Topic optimization–incorporated collaborative recommendation for social tagging
PurposeWith the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity and unreliable quality, which greatly increases the complexity of recommendation. The contradiction between the e...
        Saved in:
      
    
          | Published in | Data technologies and applications Vol. 58; no. 3; pp. 407 - 426 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Emerald Publishing Limited
    
        19.07.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2514-9288 2514-9318 2514-9288  | 
| DOI | 10.1108/DTA-11-2021-0332 | 
Cover
| Abstract | PurposeWith the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity and unreliable quality, which greatly increases the complexity of recommendation. The contradiction between the efficiency and effectiveness of recommendation service in social tagging is increasingly becoming prominent. The purpose of this study is to incorporate topic optimization into collaborative filtering to enhance both the effectiveness and the efficiency of personalized recommendations for social tagging.Design/methodology/approachCombining the idea of optimization before service, this paper presents an approach that incorporates topic optimization into collaborative recommendations for social tagging. In the proposed approach, the recommendation process is divided into two phases of offline topic optimization and online recommendation service to achieve high-quality and efficient personalized recommendation services. In the offline phase, the tags' topic model is constructed and then used to optimize the latent preference of users and the latent affiliation of resources on topics.FindingsExperimental evaluation shows that the proposed approach improves both precision and recall of recommendations, as well as enhances the efficiency of online recommendations compared with the three baseline approaches. The proposed topic optimization–incorporated collaborative recommendation approach can achieve the improvement of both effectiveness and efficiency for the recommendation in social tagging.Originality/valueWith the support of the proposed approach, personalized recommendation in social tagging with high quality and efficiency can be achieved. | 
    
|---|---|
| AbstractList | PurposeWith the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity and unreliable quality, which greatly increases the complexity of recommendation. The contradiction between the efficiency and effectiveness of recommendation service in social tagging is increasingly becoming prominent. The purpose of this study is to incorporate topic optimization into collaborative filtering to enhance both the effectiveness and the efficiency of personalized recommendations for social tagging.Design/methodology/approachCombining the idea of optimization before service, this paper presents an approach that incorporates topic optimization into collaborative recommendations for social tagging. In the proposed approach, the recommendation process is divided into two phases of offline topic optimization and online recommendation service to achieve high-quality and efficient personalized recommendation services. In the offline phase, the tags' topic model is constructed and then used to optimize the latent preference of users and the latent affiliation of resources on topics.FindingsExperimental evaluation shows that the proposed approach improves both precision and recall of recommendations, as well as enhances the efficiency of online recommendations compared with the three baseline approaches. The proposed topic optimization–incorporated collaborative recommendation approach can achieve the improvement of both effectiveness and efficiency for the recommendation in social tagging.Originality/valueWith the support of the proposed approach, personalized recommendation in social tagging with high quality and efficiency can be achieved. | 
    
| Author | Pan, Xuwei Zeng, Xuemei Ding, Ling  | 
    
| Author_xml | – sequence: 1 givenname: Xuwei orcidid: 0000-0001-5583-4000 surname: Pan fullname: Pan, Xuwei – sequence: 2 givenname: Xuemei orcidid: 0000-0001-6234-4683 surname: Zeng fullname: Zeng, Xuemei – sequence: 3 givenname: Ling orcidid: 0000-0002-7016-1390 surname: Ding fullname: Ding, Ling  | 
    
| BookMark | eNptkMlOwzAQQC1UJErpnWN-INRLFvdYlVWqhJDCORo7k8rIsSMngMqJf-AP-RISyoHtNG-keXN4x2TivENCThk9Y4zKxXmxihmLOeUspkLwAzLlKUviJZdy8o2PyLzrHiilnKa5kOmU3BW-NTrybW8a8wK98e799c047UPrA_RYRdpbC2pczBNGAbVvGnTV521U-xB1XhuwUQ_brXHbE3JYg-1w_jVn5P7yolhfx5vbq5v1ahNrnss-RppRFJlOci14mishAaXCjHGd8KUUqsoULIGzCnBAwZAJxnOVpErktEYxI2z_99G1sHsGa8s2mAbCrmS0HLOUVQ8DlGOWcswyOHTv6OC7LmD9RxlK_lYWewUbDGCr_4wf7cUHR613ZA | 
    
