Topic optimization–incorporated collaborative recommendation for social tagging

PurposeWith the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity and unreliable quality, which greatly increases the complexity of recommendation. The contradiction between the e...

Full description

Saved in:
Bibliographic Details
Published inData technologies and applications Vol. 58; no. 3; pp. 407 - 426
Main Authors Pan, Xuwei, Zeng, Xuemei, Ding, Ling
Format Journal Article
LanguageEnglish
Published Emerald Publishing Limited 19.07.2024
Subjects
Online AccessGet full text
ISSN2514-9288
2514-9318
2514-9288
DOI10.1108/DTA-11-2021-0332

Cover

Abstract PurposeWith the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity and unreliable quality, which greatly increases the complexity of recommendation. The contradiction between the efficiency and effectiveness of recommendation service in social tagging is increasingly becoming prominent. The purpose of this study is to incorporate topic optimization into collaborative filtering to enhance both the effectiveness and the efficiency of personalized recommendations for social tagging.Design/methodology/approachCombining the idea of optimization before service, this paper presents an approach that incorporates topic optimization into collaborative recommendations for social tagging. In the proposed approach, the recommendation process is divided into two phases of offline topic optimization and online recommendation service to achieve high-quality and efficient personalized recommendation services. In the offline phase, the tags' topic model is constructed and then used to optimize the latent preference of users and the latent affiliation of resources on topics.FindingsExperimental evaluation shows that the proposed approach improves both precision and recall of recommendations, as well as enhances the efficiency of online recommendations compared with the three baseline approaches. The proposed topic optimization–incorporated collaborative recommendation approach can achieve the improvement of both effectiveness and efficiency for the recommendation in social tagging.Originality/valueWith the support of the proposed approach, personalized recommendation in social tagging with high quality and efficiency can be achieved.
AbstractList PurposeWith the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity and unreliable quality, which greatly increases the complexity of recommendation. The contradiction between the efficiency and effectiveness of recommendation service in social tagging is increasingly becoming prominent. The purpose of this study is to incorporate topic optimization into collaborative filtering to enhance both the effectiveness and the efficiency of personalized recommendations for social tagging.Design/methodology/approachCombining the idea of optimization before service, this paper presents an approach that incorporates topic optimization into collaborative recommendations for social tagging. In the proposed approach, the recommendation process is divided into two phases of offline topic optimization and online recommendation service to achieve high-quality and efficient personalized recommendation services. In the offline phase, the tags' topic model is constructed and then used to optimize the latent preference of users and the latent affiliation of resources on topics.FindingsExperimental evaluation shows that the proposed approach improves both precision and recall of recommendations, as well as enhances the efficiency of online recommendations compared with the three baseline approaches. The proposed topic optimization–incorporated collaborative recommendation approach can achieve the improvement of both effectiveness and efficiency for the recommendation in social tagging.Originality/valueWith the support of the proposed approach, personalized recommendation in social tagging with high quality and efficiency can be achieved.
Author Pan, Xuwei
Zeng, Xuemei
Ding, Ling
Author_xml – sequence: 1
  givenname: Xuwei
  orcidid: 0000-0001-5583-4000
  surname: Pan
  fullname: Pan, Xuwei
– sequence: 2
  givenname: Xuemei
  orcidid: 0000-0001-6234-4683
  surname: Zeng
  fullname: Zeng, Xuemei
– sequence: 3
  givenname: Ling
  orcidid: 0000-0002-7016-1390
  surname: Ding
  fullname: Ding, Ling
