2000; 12 Hastie, Tibshirani, Friedman (b0185) 2008 Ghanem, K., Aparicio-Navarro, F. J., Kyriakopoulos, K. G., Lambotharan, S., & Chambers, J. A. (2017). Support Vector Machine for Network Intrusion and Cyber-Attack Detection. Tomek, I. (1976). A generalization of the k-nn rule. El-Taj, Najjar, Alsenawi, Najjar (b0145) 2012; 10 Schratz, Muenchow, Iturritxa, Richter, Brenning (b0390) 2019; 406 Devi, Abualkibash (b0130) 2019; 11 (2), 121-126. Kaur, P., & Gosain, A. (2018). Comparing the Behavior of Oversampling and Undersampling Approach of Class Imbalance Learning by Combining Class Imbalance Problem with Noise. 785-796. Li, Fang, Guo, Chen (b0270) 2007 Burukanli, Yumuşak (b0100) 2024 Turku, Finland. New Orelans. Revathi, Malathi (b0380) 2013; 2 Belavagi, Muniyal (b0065) 2016; 89 (pp. 1-6). Mumbai, India. Bace, Mell (b0055) 2001 Botha, M., & Solms, R. (2004). Utilizing Neural Networks For Effective Intrusion Detection. Hoyle, Rau, Zitlau, Seitz, Weller (b0190) 2015; 449 Kumar, Lalotra, Sasikala, Rajput, Kaluri, Lakshmanna, Uddin (b0250) 2022; 10 Bhuyan, Bhattacharyya, Kalita (b0080) 2011 Qraitem, Saenko, Plummer (b0345) 2023 Liu, Wang, Lin, Liu (b0290) 2020; 9 Lemaitre, Nogueira, Aridas (b0260) 2017; 18 , Oxford, UK. . lulu.com. Mohammed, Rawashdeh, Abdullah (b0305) 2020 Zhou, Cheng, Jiang, Dai (b0510) 2020; 174 Koc, Mazzuchi, Sarkani (b0240) 2012; 39 Rijsbergen (b0385) 2004 Reed, J. (2023, june 05). $10.3 billion in cyber crime losses shatters previous totals. Security Intelligence. Retrieved 10 8, 2023, from https://securityintelligence.com/news/10-billion-in-cyber-crime-losses-shatters-previous-totals/. Sharifi, Kasmani, Pourebrahimi (b0410) 2015; 10 Berrar, D. (2019). Cross-Validation. Chawla, Bowyer, Hall, Kegelmeyer (b0105) 2002; 16 Gao, Shan, Hu, Niu, Liu (b0160) 2019; 7 Das, Saha, Priyoti, Roy, Haque, Shiva (b0120) 2022; 19 Tavallaee, M., Bagheri, E., W. Lu, & Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data set. Uma, Padmavathi (b0470) 2013; 15 Dhanabal, Shantharajah (b0135) 2015; 4 Kumar, Glisson, Benton (b0245) 2020 Cieslak, Chawla (b0115) 2009; 18 Allaf, Z., Adda, M., & Gegov, A. (2017). A Comparison Study on Flush+Reload and Prime+Probe Attacks on AES Using Machine Learning Approaches. Bace (b0050) 2000 Qu, X., Yang, L., Guo, K., Ma, L., Sun, M., Ke, M., & Li, M. (2019). A Survey on the Development of Self-Organizing Maps for Unsupervised Intrusion Detection. https://www.ibm.com/reports/data-breach. Retrieved April 25, 2023, from Available online: https://www.ibm.com/security/data-breach. Huang, F., Xie, G., & Xiao, R. (2009). Research on Ensemble Learning . Rabbi, F., Raut, S., Hossain, N. U., & Mim, S. J. (2024). STUDY OF PRIMARY BILIARY CIRRHOSIS PREDICTION USING MACHINE LEARNING ALGORITHMS. Bendovschi, A. (2015). Cyber-Attacks – Trends, Patterns and Security Countermeasures . Maniriho, Mahoro, Niyigaba, Bizimana, Ahmad (b0295) 2020; 13 Lipton, Elkan, Naryanaswamy (b0285) 2015; 8725 Singh, Silakari (b0425) 2009; 9 Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A Detailed Analysis of the KDD CUP 99 Data Set. Singapore. False Positives and False Negatives in Information Security (b0150) 2023 Virginia Beach,VA. Li, Xia, Zhang, Yan, Ai, Dai (b0275) 2012; 39 Shen, Zheng, Wu, Zhang, Niu, Yang (b0415) 2018; 61 Masoodi, Bamhdi, Teli (b0300) 2021; 12 Breiman (b0090) 1996; 24 Abrar, I., Ayub, Z., Masoodi, F., & Bamhdi, A. M. (2020). A Machine Learning Approach for Intrusion Detection System on NSL-KDD Dataset. Vienna, Austria. Cheju, Korea (South). Kenaza, S., T., B., & Mokhtari, A. (2008). A Naive Bayes Approach for Detecting Coordinated Attacks. Molnar, C. (2021). Li, Guo (b0265) 2007; 26 Parsaei, Rostami, Javidan (b0335) 2016; 7 Seiffert, Khoshgoftaar (b0395) 2010; 40 Verma, P., Anwar, S., Khan, S., & Mane, D. S. (2018). Network intrusion detection using clustering and gradient boosting . IBM. (2024). Powell, O. (2023). X-based NFT phishing attack causes losses of over $691,000. Cyber Security Hub. Retrieved 10 07, 2023, from https://www.cshub.com/attacks/news/x-based-nft-phishing-attack-causes-losses-of-over-691000. Dietterich, T. G. (2000). Ensemble methods in machine learning. Szeghalmy, Fazekas (b0440) 2023; 23 Zaman, M., & Lung, C.-H. (2018). Evaluation of machine learning techniques for network intrusion detection. Tianqi, C., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Breiman (b0095) 2001; 45 Amiri, Yousefi, Lucas, Shakery, Yazdani (b0035) 2011; 34 Ravipati, Munther (b0370) 2019; 11 Han, Wang, Mao (b0180) 2005 Alshamy, R., Ghurab, M., Othman, S., & Alshami, F. (2021). Intrusion Detection Model for Imbalanced Dataset using SMOTE and Random Forest Algorithm. Deshmukh, D. H., Ghorpade, T., & Padiya, P. (2015). Improving classification using preprocessing and machine learning algorithms on NSL-KDD dataset. Al-Mimi, Hamad, Abualhaj (b0020) 2023 Sun, Wong, Kamel (b0435) 2009; 23 Sokolova, Japkowicz, Szpakowicz (b0430) 2006 Tesfahun, A., & Bhaskari, D. L. (2013). Intrusion Detection using Random Forests Classifier with SMOTE and Feature Reduction. Yang, Shami (b0495) 2020; 415 Basu, R., Cunningham, R. K., & Seth E. Webster, R. P. (2001). Detecting Low-Profile Probes and Novel Denial-of-Service Attacks. Iwendi, Anajemba, Biamba, Ngabo (b0210) 2021; 10 Kayacık, H. G., Zincir-Heywood, A. N., & Heywood, M. I. (2005). Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets. Mourabit, Bouirden, Moussaidr (b0315) 2015; 6 Alneyadi, Sithirasenan, Muthukkumarasamy (b0025) 2016; 62 Chimphlee, W., Abdullah, A. H., Sap, M. N., Srinoy, S., & Chimphlee, S. (2006). Anomaly-Based Intrusion Detection using Fuzzy Rough Clustering. Rabbi, F., Hossain, N. U., & Sokolov, A. M. (2023). A Machine Learning Ensemble Approach for Sustainable Economic Development. Axelsson, S. (2000). Intrusion Detection Systems: A Survey and Taxonomy. 1-15. Kanstrén (b0220) 2020; 10 19 Alemerien, Alsarayreh, Altarawneh (b0010) 2024; 5 China. Taipei, Taiwan. Weerts, H. J., Mueller, A. C., & Vanschoren, J. (2020). Importance of Tuning Hyperparameters of Machine Learning Algorithms. London. Siddiqui, Z. (2023). Casino giant MGM expects $100 million hit from hack that led to data breach. www.reuters.com. Retrieved 10 07, 2023, from https://www.reuters.com/business/mgm-expects-cybersecurity-issue-negatively-impact-third-quarter-earnings-2023-10-05/. Wang, W., & Battiti, R. (2006). Identifying intrusions in computer networks with principal component analysis. (pp. 23-30). Singapore: Springer . 10.1016/j.eswa.2025.126718_b0005 Cieslak (10.1016/j.eswa.2025.126718_b0115) 2009; 18 10.1016/j.eswa.2025.126718_b0445 10.1016/j.eswa.2025.126718_b0205 Bace (10.1016/j.eswa.2025.126718_b0055) 2001 Revathi (10.1016/j.eswa.2025.126718_b0380) 2013; 2 10.1016/j.eswa.2025.126718_b0085 10.1016/j.eswa.2025.126718_b0360 Alneyadi (10.1016/j.eswa.2025.126718_b0025) 2016; 62 Zeng (10.1016/j.eswa.2025.126718_b0505) 2000; 12 10.1016/j.eswa.2025.126718_b0200 10.1016/j.eswa.2025.126718_b0365 10.1016/j.eswa.2025.126718_b0045 10.1016/j.eswa.2025.126718_b0485 10.1016/j.eswa.2025.126718_b0125 Hastie (10.1016/j.eswa.2025.126718_b0185) 2008 Singh (10.1016/j.eswa.2025.126718_b0425) 2009; 9 10.1016/j.eswa.2025.126718_b0170 Yang (10.1016/j.eswa.2025.126718_b0495) 2020; 415 Mourabit (10.1016/j.eswa.2025.126718_b0315) 2015; 6 10.1016/j.eswa.2025.126718_b0490 Rijsbergen (10.1016/j.eswa.2025.126718_b0385) 2004 Belavagi (10.1016/j.eswa.2025.126718_b0065) 2016; 89 Szeghalmy (10.1016/j.eswa.2025.126718_b0440) 2023; 23 Li (10.1016/j.eswa.2025.126718_b0270) 2007 False Positives and False Negatives in Information Security (10.1016/j.eswa.2025.126718_b0150) 10.1016/j.eswa.2025.126718_b0075 Masoodi (10.1016/j.eswa.2025.126718_b0300) 2021; 12 10.1016/j.eswa.2025.126718_b0350 10.1016/j.eswa.2025.126718_b0030 10.1016/j.eswa.2025.126718_b0110 Chawla (10.1016/j.eswa.2025.126718_b0105) 2002; 16 10.1016/j.eswa.2025.126718_b0230 10.1016/j.eswa.2025.126718_b0310 10.1016/j.eswa.2025.126718_b0475 Lemaitre (10.1016/j.eswa.2025.126718_b0260) 2017; 18 10.1016/j.eswa.2025.126718_b0235 Bhuyan (10.1016/j.eswa.2025.126718_b0080) 2011 Zhou (10.1016/j.eswa.2025.126718_b0510) 2020; 174 Seiffert (10.1016/j.eswa.2025.126718_b0395) 2010; 40 Burukanli (10.1016/j.eswa.2025.126718_b0100) 2024 Hoyle (10.1016/j.eswa.2025.126718_b0190) 2015; 449 Dhanabal (10.1016/j.eswa.2025.126718_b0135) 2015; 4 Das (10.1016/j.eswa.2025.126718_b0120) 2022; 19 10.1016/j.eswa.2025.126718_b0225 Maniriho (10.1016/j.eswa.2025.126718_b0295) 2020; 13 10.1016/j.eswa.2025.126718_b0500 Shen (10.1016/j.eswa.2025.126718_b0415) 2018; 61 Kumar (10.1016/j.eswa.2025.126718_b0250) 2022; 10 Sun (10.1016/j.eswa.2025.126718_b0435) 2009; 23 10.1016/j.eswa.2025.126718_b0460 10.1016/j.eswa.2025.126718_b0140 Ravipati (10.1016/j.eswa.2025.126718_b0370) 2019; 11 10.1016/j.eswa.2025.126718_b0340 10.1016/j.eswa.2025.126718_b0420 Koc (10.1016/j.eswa.2025.126718_b0240) 2012; 39 10.1016/j.eswa.2025.126718_b0465 Liu (10.1016/j.eswa.2025.126718_b0290) 2020; 9 Parsaei (10.1016/j.eswa.2025.126718_b0335) 2016; 7 Qraitem (10.1016/j.eswa.2025.126718_b0345) 2023 10.1016/j.eswa.2025.126718_b0070 Iwendi (10.1016/j.eswa.2025.126718_b0210) 2021; 10 Alemerien (10.1016/j.eswa.2025.126718_b0010) 2024; 5 El-Taj (10.1016/j.eswa.2025.126718_b0145) 2012; 10 Li (10.1016/j.eswa.2025.126718_b0265) 2007; 26 Li (10.1016/j.eswa.2025.126718_b0275) 2012; 39 Breiman (10.1016/j.eswa.2025.126718_b0095) 2001; 45 Sokolova (10.1016/j.eswa.2025.126718_b0430) 2006 Gao (10.1016/j.eswa.2025.126718_b0160) 2019; 7 Mohammed (10.1016/j.eswa.2025.126718_b0305) 2020 Kanstrén (10.1016/j.eswa.2025.126718_b0220) 2020; 10 19 Devi (10.1016/j.eswa.2025.126718_b0130) 2019; 11 10.1016/j.eswa.2025.126718_b0450 10.1016/j.eswa.2025.126718_b0375 10.1016/j.eswa.2025.126718_b0015 10.1016/j.eswa.2025.126718_b0455 Lipton (10.1016/j.eswa.2025.126718_b0285) 2015; 8725 Narkhede (10.1016/j.eswa.2025.126718_b0325) 2018 10.1016/j.eswa.2025.126718_b0060 Uma (10.1016/j.eswa.2025.126718_b0470) 2013; 15 Amiri (10.1016/j.eswa.2025.126718_b0035) 2011; 34 Schratz (10.1016/j.eswa.2025.126718_b0390) 2019; 406 Sharifi (10.1016/j.eswa.2025.126718_b0410) 2015; 10 Al-Mimi (10.1016/j.eswa.2025.126718_b0020) 2023 Bace (10.1016/j.eswa.2025.126718_b0050) 2000 Han (10.1016/j.eswa.2025.126718_b0180) 2005 Kumar (10.1016/j.eswa.2025.126718_b0245) 2020 Breiman (10.1016/j.eswa.2025.126718_b0090) 1996; 24 |