| Cites_doi | 10.1504/IJCSE.2020.107340 10.1145/2490860 10.4018/IJSWIS.2019040103 10.1007/s00500-019-03998-1 10.1109/TSMCA.2012.2208186 10.1080/01969722.2019.1565119 10.1016/j.ipm.2015.03.001 10.1016/j.knosys.2020.106119 10.1016/j.elerap.2016.01.003 10.1007/978-3-030-11935-5_57 10.1002/asi.23736 10.48550/arXiv.cs/0508082 10.1007/978-1-4419-0221-4_39 10.1007/978-3-642-23014-1_22 10.1007/s11390-011-0176-1 10.1109/TKDE.2009.85 10.1007/978-0-387-85820-3_19 10.1093/jxb/10.2.290 10.1109/TMM.2017.2716829 10.1007/s10462-019-09684-w 10.1080/21670811.2015.1093271  | 
    
| ContentType | Journal Article | 
    
| Copyright | Pan Xuwei, Zeng Xuemei and Ding Ling | 
    
| Copyright_xml | – notice: Pan Xuwei, Zeng Xuemei and Ding Ling | 
    
| DBID | XDTOA AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1108/DTA-11-2021-0332 | 
    
| DatabaseName | Emerald Open Access Journals CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: XDTOA name: Emerald Open Access Journals url: https://www.emerald.com/insight sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Library & Information Science | 
    
| EISSN | 2514-9288 | 
    
| EndPage | 426 | 
    
| ExternalDocumentID | 10.1108/dta-11-2021-0332 10_1108_DTA_11_2021_0332 10.1108/DTA-11-2021-0332  | 
    
| GroupedDBID | .X0 3FY 7WY 9F- AAMCF AAUDR ABIJV ABSDC ABYQI ACGFS ADOMW AJEBP ALMA_UNASSIGNED_HOLDINGS ALSLI AODMV ARAPS AUCOK BENPR BVLZF EBS ECCUG GEI GQ. H13 HCIFZ KBGRL KLENG M0P M1O M42 SLOBJ TGG TMF TMI TMT XDTOA Z11 Z12 Z21 0-V 8FE 8FG AAYXX ABJNI ABUWG ACXJU AFKRA AHAFT AHMHQ ARALO AZQEC BEZIV BGLVJ BPHCQ CCPQU CITATION CJNVE CNYFK DWQXO GNUQQ K6V K6~ K7- M0C P62 PHGZM PHGZT PQBIZ PQEDU PQGLB PQQKQ PROAC PRQQA PUEGO AAGBP ADTOC AJZCB AKXVL EJD SCAQC UNPAY  | 
    
| ID | FETCH-LOGICAL-c278t-e060e36c47c3257b38ae8be612c42983bd6ba9a21daed6b31e13127b45b370fe3 | 
    
| IEDL.DBID | GEI | 
    
| ISSN | 2514-9288 2514-9318  | 
    
| IngestDate | Wed Oct 01 16:48:32 EDT 2025 Wed Oct 01 05:42:45 EDT 2025 Thu Aug 22 06:15:22 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Logistic function Personality Collaborative filtering Topic model Recommender systems Social tagging  | 
    
| Language | English | 
    
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c278t-e060e36c47c3257b38ae8be612c42983bd6ba9a21daed6b31e13127b45b370fe3 | 
    
| ORCID | 0000-0002-7016-1390 0000-0001-6234-4683 0000-0001-5583-4000  | 
    
| OpenAccessLink | https://www.emerald.com/insight/content/doi/10.1108/DTA-11-2021-0332/full/html | 
    
| PageCount | 20 | 
    
| ParticipantIDs | crossref_primary_10_1108_DTA_11_2021_0332 emerald_primary_10_1108_DTA-11-2021-0332 unpaywall_primary_10_1108_dta_11_2021_0332  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240719 2024-07-19  | 
    
| PublicationDateYYYYMMDD | 2024-07-19 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: 20240719 day: 19  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Data technologies and applications | 
    