BookMark eNptkMlOwzAQQC1UJErpnWN-INRLFvdYlVWqhJDCORo7k8rIsSMngMqJf-AP-RISyoHtNG-keXN4x2TivENCThk9Y4zKxXmxihmLOeUspkLwAzLlKUviJZdy8o2PyLzrHiilnKa5kOmU3BW-NTrybW8a8wK98e799c047UPrA_RYRdpbC2pczBNGAbVvGnTV521U-xB1XhuwUQ_brXHbE3JYg-1w_jVn5P7yolhfx5vbq5v1ahNrnss-RppRFJlOci14mishAaXCjHGd8KUUqsoULIGzCnBAwZAJxnOVpErktEYxI2z_99G1sHsGa8s2mAbCrmS0HLOUVQ8DlGOWcswyOHTv6OC7LmD9RxlK_lYWewUbDGCr_4wf7cUHR613ZA
Cites_doi 10.1504/IJCSE.2020.107340
10.1145/2490860
10.4018/IJSWIS.2019040103
10.1007/s00500-019-03998-1
10.1109/TSMCA.2012.2208186
10.1080/01969722.2019.1565119
10.1016/j.ipm.2015.03.001
10.1016/j.knosys.2020.106119
10.1016/j.elerap.2016.01.003
10.1007/978-3-030-11935-5_57
10.1002/asi.23736
10.48550/arXiv.cs/0508082
10.1007/978-1-4419-0221-4_39
10.1007/978-3-642-23014-1_22
10.1007/s11390-011-0176-1
10.1109/TKDE.2009.85
10.1007/978-0-387-85820-3_19
10.1093/jxb/10.2.290
10.1109/TMM.2017.2716829
10.1007/s10462-019-09684-w
10.1080/21670811.2015.1093271
ContentType Journal Article
Copyright Pan Xuwei, Zeng Xuemei and Ding Ling
Copyright_xml – notice: Pan Xuwei, Zeng Xuemei and Ding Ling
DBID XDTOA
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1108/DTA-11-2021-0332
DatabaseName Emerald Open Access Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: XDTOA
  name: Emerald Open Access Journals
  url: https://www.emerald.com/insight
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 2514-9288
EndPage 426
ExternalDocumentID 10.1108/dta-11-2021-0332
10_1108_DTA_11_2021_0332
10.1108/DTA-11-2021-0332
GroupedDBID .X0
3FY
7WY
9F-
AAMCF
AAUDR
ABIJV
ABSDC
ABYQI
ACGFS
ADOMW
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AODMV
ARAPS
AUCOK
BENPR
BVLZF
EBS
ECCUG
GEI
GQ.
H13
HCIFZ
KBGRL
KLENG
M0P
M1O
M42
SLOBJ
TGG
TMF
TMI
TMT
XDTOA
Z11
Z12
Z21
0-V
8FE
8FG
AAYXX
ABJNI
ABUWG
ACXJU
AFKRA
AHAFT
AHMHQ
ARALO
AZQEC
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CJNVE
CNYFK
DWQXO
GNUQQ
K6V
K6~
K7-
M0C
P62
PHGZM
PHGZT
PQBIZ
PQEDU
PQGLB
PQQKQ
PROAC
PRQQA
PUEGO
AAGBP
ADTOC
AJZCB
AKXVL
EJD
SCAQC
UNPAY
ID FETCH-LOGICAL-c278t-e060e36c47c3257b38ae8be612c42983bd6ba9a21daed6b31e13127b45b370fe3
IEDL.DBID GEI
ISSN 2514-9288
2514-9318
IngestDate Wed Oct 01 16:48:32 EDT 2025
Wed Oct 01 05:42:45 EDT 2025
Thu Aug 22 06:15:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Logistic function
Personality
Collaborative filtering
Topic model
Recommender systems
Social tagging
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-e060e36c47c3257b38ae8be612c42983bd6ba9a21daed6b31e13127b45b370fe3
ORCID 0000-0002-7016-1390
0000-0001-6234-4683
0000-0001-5583-4000
OpenAccessLink https://www.emerald.com/insight/content/doi/10.1108/DTA-11-2021-0332/full/html
PageCount 20
ParticipantIDs crossref_primary_10_1108_DTA_11_2021_0332
emerald_primary_10_1108_DTA-11-2021-0332
unpaywall_primary_10_1108_dta_11_2021_0332
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240719
2024-07-19
PublicationDateYYYYMMDD 2024-07-19
PublicationDate_xml – month: 07
  year: 2024
  text: 20240719
  day: 19
PublicationDecade 2020
PublicationTitle Data technologies and applications
PublicationYear 2024
Publisher Emerald Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
References (key2024072308212601100_ref045) 2010
(key2024072308212601100_ref013) 2019; 15
(key2024072308212601100_ref017) 2011
(key2024072308212601100_ref040) 2013; 4
key2024072308212601100_ref015
(key2024072308212601100_ref034) 2020; 203
(key2024072308212601100_ref005) 2015
key2024072308212601100_ref021
key2024072308212601100_ref022
(key2024072308212601100_ref004) 2007
(key2024072308212601100_ref029) 2008
(key2024072308212601100_ref035) 2017
(key2024072308212601100_ref001) 2017; 68
(key2024072308212601100_ref012) 2014
(key2024072308212601100_ref014) 2016; 4
(key2024072308212601100_ref036) 2016; 18
(key2024072308212601100_ref011) 2014
(key2024072308212601100_ref007) 2005
(key2024072308212601100_ref041) 2011; 26
(key2024072308212601100_ref003) 2016
key2024072308212601100_ref025
(key2024072308212601100_ref008) 2010
(key2024072308212601100_ref042) 2009
key2024072308212601100_ref006
(key2024072308212601100_ref018) 2019; 22
(key2024072308212601100_ref028) 1959; 10
(key2024072308212601100_ref023) 2018
(key2024072308212601100_ref024) 2017; 13
(key2024072308212601100_ref027) 2009
(key2024072308212601100_ref030) 2020; 53
(key2024072308212601100_ref043) 2017
(key2024072308212601100_ref044) 2010
(key2024072308212601100_ref037) 2016; 52
(key2024072308212601100_ref009) 2010
(key2024072308212601100_ref026) 2013; 43
key2024072308212601100_ref031