| References_xml | – reference: https://www.ibm.com/reports/data-breach. Retrieved April 25, 2023, from Available online: https://www.ibm.com/security/data-breach. – reference: Taipei, Taiwan. – volume: 39 start-page: 424 year: 2012 end-page: 430 ident: b0275 article-title: Efficient intrusion detection system based on support vector machines and gradually feature removal method – start-page: 1 year: 2024 end-page: 23 ident: b0100 article-title: StackGridCov: A robust stacking ensemble learning-based model integrated with GridSearchCV hyperparameter tuning technique for mutation prediction of COVID-19 virus – year: 2020 ident: b0245 article-title: Network Attack Detection using an Unsupervised Machine Learning Algorithm – volume: 9 year: 2009 ident: b0425 article-title: A Survey of Cyber Attack Detection Systems – reference: Axelsson, S. (2000). Intrusion Detection Systems: A Survey and Taxonomy. 1-15. – reference: Oxford, UK. – reference: Kaur, P., & Gosain, A. (2018). Comparing the Behavior of Oversampling and Undersampling Approach of Class Imbalance Learning by Combining Class Imbalance Problem with Noise. – reference: Chimphlee, W., Abdullah, A. H., Sap, M. N., Srinoy, S., & Chimphlee, S. (2006). Anomaly-Based Intrusion Detection using Fuzzy Rough Clustering. – reference: (pp. 23-30). Singapore: Springer . – volume: 18 start-page: 83 year: 2009 end-page: 108 ident: b0115 article-title: A framework for monitoring classifiers’ performance: When and why failure occurs? – reference: Tomek, I. (1976). A generalization of the k-nn rule. – reference: Molnar, C. (2021). – reference: Rabbi, F., Hossain, N. U., & Sokolov, A. M. (2023). A Machine Learning Ensemble Approach for Sustainable Economic Development. – reference: Basu, R., Cunningham, R. K., & Seth E. Webster, R. P. (2001). Detecting Low-Profile Probes and Novel Denial-of-Service Attacks. – reference: lulu.com. – volume: 11 year: 2019 ident: b0130 article-title: INTRUSION DETECTION SYSTEM CLASSIFICATION USING DIFFERENT MACHINE LEARNING ALGORITHMS ON KDD-99 AND NSL-KDD DATASETS - A REVIEW PAPER – year: 2018 ident: b0325 publication-title: Towards Data Science – reference: Rabbi, F., Raut, S., Hossain, N. U., & Mim, S. J. (2024). STUDY OF PRIMARY BILIARY CIRRHOSIS PREDICTION USING MACHINE LEARNING ALGORITHMS. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0095 article-title: Random Forests – year: 2008 ident: b0185 – reference: Singapore. – volume: 23 year: 2023 ident: b0440 article-title: A comparative study of the use of stratified cross-validation and distribution-balanced stratified cross-validation in imbalanced learning – volume: 13 year: 2020 ident: b0295 article-title: Detecting intrusions in computer network traffic with machine learning approaches – volume: 10 year: 2012 ident: b0145 article-title: Intrusion Detection and Prevention Response based on Signature-Based and Anomaly-Based: Investigation Study . – volume: 10 19 start-page: 2023 year: 2020 ident: b0220 article-title: A Look at Precision, Recall, and F1-Score Exploring the relations between machine learning metrics publication-title: . Retrieved – reference: Kayacık, H. G., Zincir-Heywood, A. N., & Heywood, M. I. (2005). Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets. – reference: Cheju, Korea (South). – reference: Dietterich, T. G. (2000). Ensemble methods in machine learning. – volume: 34 start-page: 1184 year: 2011 end-page: 1199 ident: b0035 article-title: Mutual information-based feature selection for intrusion detection systems – reference: Weerts, H. J., Mueller, A. C., & Vanschoren, J. (2020). Importance of Tuning Hyperparameters of Machine Learning Algorithms. – reference: , – reference: Deshmukh, D. H., Ghorpade, T., & Padiya, P. (2015). Improving classification using preprocessing and machine learning algorithms on NSL-KDD dataset. – year: 2000 ident: b0050 – reference: Abrar, I., Ayub, Z., Masoodi, F., & Bamhdi, A. M. (2020). A Machine Learning Approach for Intrusion Detection System on NSL-KDD Dataset. – volume: 39 start-page: 13492 year: 2012 end-page: 13500 ident: b0240 article-title: A network intrusion detection system based on a hidden naive bayes multiclass classifier – volume: 4 year: 2015 ident: b0135 article-title: A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms – start-page: 878 year: 2005 end-page: 887 ident: b0180 article-title: Borderline-smote : A new oversampling method in imbalanced datasets learning – reference: Ghanem, K., Aparicio-Navarro, F. J., Kyriakopoulos, K. G., Lambotharan, S., & Chambers, J. A. (2017). Support Vector Machine for Network Intrusion and Cyber-Attack Detection. – reference: London. – reference: IBM. (2024). – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b0105 article-title: SMOTE: Synthetic Minority Over-sampling Technique – volume: 7 start-page: 82512 year: 2019 end-page: 82521 ident: b0160 article-title: An Adaptive Ensemble Machine Learning Model for Intrusion Detection – reference: (2), 121-126. – reference: Turku, Finland. – volume: 449 start-page: 1275 year: 2015 end-page: 1283 ident: b0190 article-title: Feature importance for machine learning redshifts applied to SDSS galaxies – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0090 article-title: Bagging Predictors – volume: 61 start-page: 526 year: 2018 end-page: 538 ident: b0415 article-title: An ensemble method based on selection using bat algorithm for intrusion detection – reference: , (pp. 1-6). Mumbai, India. – reference: Botha, M., & Solms, R. (2004). Utilizing Neural Networks For Effective Intrusion Detection. – volume: 40 year: 2010 ident: b0395 article-title: RUSBoost:A Hybrid Approachto Alleviating Class Imbalance – year: 2001 ident: b0055 article-title: Intrusion Detection Systems – volume: 11 year: 2019 ident: b0370 article-title: Intrusion detection system classification using different machine learning algorithms on KDD-99 And NSL-kdd datasets - A review paper – year: 2004 ident: b0385 – reference: Verma, P., Anwar, S., Khan, S., & Mane, D. S. (2018). Network intrusion detection using clustering and gradient boosting . – volume: 26 start-page: 459 year: 2007 end-page: 467 ident: b0265 article-title: An active learning based TCM-KNN algorithm for supervised network intrusion detection – year: 2007 ident: b0270 article-title: Network Anomaly Detection Based on TCM-KNN Algorithm – year: 2006 ident: b0430 article-title: Beyond Accuracy, F-scoreand ROC: A Family of Discriminant Measures for Performance Evaluation – volume: 12 start-page: 2286 year: 2021 end-page: 2293 ident: b0300 article-title: Machine learning for classification analysis of intrusion detection on NSL-KDD – reference: , 785-796. – volume: 89 start-page: 117 year: 2016 end-page: 123 ident: b0065 article-title: Performance evaluation of supervised machine learning algorithms for intrusion detection – volume: 2 year: 2013 ident: b0380 article-title: A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion Detection – volume: 23 start-page: 687 year: 2009 end-page: 719 ident: b0435 article-title: Classification of imbalanced data : A review – volume: 9 start-page: 7550 year: 2020 end-page: 7563 ident: b0290 article-title: Intrusion detection of imbalanced network traffic based on machine learning and deep learning – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: b0495 article-title: On hyperparameter optimization of machine learning algorithms : Theory and practice – reference: Qu, X., Yang, L., Guo, K., Ma, L., Sun, M., Ke, M., & Li, M. (2019). A Survey on the Development of Self-Organizing Maps for Unsupervised Intrusion Detection. – volume: 5 start-page: 1539 year: 2024 end-page: 1552 ident: b0010 article-title: Diagnosing Cardiovascular Diseases using Optimized Machine Learning Algorithms with GridSearchCV – reference: Vienna, Austria. – volume: 10 year: 2015 ident: b0410 article-title: Intrusion detection based on joint of K-Means and KNN – volume: 19 year: 2022 ident: b0120 article-title: Network Intrusion Detection and Comparative Analysis Using Ensemble Machine Learning and Feature Selection – reference: Allaf, Z., Adda, M., & Gegov, A. (2017). A Comparison Study on Flush+Reload and Prime+Probe Attacks on AES Using Machine Learning Approaches. – volume: 18 start-page: 559 year: 2017 end-page: 563 ident: b0260 article-title: Imbalanced - learn: a python tool box to tackle the curse of imbalanced datasets in machine learning – reference: New Orelans. – reference: Virginia Beach,VA. – reference: Tianqi, C., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. – reference: Powell, O. (2023). X-based NFT phishing attack causes losses of over $691,000. Cyber Security Hub. Retrieved 10 07, 2023, from https://www.cshub.com/attacks/news/x-based-nft-phishing-attack-causes-losses-of-over-691000. – reference: Wang, W., & Battiti, R. (2006). Identifying intrusions in computer networks with principal component analysis. – reference: Tesfahun, A., & Bhaskari, D. L. (2013). Intrusion Detection using Random Forests Classifier with SMOTE and Feature Reduction. – reference: Huang, F., Xie, G., & Xiao, R. (2009). Research on Ensemble Learning . – reference: Siddiqui, Z. (2023). Casino giant MGM expects $100 million hit from hack that led to data breach. www.reuters.com. Retrieved 10 07, 2023, from https://www.reuters.com/business/mgm-expects-cybersecurity-issue-negatively-impact-third-quarter-earnings-2023-10-05/. – year: 2023 ident: b0150 article-title: May) – reference: Berrar, D. (2019). Cross-Validation. – start-page: 20311 year: 2023 end-page: 20320 ident: b0345 article-title: Bias Mimicking: A Simple Sampling Approach for Bias Mitigation – year: 2023 ident: b0020 article-title: A Model for the Disclosure of Probe Attacks Based on the Utilization of Machine Learning Algorithms – volume: 12 start-page: 1 year: 2000 end-page: 12 ident: b0505 article-title: Distribution-balanced stratified cross-validation for accuracy estimation – volume: 62 start-page: 137 year: 2016 end-page: 152 ident: b0025 article-title: A survey on data leakage prevention systems – volume: 8725 start-page: 225 year: 2015 end-page: 239 ident: b0285 article-title: Optimal Thresholding of Classifiers to Maximize F1 Measure – reference: Zaman, M., & Lung, C.-H. (2018). Evaluation of machine learning techniques for network intrusion detection. – volume: 15 start-page: 390 year: 2013 end-page: 396 ident: b0470 article-title: A survey on various cyber-attacks and their classification – reference: Alshamy, R., Ghurab, M., Othman, S., & Alshami, F. (2021). Intrusion Detection Model for Imbalanced Dataset using SMOTE and Random Forest Algorithm. – volume: 10 year: 2021 ident: b0210 article-title: Security of things intrusion detection system for smart healthcare – volume: 7 year: 2016 ident: b0335 article-title: A hybrid data mining approach for intrusion detection on imbalanced NSL-KDD dataset. – reference: Reed, J. (2023, june 05). $10.3 billion in cyber crime losses shatters previous totals. Security Intelligence. Retrieved 10 8, 2023, from https://securityintelligence.com/news/10-billion-in-cyber-crime-losses-shatters-previous-totals/. – reference: . – reference: Bendovschi, A. (2015). Cyber-Attacks – Trends, Patterns and Security Countermeasures . – reference: China. – volume: 6 start-page: 164 year: 2015 end-page: 172 ident: b0315 article-title: Intrusion detection techniques in wireless sensor network using data mining algorithms: comparative evaluation based on attacks detection – volume: 174 year: 2020 ident: b0510 article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier – year: 2020 ident: b0305 article-title: Machine learning with oversampling and undersampling techniques: Overview study and experimental results publication-title: IEEE – reference: Tavallaee, M., Bagheri, E., W. Lu, & Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data set. – volume: 10 year: 2022 ident: b0250 article-title: Addressing binary classification over class imbalanced clinical datasets using computationally intelligent techniques – reference: Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A Detailed Analysis of the KDD CUP 99 Data Set. – volume: 406 start-page: 109 year: 2019 end-page: 120 ident: b0390 article-title: Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data – year: 2011 ident: b0080 article-title: Incremental Approaches for Network AnomalyDetection: Existing Solutions and Challenges – reference: Kenaza, S., T., B., & Mokhtari, A. (2008). A Naive Bayes Approach for Detecting Coordinated Attacks. – volume: 12 start-page: 2286 issue: 10 year: 2021 ident: 10.1016/j.eswa.2025.126718_b0300 article-title: Machine learning for classification analysis of intrusion detection on NSL-KDD publication-title: Turkish Journal of Computer and Mathematics Education – volume: 39 start-page: 13492 issue: 18 year: 2012 ident: 10.1016/j.eswa.2025.126718_b0240 article-title: A network intrusion detection system based on a hidden naive bayes multiclass classifier publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.07.009 – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.eswa.2025.126718_b0410 article-title: Intrusion detection based on joint of K-Means and KNN publication-title: Journal of Convergence Information Technology(JCIT) – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.eswa.2025.126718_b0105 article-title: SMOTE: Synthetic Minority Over-sampling Technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – ident: 10.1016/j.eswa.2025.126718_b0140 doi: 10.1007/3-540-45014-9_1 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.eswa.2025.126718_b0370 article-title: Intrusion detection system classification using different machine learning algorithms on KDD-99 And NSL-kdd datasets - A review paper publication-title: International Journal of Computer Science & Information Technology – ident: 10.1016/j.eswa.2025.126718_b0475 doi: 10.1109/ICCCNT.2018.8494186 – start-page: 878 year: 2005 