| PublicationYear | 2024 | 
    
| Publisher | Emerald Publishing Limited | 
    
| Publisher_xml | – name: Emerald Publishing Limited | 
    
| References | (key2024072308212601100_ref045) 2010 (key2024072308212601100_ref013) 2019; 15 (key2024072308212601100_ref017) 2011 (key2024072308212601100_ref040) 2013; 4 key2024072308212601100_ref015 (key2024072308212601100_ref034) 2020; 203 (key2024072308212601100_ref005) 2015 key2024072308212601100_ref021 key2024072308212601100_ref022 (key2024072308212601100_ref004) 2007 (key2024072308212601100_ref029) 2008 (key2024072308212601100_ref035) 2017 (key2024072308212601100_ref001) 2017; 68 (key2024072308212601100_ref012) 2014 (key2024072308212601100_ref014) 2016; 4 (key2024072308212601100_ref036) 2016; 18 (key2024072308212601100_ref011) 2014 (key2024072308212601100_ref007) 2005 (key2024072308212601100_ref041) 2011; 26 (key2024072308212601100_ref003) 2016 key2024072308212601100_ref025 (key2024072308212601100_ref008) 2010 (key2024072308212601100_ref042) 2009 key2024072308212601100_ref006 (key2024072308212601100_ref018) 2019; 22 (key2024072308212601100_ref028) 1959; 10 (key2024072308212601100_ref023) 2018 (key2024072308212601100_ref024) 2017; 13 (key2024072308212601100_ref027) 2009 (key2024072308212601100_ref030) 2020; 53 (key2024072308212601100_ref043) 2017 (key2024072308212601100_ref044) 2010 (key2024072308212601100_ref037) 2016; 52 (key2024072308212601100_ref009) 2010 (key2024072308212601100_ref026) 2013; 43 key2024072308212601100_ref031 (key2024072308212601100_ref032) 2010; 22 (key2024072308212601100_ref033) 2011 (key2024072308212601100_ref039) 2018; 20 (key2024072308212601100_ref019) 2017 (key2024072308212601100_ref020) 2020; 22 (key2024072308212601100_ref016) 2013 (key2024072308212601100_ref002) 2003; 3 (key2024072308212601100_ref010) 2019; 50 (key2024072308212601100_ref038) 2020; 24  | 
    