(key2024072308212601100_ref032) 2010; 22
(key2024072308212601100_ref033) 2011
(key2024072308212601100_ref039) 2018; 20
(key2024072308212601100_ref019) 2017
(key2024072308212601100_ref020) 2020; 22
(key2024072308212601100_ref016) 2013
(key2024072308212601100_ref002) 2003; 3
(key2024072308212601100_ref010) 2019; 50
(key2024072308212601100_ref038) 2020; 24
References_xml – start-page: 69
  year: 2009
  ident: key2024072308212601100_ref042
  article-title: TagiCoFi: tag informed collaborative filtering
– start-page: 805
  year: 2014
  ident: key2024072308212601100_ref012
  article-title: Tensor-based item recommendation using probabilistic ranking in social tagging systems
– volume: 22
  start-page: 181
  issue: 2-3
  year: 2020
  ident: key2024072308212601100_ref020
  article-title: Improved user-based collaborative filtering algorithm with topic model and time tag
  publication-title: International Journal of Computational Science and Engineering
  doi: 10.1504/IJCSE.2020.107340
– start-page: 412
  year: 2017
  ident: key2024072308212601100_ref035
  article-title: Personalized movie recommendation based on social tagging systems
– volume: 3
  start-page: 993
  year: 2003
  ident: key2024072308212601100_ref002
  article-title: Latent Dirichlet Allocation
  publication-title: Journal of Machine Learning Research
– ident: key2024072308212601100_ref006
– volume: 22
  start-page: 885
  issue: 1
  year: 2019
  ident: key2024072308212601100_ref018
  article-title: Resource recommendation via user tagging behavior analysis
  publication-title: Cluster Computing
– volume: 4
  start-page: 1
  issue: 2
  year: 2013
  ident: key2024072308212601100_ref040
  article-title: A random walk model for item recommendation in social tagging systems
  publication-title: ACM Transactions on Management Information Systems
  doi: 10.1145/2490860
– volume: 15
  start-page: 47
  issue: 2
  year: 2019
  ident: key2024072308212601100_ref013
  article-title: An integrated recommender system using semantic web with social tagging system
  publication-title: International Journal on Semantic Web and Information Systems (IJSWIS)
  doi: 10.4018/IJSWIS.2019040103
– start-page: 65
  year: 2018
  ident: key2024072308212601100_ref023
  article-title: Considering correlation retarded growth for personalized recommendation in social tagging
– volume: 24
  start-page: 1707
  issue: 3
  year: 2020
  ident: key2024072308212601100_ref038
  article-title: Integrating social annotations into topic models for personalized document retrieval
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03998-1
– start-page: 1280
  year: 2014
  ident: key2024072308212601100_ref011
  article-title: A tag-based personalized item recommendation system using tensor modeling and topic model approaches
– volume: 43
  start-page: 673
  issue: 3
  year: 2013
  ident: key2024072308212601100_ref026
  article-title: The TFC model: tensor factorization and tag clustering for item recommendation in social tagging systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMCA.2012.2208186
– start-page: 671
  year: 2017
  ident: key2024072308212601100_ref043
  article-title: Topic representation: a novel method of tag recommendation for text
– volume: 50
  start-page: 97
  issue: 2
  year: 2019
  ident: key2024072308212601100_ref010
  article-title: Improving explainability of recommendation system by multi-sided tensor factorization
  publication-title: Cybernetics and Systems
  doi: 10.1080/01969722.2019.1565119
– volume: 52
  start-page: 61
  issue: 1
  year: 2016
  ident: key2024072308212601100_ref037
  article-title: Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2015.03.001
– year: 2010
  ident: key2024072308212601100_ref044
  article-title: Userrec: a user recommendation framework in social tagging systems
– start-page: 221
  year: 2011
  ident: key2024072308212601100_ref017
  article-title: Tag-topic model for semantic knowledge acquisition from blogs
– start-page: 795
  year: 2015
  ident: key2024072308212601100_ref005
  article-title: Gaussian LDA for topic models with word embeddings
– start-page: 248
  year: 2009
  ident: key2024072308212601100_ref027
  article-title: Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora
– start-page: 391
  year: 2010
  ident: key2024072308212601100_ref008
  article-title: Document recommendation in social tagging services
– start-page: 91