ident: 10.1016/j.eswa.2025.126718_b0180 article-title: Borderline-smote : A new oversampling method in imbalanced datasets learning publication-title: International conference on intelligent computing – volume: 19 issue: 4 year: 2022 ident: 10.1016/j.eswa.2025.126718_b0120 article-title: Network Intrusion Detection and Comparative Analysis Using Ensemble Machine Learning and Feature Selection publication-title: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT doi: 10.1109/TNSM.2021.3138457 – ident: 10.1016/j.eswa.2025.126718_b0225 doi: 10.1007/978-981-10-6602-3_3 – ident: 10.1016/j.eswa.2025.126718_b0365 – volume: 13 issue: 3 year: 2020 ident: 10.1016/j.eswa.2025.126718_b0295 article-title: Detecting intrusions in computer network traffic with machine learning approaches publication-title: International Journal of Intelligent Engineering and Systems doi: 10.22266/ijies2020.0630.39 – year: 2020 ident: 10.1016/j.eswa.2025.126718_b0305 article-title: Machine learning with oversampling and undersampling techniques: Overview study and experimental results – year: 2011 ident: 10.1016/j.eswa.2025.126718_b0080 article-title: Incremental Approaches for Network AnomalyDetection: Existing Solutions and Challenges publication-title: International Journal of Communication Networks and Information Security – ident: 10.1016/j.eswa.2025.126718_b0030 doi: 10.1007/978-981-16-8059-5_22 – ident: 10.1016/j.eswa.2025.126718_b0500 doi: 10.1109/NOMS.2018.8406212 – volume: 26 start-page: 459 year: 2007 ident: 10.1016/j.eswa.2025.126718_b0265 article-title: An active learning based TCM-KNN algorithm for supervised network intrusion detection publication-title: Computers & Security doi: 10.1016/j.cose.2007.10.002 – start-page: 20311 year: 2023 ident: 10.1016/j.eswa.2025.126718_b0345 article-title: Bias Mimicking: A Simple Sampling Approach for Bias Mitigation – volume: 10 19 start-page: 2023 year: 2020 ident: 10.1016/j.eswa.2025.126718_b0220 article-title: A Look at Precision, Recall, and F1-Score Exploring the relations between machine learning metrics publication-title: Towards Data Science. Retrieved – ident: 10.1016/j.eswa.2025.126718_b0150 – ident: 10.1016/j.eswa.2025.126718_b0310 – volume: 62 start-page: 137 year: 2016 ident: 10.1016/j.eswa.2025.126718_b0025 article-title: A survey on data leakage prevention systems publication-title: J. Netw. Comput. Applic. doi: 10.1016/j.jnca.2016.01.008 – year: 2004 ident: 10.1016/j.eswa.2025.126718_b0385 – volume: 15 start-page: 390 issue: 5 year: 2013 ident: 10.1016/j.eswa.2025.126718_b0470 article-title: A survey on various cyber-attacks and their classification publication-title: International Journal of Network Security – ident: 10.1016/j.eswa.2025.126718_b0205 – volume: 406 start-page: 109 year: 2019 ident: 10.1016/j.eswa.2025.126718_b0390 article-title: Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2019.06.002 – year: 2008 ident: 10.1016/j.eswa.2025.126718_b0185 – ident: 10.1016/j.eswa.2025.126718_b0005 doi: 10.1109/ICOSEC49089.2020.9215232 – volume: 5 start-page: 1539 issue: 4 year: 2024 ident: 10.1016/j.eswa.2025.126718_b0010 article-title: Diagnosing Cardiovascular Diseases using Optimized Machine Learning Algorithms with GridSearchCV publication-title: Journal of Applied Data Sciences doi: 10.47738/jads.v5i4.280 – volume: 7 start-page: 82512 year: 2019 ident: 10.1016/j.eswa.2025.126718_b0160 article-title: An Adaptive Ensemble Machine Learning Model for Intrusion Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923640 – volume: 7 issue: 6 year: 2016 ident: 10.1016/j.eswa.2025.126718_b0335 article-title: A hybrid data mining approach for intrusion detection on imbalanced NSL-KDD dataset. (IJACSA) publication-title: International Journal of Advanced Computer Science and Applications – ident: 10.1016/j.eswa.2025.126718_b0465 doi: 10.1109/TSMC.1976.5409182 – year: 2007 ident: 10.1016/j.eswa.2025.126718_b0270 article-title: Network Anomaly Detection Based on TCM-KNN Algorithm – ident: 10.1016/j.eswa.2025.126718_b0045 – volume: 10 issue: 1375 year: 2021 ident: 10.1016/j.eswa.2025.126718_b0210 article-title: Security of things intrusion detection system for smart healthcare publication-title: Electronics – ident: 10.1016/j.eswa.2025.126718_b0450 doi: 10.1109/CISDA.2009.5356528 – ident: 10.1016/j.eswa.2025.126718_b0200 doi: 10.1109/AICI.2009.235 – ident: 10.1016/j.eswa.2025.126718_b0455 doi: 10.1109/CUBE.2013.31 – year: 2000 ident: 10.1016/j.eswa.2025.126718_b0050 – volume: 10 issue: 1293 year: 2022 ident: 10.1016/j.eswa.2025.126718_b0250 article-title: Addressing binary classification over class imbalanced clinical datasets using computationally intelligent techniques publication-title: Healthcare – volume: 449 start-page: 1275 issue: 2 year: 2015 ident: 10.1016/j.eswa.2025.126718_b0190 article-title: Feature importance for machine learning