| References_xml | – start-page: 69 year: 2009 ident: key2024072308212601100_ref042 article-title: TagiCoFi: tag informed collaborative filtering – start-page: 805 year: 2014 ident: key2024072308212601100_ref012 article-title: Tensor-based item recommendation using probabilistic ranking in social tagging systems – volume: 22 start-page: 181 issue: 2-3 year: 2020 ident: key2024072308212601100_ref020 article-title: Improved user-based collaborative filtering algorithm with topic model and time tag publication-title: International Journal of Computational Science and Engineering doi: 10.1504/IJCSE.2020.107340 – start-page: 412 year: 2017 ident: key2024072308212601100_ref035 article-title: Personalized movie recommendation based on social tagging systems – volume: 3 start-page: 993 year: 2003 ident: key2024072308212601100_ref002 article-title: Latent Dirichlet Allocation publication-title: Journal of Machine Learning Research – ident: key2024072308212601100_ref006 – volume: 22 start-page: 885 issue: 1 year: 2019 ident: key2024072308212601100_ref018 article-title: Resource recommendation via user tagging behavior analysis publication-title: Cluster Computing – volume: 4 start-page: 1 issue: 2 year: 2013 ident: key2024072308212601100_ref040 article-title: A random walk model for item recommendation in social tagging systems publication-title: ACM Transactions on Management Information Systems doi: 10.1145/2490860 – volume: 15 start-page: 47 issue: 2 year: 2019 ident: key2024072308212601100_ref013 article-title: An integrated recommender system using semantic web with social tagging system publication-title: International Journal on Semantic Web and Information Systems (IJSWIS) doi: 10.4018/IJSWIS.2019040103 – start-page: 65 year: 2018 ident: key2024072308212601100_ref023 article-title: Considering correlation retarded growth for personalized recommendation in social tagging – volume: 24 start-page: 1707 issue: 3 year: 2020 ident: key2024072308212601100_ref038 article-title: Integrating social annotations into topic models for personalized document retrieval publication-title: Soft Computing doi: 10.1007/s00500-019-03998-1 – start-page: 1280 year: 2014 ident: key2024072308212601100_ref011 article-title: A tag-based personalized item recommendation system using tensor modeling and topic model approaches – volume: 43 start-page: 673 issue: 3 year: 2013 ident: key2024072308212601100_ref026 article-title: The TFC model: tensor factorization and tag clustering for item recommendation in social tagging systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMCA.2012.2208186 – start-page: 671 year: 2017 ident: key2024072308212601100_ref043 article-title: Topic representation: a novel method of tag recommendation for text – volume: 50 start-page: 97 issue: 2 year: 2019 ident: key2024072308212601100_ref010 article-title: Improving explainability of recommendation system by multi-sided tensor factorization publication-title: Cybernetics and Systems doi: 10.1080/01969722.2019.1565119 – volume: 52 start-page: 61 issue: 1 year: 2016 ident: key2024072308212601100_ref037 article-title: Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy publication-title: Information Processing & Management doi: 10.1016/j.ipm.2015.03.001 – year: 2010 ident: key2024072308212601100_ref044 article-title: Userrec: a user recommendation framework in social tagging systems – start-page: 221 year: 2011 ident: key2024072308212601100_ref017 article-title: Tag-topic model for semantic knowledge acquisition from blogs – start-page: 795 year: 2015 ident: key2024072308212601100_ref005 article-title: Gaussian LDA for topic models with word embeddings – start-page: 248 year: 2009 ident: key2024072308212601100_ref027 article-title: Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora – start-page: 391 year: 2010 ident: key2024072308212601100_ref008 article-title: Document recommendation in social tagging services – start-page: 91 year: 2010 ident: key2024072308212601100_ref045 article-title: fLDA: matrix factorization through Latent Dirichlet Allocation – volume: 203 start-page: 106119 year: 2020 ident: key2024072308212601100_ref034 article-title: Tag-informed collaborative topic modeling for cross domain recommendations publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106119 – start-page: 259 year: 2008 ident: key2024072308212601100_ref029 article-title: Personalized recommendation in social tagging systems using hierarchical clustering – year: 2016 ident: key2024072308212601100_ref003 article-title: Capturing semantic correlation for item recommendation in tagging systems – volume: 18 start-page: 83 year: 2016 ident: key2024072308212601100_ref036 article-title: A hybrid approach for movie recommendation via tags and ratings publication-title: Electronic Commerce Research and Applications doi: 10.1016/j.elerap.2016.01.003 – ident: key2024072308212601100_ref025 doi: 10.1007/978-3-030-11935-5_57 – volume: 68 start-page: 830 issue: 4 year: 2017 ident: key2024072308212601100_ref001 article-title: A survey on tag recommendation methods publication-title: Journal of the Association for Information Science and Technology doi: 10.1002/asi.23736 – volume-title: ArXiv Preprint Cs/0508082 year: 2005 ident: key2024072308212601100_ref007 article-title: The structure of collaborative tagging systems doi: 10.48550/arXiv.cs/0508082 – year: 2013 ident: key2024072308212601100_ref016 article-title: Deeper into the Folksonomy Graph: FolkRank adaptations and extensions for improved tag recommendations publication-title: Computer Science – start-page: 11 year: 2007 ident: key2024072308212601100_ref004 article-title: Understanding navigability of social tagging systems – start-page: 448 year: 2011 ident: key2024072308212601100_ref033 article-title: Collaborative topic modeling for recommending scientific articles – start-page: 130 year: 2017 ident: key2024072308212601100_ref019 article-title: An interest propagation based movie recommendation method for social tagging system – ident: key2024072308212601100_ref031 doi: 10.1007/978-1-4419-0221-4_39 – ident: key2024072308212601100_ref015 doi: 10.1007/978-3-642-23014-1_22 – volume: 26 start-page: 767 issue: 5 year: 2011 ident: key2024072308212601100_ref041 article-title: Tag-aware recommender systems: a state-of-the-art survey publication-title: Journal of Computer Science and Technology doi: 10.1007/s11390-011-0176-1 – ident: key2024072308212601100_ref022 – volume: 22 start-page: 179 issue: 2 year: 2010 ident: key2024072308212601100_ref032 article-title: A unified framework for providing recommendations in social tagging systems based on ternary semantic analysis publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.85 – ident: key2024072308212601100_ref021 doi: 10.1007/978-0-387-85820-3_19 – volume: 10 start-page: 290 issue: 2 year: 1959 ident: key2024072308212601100_ref028 article-title: A flexible growth function for empirical use publication-title: Journal of Experimental Botany doi: 10.1093/jxb/10.2.290 – volume: 20 start-page: 224 issue: 1 year: 2018 ident: key2024072308212601100_ref039 article-title: Joint Latent Dirichlet Allocation for social tags publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2017.2716829 – volume: 53 start-page: 965 issue: 2 year: 2020 ident: key2024072308212601100_ref030 article-title: A study on features of social recommender systems publication-title: Artificial Intelligence Review doi: 10.1007/s10462-019-09684-w – volume: 4 start-page: 89 issue: 1 year: 2016 ident: key2024072308212601100_ref014 article-title: Quantitative analysis of large amounts of journalistic texts using topic modelling publication-title: Digital Journalism doi: 10.1080/21670811.2015.1093271 – start-page: 1401 year: 2010 ident: key2024072308212601100_ref009 article-title: Ranking social bookmarks using topic models – volume: 13 start-page: 3675 issue: 7 year: 2017 ident: key2024072308212601100_ref024 article-title: A social approach to high-level context generation for supporting context-aware m-learning publication-title: Eurasia Journal of Mathematics, Science and Technology Education  | 
    