  year: 2010
  ident: key2024072308212601100_ref045
  article-title: fLDA: matrix factorization through Latent Dirichlet Allocation
– volume: 203
  start-page: 106119
  year: 2020
  ident: key2024072308212601100_ref034
  article-title: Tag-informed collaborative topic modeling for cross domain recommendations
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106119
– start-page: 259
  year: 2008
  ident: key2024072308212601100_ref029
  article-title: Personalized recommendation in social tagging systems using hierarchical clustering
– year: 2016
  ident: key2024072308212601100_ref003
  article-title: Capturing semantic correlation for item recommendation in tagging systems
– volume: 18
  start-page: 83
  year: 2016
  ident: key2024072308212601100_ref036
  article-title: A hybrid approach for movie recommendation via tags and ratings
  publication-title: Electronic Commerce Research and Applications
  doi: 10.1016/j.elerap.2016.01.003
– ident: key2024072308212601100_ref025
  doi: 10.1007/978-3-030-11935-5_57
– volume: 68
  start-page: 830
  issue: 4
  year: 2017
  ident: key2024072308212601100_ref001
  article-title: A survey on tag recommendation methods
  publication-title: Journal of the Association for Information Science and Technology
  doi: 10.1002/asi.23736
– volume-title: ArXiv Preprint Cs/0508082
  year: 2005
  ident: key2024072308212601100_ref007
  article-title: The structure of collaborative tagging systems
  doi: 10.48550/arXiv.cs/0508082
– year: 2013
  ident: key2024072308212601100_ref016
  article-title: Deeper into the Folksonomy Graph: FolkRank adaptations and extensions for improved tag recommendations
  publication-title: Computer Science
– start-page: 11
  year: 2007
  ident: key2024072308212601100_ref004
  article-title: Understanding navigability of social tagging systems
– start-page: 448
  year: 2011
  ident: key2024072308212601100_ref033
  article-title: Collaborative topic modeling for recommending scientific articles
– start-page: 130
  year: 2017
  ident: key2024072308212601100_ref019
  article-title: An interest propagation based movie recommendation method for social tagging system
– ident: key2024072308212601100_ref031
  doi: 10.1007/978-1-4419-0221-4_39
– ident: key2024072308212601100_ref015
  doi: 10.1007/978-3-642-23014-1_22
– volume: 26
  start-page: 767
  issue: 5
  year: 2011
  ident: key2024072308212601100_ref041
  article-title: Tag-aware recommender systems: a state-of-the-art survey
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-011-0176-1
– ident: key2024072308212601100_ref022
– volume: 22
  start-page: 179
  issue: 2
  year: 2010
  ident: key2024072308212601100_ref032
  article-title: A unified framework for providing recommendations in social tagging systems based on ternary semantic analysis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.85
– ident: key2024072308212601100_ref021
  doi: 10.1007/978-0-387-85820-3_19
– volume: 10
  start-page: 290
  issue: 2
  year: 1959
  ident: key2024072308212601100_ref028
  article-title: A flexible growth function for empirical use
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/10.2.290
– volume: 20
  start-page: 224
  issue: 1
  year: 2018
  ident: key2024072308212601100_ref039
  article-title: Joint Latent Dirichlet Allocation for social tags
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2017.2716829
– volume: 53
  start-page: 965
  issue: 2
  year: 2020
  ident: key2024072308212601100_ref030
  article-title: A study on features of social recommender systems
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-019-09684-w
– volume: 4
  start-page: 89
  issue: 1
  year: 2016
  ident: key2024072308212601100_ref014
  article-title: Quantitative analysis of large amounts of journalistic texts using topic modelling
  publication-title: Digital Journalism
  doi: 10.1080/21670811.2015.1093271
– start-page: 1401
  year: 2010
  ident: key2024072308212601100_ref009
  article-title: Ranking social bookmarks using topic models
– volume: 13
  start-page: 3675
  issue: 7
  year: 2017
  ident: key2024072308212601100_ref024
  article-title: A social approach to high-level context generation for supporting context-aware m-learning
  publication-title: Eurasia Journal of Mathematics, Science and Technology Education
SSID ssj0002057385
Score 2.278781
Snippet PurposeWith the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large...