redshifts applied to SDSS galaxies publication-title: Monthly Notices of the Royal Astronomical Society doi: 10.1093/mnras/stv373 – volume: 6 start-page: 164 issue: 9 year: 2015 ident: 10.1016/j.eswa.2025.126718_b0315 article-title: Intrusion detection techniques in wireless sensor network using data mining algorithms: comparative evaluation based on attacks detection publication-title: International Journal of Advanced Computer Science and Applications – volume: 23 issue: 4 year: 2023 ident: 10.1016/j.eswa.2025.126718_b0440 article-title: A comparative study of the use of stratified cross-validation and distribution-balanced stratified cross-validation in imbalanced learning publication-title: Sensors doi: 10.3390/s23042333 – volume: 39 start-page: 424 issue: 1 year: 2012 ident: 10.1016/j.eswa.2025.126718_b0275 article-title: Efficient intrusion detection system based on support vector machines and gradually feature removal method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.032 – ident: 10.1016/j.eswa.2025.126718_b0445 doi: 10.1109/CISDA.2009.5356528 – ident: 10.1016/j.eswa.2025.126718_b0015 doi: 10.1007/978-3-319-66939-7_17 – volume: 2 issue: 12 year: 2013 ident: 10.1016/j.eswa.2025.126718_b0380 article-title: A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion Detection publication-title: International Journal of Engineering Research & Technology (IJERT) – volume: 40 issue: 1 year: 2010 ident: 10.1016/j.eswa.2025.126718_b0395 article-title: RUSBoost:A Hybrid Approachto Alleviating Class Imbalance publication-title: IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART A : SYSTEMS AND HUMANS doi: 10.1109/TSMCA.2009.2029559 – year: 2001 ident: 10.1016/j.eswa.2025.126718_b0055 – ident: 10.1016/j.eswa.2025.126718_b0340 – volume: 61 start-page: 526 issue: 4 year: 2018 ident: 10.1016/j.eswa.2025.126718_b0415 article-title: An ensemble method based on selection using bat algorithm for intrusion detection publication-title: The Computer Journal doi: 10.1093/comjnl/bxx101 – volume: 10 issue: 6 year: 2012 ident: 10.1016/j.eswa.2025.126718_b0145 article-title: Intrusion Detection and Prevention Response based on Signature-Based and Anomaly-Based: Investigation Study . (IJCSIS) International Journal of Computer Science and Information publication-title: Security – ident: 10.1016/j.eswa.2025.126718_b0110 doi: 10.1109/ICHIT.2006.253508 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.eswa.2025.126718_b0095 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 18 start-page: 83 issue: 1 year: 2009 ident: 10.1016/j.eswa.2025.126718_b0115 article-title: A framework for monitoring classifiers’ performance: When and why failure occurs? publication-title: Knowledge and Information Systems doi: 10.1007/s10115-008-0139-1 – volume: 23 start-page: 687 issue: 04 year: 2009 ident: 10.1016/j.eswa.2025.126718_b0435 article-title: Classification of imbalanced data : A review publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001409007326 – ident: 10.1016/j.eswa.2025.126718_b0075 doi: 10.1016/B978-0-12-809633-8.20349-X – volume: 415 start-page: 295 year: 2020 ident: 10.1016/j.eswa.2025.126718_b0495 article-title: On hyperparameter optimization of machine learning algorithms : Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 89 start-page: 117 issue: 1 year: 2016 ident: 10.1016/j.eswa.2025.126718_b0065 article-title: Performance evaluation of supervised machine learning algorithms for intrusion detection publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.06.016 – ident: 10.1016/j.eswa.2025.126718_b0420 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.eswa.2025.126718_b0130 article-title: INTRUSION DETECTION SYSTEM CLASSIFICATION USING DIFFERENT MACHINE LEARNING ALGORITHMS ON KDD-99 AND NSL-KDD DATASETS - A REVIEW PAPER publication-title: International Journal of Computer Science & Information Technology (IJCSIT) – volume: 34 start-page: 1184 issue: 4 year: 2011 ident: 10.1016/j.eswa.2025.126718_b0035 article-title: Mutual information-based feature selection for intrusion detection systems publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2011.01.002 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.eswa.2025.126718_b0090 article-title: Bagging Predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – ident: 10.1016/j.eswa.2025.126718_b0235 – ident: 10.1016/j.eswa.2025.126718_b0485 doi: 10.1109/ARES.2006.73 – start-page: 1 year: 2024 ident: 10.1016/j.eswa.2025.126718_b0100 article-title: StackGridCov: A robust stacking ensemble learning-based model integrated with GridSearchCV hyperparameter tuning technique for mutation prediction of COVID-19 virus publication-title: Neural Computing and Applications – year: 2020 ident: 10.1016/j.eswa.2025.126718_b0245 article-title: Network Attack Detection using an Unsupervised Machine Learning Algorithm doi: 