| SSID | ssj0002057385 | 
    
| Score | 2.278781 | 
    
| Snippet | PurposeWith the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large... | 
    
| SourceID | unpaywall crossref emerald  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 407 | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1BOXBiRxQB8gEhQDJN4mycUMUixAGB1EpwimzHQYg2rSAFwYl_4BP4Fb6EL2Ecu9AAF27cfHCsp5mxZ8ksAOtC66AgEtRFdaZDNwHlKAZUepkjZMx9KcsE2dPwuO2fXAQXY_A6rIUp0ypNOKZ8p6_zO-2kNnTiNr7Cnw0H9PSag1ZTV4V5OsvAYcxr6Ih1o59me4bQRa9_LWkPr17X1jRS3fHANAhWKR2h9L2i2gHtdpUdZUTRZKQmbE0LroO_V-MwEQZo8Ndgon161rzUY-vQ3KC7Xjnd0qzxigx_hiLCtOAVhBXl91UBPDnI-_zxgXc6I7rtaBrehlQxKS03O4NC7Minbw0j_znZZmDK2takaS7DLIypfA5WbWUG2SC29EqfQOybNg_nLQ2EjAJ5f34ZhUIqUEgVCsEjiYFCLJQFaB8dtvaPqZ0zgRIZxQVVTugoFko_kgxfMMFirmKh0PaTqK1jJtJQ8F3uuSlXuGSucpnrRcIPBIucTLFFqOW9XC0BSYMo9fGzTKKjirZuHGauh1YY-uGOQmLXYWsoAEnftBNJSjfMiRPkCy4SzZdE86UOm5alv22tsLAO258i9GMzCmHl3OW_bF6BWnE7UKtoeRVizUr-B2mGNM0 priority: 102 providerName: Unpaywall  | 
    
| Title | Topic optimization–incorporated collaborative recommendation for social tagging | 
    
| URI | https://www.emerald.com/insight/content/doi/10.1108/DTA-11-2021-0332/full/html https://www.emerald.com/insight/content/doi/10.1108/DTA-11-2021-0332/full/pdf?title=topic-optimization-incorporated-collaborative-recommendation-for-social-tagging  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 58 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVMCB databaseName: Emerald A-Z Complete All Journals Journals customDbUrl: eissn: 2514-9288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9318 databaseCode: GEI dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.emerald.com/insight providerName: Emerald – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 2514-9288 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9318 databaseCode: M1O dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2514-9288 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002057385 issn: 2514-9318 databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2514-9288 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002057385 issn: 2514-9318 databaseCode: 8FG dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB0VOMCFHVGWygeEACltEmdxjxWLEIcCUiuVU2Q7LiDatIIUBCf-gT_kSxgnDlDoBYlTfHCseGY0y8ssADtC2yA_FJaD5kxDN77FUQws6XZtIRn3pMwSZJvBads76_idEjSLWpgsrTKHYzI9fZs86CC1phO3UQt_NhzQ02uOWg1dFebqLAObUremEevaTdrvTaGk-35R-msQF1f3_stmdKJN96y6y1jx33LCYWN26qtYd3aUDPnzE-_1vpmhkwUYFBfIs0_uqqNUVOXLj96O_3fDRZg3Hitp5CK2BCWVLMO2qXcgu8QUNGkGE6MpVuCyNRjeSjJAhdQ3lZ7vr2-6E0TeOFnF5JsEPiqiA_N-X5kRTwSPJDmcT1KuQfHrVWifHLcOTy0zvQH5HLLUUnZgKxpIL5QU9YKgjCsmFHpUEm0goyIOBK9z14m5wiV1lEMdNxSeL2hodxVdg-lkkKh1ILEfxh6-1pUY_qEHyYKu46Jvg9GtrZAuZdgveBUN8yYdURbc2CxCEuIi0iSMNAnLsGeoP2nrGLXLcPDJ7V-b45SPnbvxh2_YhDlcexoidupbMJ3ej9Q2-japqGQiW4GZdvOicYXPzlHrvPEBJAn01A | 
    
| linkProvider | Emerald | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4BPYRLSwuogQJ7qBAgmdhePzZHxEOBppGQEik3a3e9AdTEiYpDBaf-h_7D_hJm7DUQ4MCBm2WtR9qZ0bw83wzAd0U-KIyV46E7o9JN6EhUA0f7A1dpIQOtiwbZTtTqBWf9sD8HnQoLU7RVluWYwk5fZdeUpDaocRut8MPAAdpec9Q9IFSYT10GLud-gyrWjct8NJyHDyG1e1TgX1tz8Wn6X7GlE7164DR9Iao_l6-Qm_FUj3Dd2jSbyNs_cjh84ohOPsG4ukLZf_Jrf5qrfX33bLrj-91xCT7amJUdlEr2GeZM9gU2LOKBbTMLaSIRM2srluG8O55caTZGkzSyWM__f__RLIhydLJJ2RMdvDGMUvPRyNglTwxJsrKgz3JJZfGLFeidHHcPW47d34CSjkXuGDdyDY90EGuOlkFxIY1QBmMqjV5QcJVGSjal76XS4CP3jMc9P1ZBqHjsDgxfhYVsnJmvwNIwTgP8bKAxAcQYUkQDz8foBvNb1yBf6rBbySqZlGM6kiK9cUWCLMSHhFiYEAvrsGO5_9rRGW7XYe9B2i8Op7mcobv2drpbUGt1f7aT9mnnxzos4vuA6sVe8xss5L-nZgMDnVxtFtp7D6CT860 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1BOXBiRxQB8gEhQDJN4mycUMUixAGB1EpwimzHQYg2rSAFwYl_4BP4Fb6EL2Ecu9AAF27cfHCsp5mxZ8ksAOtC66AgEtRFdaZDNwHlKAZUepkjZMx9KcsE2dPwuO2fXAQXY_A6rIUp0ypNOKZ8p6_zO-2kNnTiNr7Cnw0H9PSag1ZTV4V5OsvAYcxr6Ih1o59me4bQRa9_LWkPr17X1jRS3fHANAhWKR2h9L2i2gHtdpUdZUTRZKQmbE0LroO_V-MwEQZo8Ndgon161rzUY-vQ3KC7Xjnd0qzxigx_hiLCtOAVhBXl91UBPDnI-_zxgXc6I7rtaBrehlQxKS03O4NC7Minbw0j_znZZmDK2takaS7DLIypfA5WbWUG2SC29EqfQOybNg_nLQ2EjAJ5f34ZhUIqUEgVCsEjiYFCLJQFaB8dtvaPqZ0zgRIZxQVVTugoFko_kgxfMMFirmKh0PaTqK1jJtJQ8F3uuSlXuGSucpnrRcIPBIucTLFFqOW9XC0BSYMo9fGzTKKjirZuHGauh1YY-uGOQmLXYWsoAEnftBNJSjfMiRPkCy4SzZdE86UOm5alv22tsLAO258i9GMzCmHl3OW_bF6BWnE7UKtoeRVizUr-B2mGNM0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topic+optimization%E2%80%93incorporated+collaborative+recommendation+for+social+tagging&rft.jtitle=Data+technologies+and+applications&rft.au=Pan%2C+Xuwei&rft.au=Zeng%2C+Xuemei&rft.au=Ding%2C+Ling&rft.date=2024-07-19&rft.issn=2514-9288&rft.eissn=2514-9288&rft.volume=58&rft.issue=3&rft.spage=407&rft.epage=426&rft_id=info:doi/10.1108%2FDTA-11-2021-0332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_DTA_11_2021_0332 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2514-9288&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2514-9288&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2514-9288&client=summon |