SourceID unpaywall
crossref
emerald
SourceType Open Access Repository
Index Database
Publisher
StartPage 407
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1BOXBiRxQB8gEhQDJN4mycUMUixAGB1EpwimzHQYg2rSAFwYl_4BP4Fb6EL2Ecu9AAF27cfHCsp5mxZ8ksAOtC66AgEtRFdaZDNwHlKAZUepkjZMx9KcsE2dPwuO2fXAQXY_A6rIUp0ypNOKZ8p6_zO-2kNnTiNr7Cnw0H9PSag1ZTV4V5OsvAYcxr6Ih1o59me4bQRa9_LWkPr17X1jRS3fHANAhWKR2h9L2i2gHtdpUdZUTRZKQmbE0LroO_V-MwEQZo8Ndgon161rzUY-vQ3KC7Xjnd0qzxigx_hiLCtOAVhBXl91UBPDnI-_zxgXc6I7rtaBrehlQxKS03O4NC7Minbw0j_znZZmDK2takaS7DLIypfA5WbWUG2SC29EqfQOybNg_nLQ2EjAJ5f34ZhUIqUEgVCsEjiYFCLJQFaB8dtvaPqZ0zgRIZxQVVTugoFko_kgxfMMFirmKh0PaTqK1jJtJQ8F3uuSlXuGSucpnrRcIPBIucTLFFqOW9XC0BSYMo9fGzTKKjirZuHGauh1YY-uGOQmLXYWsoAEnftBNJSjfMiRPkCy4SzZdE86UOm5alv22tsLAO258i9GMzCmHl3OW_bF6BWnE7UKtoeRVizUr-B2mGNM0
  priority: 102
  providerName: Unpaywall
Title Topic optimization–incorporated collaborative recommendation for social tagging
URI https://www.emerald.com/insight/content/doi/10.1108/DTA-11-2021-0332/full/html
https://www.emerald.com/insight/content/doi/10.1108/DTA-11-2021-0332/full/pdf?title=topic-optimization-incorporated-collaborative-recommendation-for-social-tagging
UnpaywallVersion publishedVersion
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald A-Z Complete All Journals Journals
  customDbUrl:
  eissn: 2514-9288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9318
  databaseCode: GEI
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 2514-9288
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9318
  databaseCode: M1O
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2514-9288
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002057385
  issn: 2514-9318
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2514-9288
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002057385
  issn: 2514-9318
  databaseCode: 8FG
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB0VOMCFHVGWygeEACltEmdxjxWLEIcCUiuVU2Q7LiDatIIUBCf-gT_kSxgnDlDoBYlTfHCseGY0y8ssADtC2yA_FJaD5kxDN77FUQws6XZtIRn3pMwSZJvBads76_idEjSLWpgsrTKHYzI9fZs86CC1phO3UQt_NhzQ02uOWg1dFebqLAObUremEevaTdrvTaGk-35R-msQF1f3_stmdKJN96y6y1jx33LCYWN26qtYd3aUDPnzE-_1vpmhkwUYFBfIs0_uqqNUVOXLj96O_3fDRZg3Hitp5CK2BCWVLMO2qXcgu8QUNGkGE6MpVuCyNRjeSjJAhdQ3lZ7vr2-6E0TeOFnF5JsEPiqiA_N-X5kRTwSPJDmcT1KuQfHrVWifHLcOTy0zvQH5HLLUUnZgKxpIL5QU9YKgjCsmFHpUEm0goyIOBK9z14m5wiV1lEMdNxSeL2hodxVdg-lkkKh1ILEfxh6-1pUY_qEHyYKu46Jvg9GtrZAuZdgveBUN8yYdURbc2CxCEuIi0iSMNAnLsGeoP2nrGLXLcPDJ7V-b45SPnbvxh2_YhDlcexoidupbMJ3ej9Q2-japqGQiW4GZdvOicYXPzlHrvPEBJAn01A
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4BPYRLSwuogQJ7qBAgmdhePzZHxEOBppGQEik3a3e9AdTEiYpDBaf-h_7D_hJm7DUQ4MCBm2WtR9qZ0bw83wzAd0U-KIyV46E7o9JN6EhUA0f7A1dpIQOtiwbZTtTqBWf9sD8HnQoLU7RVluWYwk5fZdeUpDaocRut8MPAAdpec9Q9IFSYT10GLud-gyrWjct8NJyHDyG1e1TgX1tz8Wn6X7GlE7164DR9Iao_l6-Qm_FUj3Dd2jSbyNs_cjh84ohOPsG4ukLZf_Jrf5qrfX33bLrj-91xCT7amJUdlEr2GeZM9gU2LOKBbTMLaSIRM2srluG8O55caTZGkzSyWM__f__RLIhydLJJ2RMdvDGMUvPRyNglTwxJsrKgz3JJZfGLFeidHHcPW47d34CSjkXuGDdyDY90EGuOlkFxIY1QBmMqjV5QcJVGSjal76XS4CP3jMc9P1ZBqHjsDgxfhYVsnJmvwNIwTgP8bKAxAcQYUkQDz8foBvNb1yBf6rBbySqZlGM6kiK9cUWCLMSHhFiYEAvrsGO5_9rRGW7XYe9B2i8Op7mcobv2drpbUGt1f7aT9mnnxzos4vuA6sVe8xss5L-nZgMDnVxtFtp7D6CT860
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1BOXBiRxQB8gEhQDJN4mycUMUixAGB1EpwimzHQYg2rSAFwYl_4BP4Fb6EL2Ecu9AAF27cfHCsp5mxZ8ksAOtC66AgEtRFdaZDNwHlKAZUepkjZMx9KcsE2dPwuO2fXAQXY_A6rIUp0ypNOKZ8p6_zO-2kNnTiNr7Cnw0H9PSag1ZTV4V5OsvAYcxr6Ih1o59me4bQRa9_LWkPr17X1jRS3fHANAhWKR2h9L2i2gHtdpUdZUTRZKQmbE0LroO_V-MwEQZo8Ndgon161rzUY-vQ3KC7Xjnd0qzxigx_hiLCtOAVhBXl91UBPDnI-_zxgXc6I7rtaBrehlQxKS03O4NC7Minbw0j_znZZmDK2takaS7DLIypfA5WbWUG2SC29EqfQOybNg_nLQ2EjAJ5f34ZhUIqUEgVCsEjiYFCLJQFaB8dtvaPqZ0zgRIZxQVVTugoFko_kgxfMMFirmKh0PaTqK1jJtJQ8F3uuSlXuGSucpnrRcIPBIucTLFFqOW9XC0BSYMo9fGzTKKjirZuHGauh1YY-uGOQmLXYWsoAEnftBNJSjfMiRPkCy4SzZdE86UOm5alv22tsLAO258i9GMzCmHl3OW_bF6BWnE7UKtoeRVizUr-B2mGNM0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topic+optimization%E2%80%93incorporated+collaborative+recommendation+for+social+tagging&rft.jtitle=Data+technologies+and+applications&rft.au=Pan%2C+Xuwei&rft.au=Zeng%2C+Xuemei&rft.au=Ding%2C+Ling&rft.date=2024-07-19&rft.issn=2514-9288&rft.eissn=2514-9288&rft.volume=58&rft.issue=3&rft.spage=407&rft.epage=426&rft_id=info:doi/10.1108%2FDTA-11-2021-0332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_DTA_11_2021_0332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2514-9288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2514-9288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2514-9288&client=summon