10.24251/HICSS.2020.795 – ident: 10.1016/j.eswa.2025.126718_b0070 doi: 10.1016/S2212-5671(15)01077-1 – volume: 8725 start-page: 225 year: 2015 ident: 10.1016/j.eswa.2025.126718_b0285 article-title: Optimal Thresholding of Classifiers to Maximize F1 Measure publication-title: Mach Learn Knowl Discov Databases doi: 10.1007/978-3-662-44851-9_15 – ident: 10.1016/j.eswa.2025.126718_b0350 doi: 10.1007/s11036-019-01353-0 – volume: 4 issue: 6 year: 2015 ident: 10.1016/j.eswa.2025.126718_b0135 article-title: A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms publication-title: International Journal of Advanced Research in Computer and Communication Engineering – ident: 10.1016/j.eswa.2025.126718_b0460 doi: 10.1145/2939672.2939785 – ident: 10.1016/j.eswa.2025.126718_b0060 – volume: 18 start-page: 559 issue: 1 year: 2017 ident: 10.1016/j.eswa.2025.126718_b0260 article-title: Imbalanced - learn: a python tool box to tackle the curse of imbalanced datasets in machine learning publication-title: The Journal of Machine Learning Research – volume: 9 start-page: 7550 year: 2020 ident: 10.1016/j.eswa.2025.126718_b0290 article-title: Intrusion detection of imbalanced network traffic based on machine learning and deep learning publication-title: Ieee Access doi: 10.1109/ACCESS.2020.3048198 – ident: 10.1016/j.eswa.2025.126718_b0170 doi: 10.1109/SSPD.2017.8233268 – ident: 10.1016/j.eswa.2025.126718_b0375 – volume: 9 issue: 5 year: 2009 ident: 10.1016/j.eswa.2025.126718_b0425 article-title: A Survey of Cyber Attack Detection Systems publication-title: IJCSNS International Journal of Computer Science and Network Security – year: 2023 ident: 10.1016/j.eswa.2025.126718_b0020 article-title: A Model for the Disclosure of Probe Attacks Based on the Utilization of Machine Learning Algorithms – year: 2006 ident: 10.1016/j.eswa.2025.126718_b0430 – ident: 10.1016/j.eswa.2025.126718_b0085 – ident: 10.1016/j.eswa.2025.126718_b0490 – volume: 12 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.eswa.2025.126718_b0505 article-title: Distribution-balanced stratified cross-validation for accuracy estimation publication-title: Journal of Experimental & Theoretical Artificial Intelligence doi: 10.1080/095281300146272 – ident: 10.1016/j.eswa.2025.126718_b0360 – ident: 10.1016/j.eswa.2025.126718_b0125 doi: 10.1109/ICCICT.2015.7045674 – ident: 10.1016/j.eswa.2025.126718_b0230 – year: 2018 ident: 10.1016/j.eswa.2025.126718_b0325 article-title: Understanding auc-roc curve publication-title: Towards Data Science – volume: 174 year: 2020 ident: 10.1016/j.eswa.2025.126718_b0510 article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier publication-title: Computer Networks doi: 10.1016/j.comnet.2020.107247 |
| SSID | ssj0017007 |
| Score | 2.474803 |
| Snippet | Internet-based network safety has transformed into a major global issue because of the rising dependency of people, businesses, and countries. Therefore, it is... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 126718 |
| Title | A comparative analysis of machine learning techniques for detecting probing attack with SHAP algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2025.126718 |
| Volume | 271 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvXhxF-tS5uBN0jbLZDmGYokKRaiF3sIsb0rVLrQRb_525yWTqiAePIXJAuGbyZvvTb75HiHXbqhjjwvpeEEkMEHhjhklPUf5oQIlkAOXKt9hmI2D-wmbNEi_3guDskob-6uYXkZre6Zr0eyuZrPuyJADMx2a1I6hyUq5iS8IIqxi0PnYyjzQfi6q_PYiB--2G2cqjRds3tF7yGMd1wsjLPzx2-T0bcIZHJA9yxRpWr3MIWnA4ojs11UYqP0oj4lOqfyy8KbcuozQpabzUikJ1JaGmNKtY-uGGrJKFeAvBLyAdWXwyIuCyxeKq7N0lKWPlL9Ol2vTmp-Q8eD2qZ85tnqCI70oKczwDxTjWic9BYkKhQoUjyWuG0Uu00wH0pCtBJiBTPkeSIhjKSBOmBAmJ0l8_5Q0F8sFnBGagOamP3pCgiEwJqMEL-LaVS64wnel3yI3NWz5qjLJyGv12HOOIOcIcl6B3CKsRjb_0dW5ieJ_PHf-z-cuyC62KpXiJWkW6ze4MkyiEO1yqLTJTnr3kA0_Ac1wyb8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoALO6KsPnBDaRsnjpNjVVEVKBVSW6m3yGtVoIvaIG58O57EYZEQB05R4liKxs74jf3mDUJXfmRiwoX0SMgEBCjcs7Ok6akgUloJwMA5y7cfdUfh3ZiOK6hd5sIArdL5_sKn597aPWk4azaW02ljYMGBXQ5taEdBZAWS-DZCShhEYPX3T54H6M-xQnCPefC6y5wpSF56_QbiQ4TWfRIxqPzx2-r0bcXp7KJtBxVxq_iaPVTR8320U5ZhwO6vPECmheWXhjfmTmYELwye5VRJjV1tiAn-lGxdY4tWsdJwhgANUFgGrjzLuHzGsD2LB93WI-Yvk8XK3s0O0ahzM2x3PVc-wZOEJZmd_6Gi3JikqXSiIqFCxWMJG0fMp4aaUFq0lWgaMqICoqWOYyl0nFAhbFCSBMERqs4Xc32McKINtwPSFFJbBGNDSk0YN77ytS8CXwY1dF2aLV0WKhlpSR97SsHIKRg5LYxcQ7S0bPpjrFPrxv_od_LPfpdoszt86KW92_79KdqCloKyeIaq2epVn1tYkYmLfNp8AK2dy1Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+analysis+of+machine+learning+techniques+for+detecting+probing+attack+with+SHAP+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Rabbi%2C+Fazla&rft.au=Ibne+Hossain%2C+Niamat+Ullah&rft.au=Das%2C+Saikat&rft.date=2025-05-01&rft.issn=0957-4174&rft.volume=271&rft.spage=126718&rft_id=info:doi/10.1016%2Fj.eswa.2025.126718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_126718 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |