Assessment of the optimal preventive maintenance period using stochastic hybrid modelling

Also the maintenance world is heading towards the era of artificial intelligence applied to the evaluation of the residual life of devices and predictive maintenance. On the other hand, when the operating conditions can change significantly and randomly, influencing the performance of the system sub...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 200; pp. 1664 - 1673
Main Authors D’Urso, D., Sinatra, A., Compagno, L., Chiacchio, F.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2022
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2022.01.367

Cover

Abstract Also the maintenance world is heading towards the era of artificial intelligence applied to the evaluation of the residual life of devices and predictive maintenance. On the other hand, when the operating conditions can change significantly and randomly, influencing the performance of the system subject to aging phenomena, then the use of a stochastic hybrid approach for the reliability modeling of the system can lead to a closer representation of the reality. This latter approach is applied to the evaluation of the costs associated with the preventive maintenance of the bearings of a centrifugal pump used in petroleum processes. The evaluation is obtained by means of the Monte Carlo simulation methodology.
AbstractList Also the maintenance world is heading towards the era of artificial intelligence applied to the evaluation of the residual life of devices and predictive maintenance. On the other hand, when the operating conditions can change significantly and randomly, influencing the performance of the system subject to aging phenomena, then the use of a stochastic hybrid approach for the reliability modeling of the system can lead to a closer representation of the reality. This latter approach is applied to the evaluation of the costs associated with the preventive maintenance of the bearings of a centrifugal pump used in petroleum processes. The evaluation is obtained by means of the Monte Carlo simulation methodology.
Author Chiacchio, F.
Compagno, L.
D’Urso, D.
Sinatra, A.
Author_xml – sequence: 1
  givenname: D.
  surname: D’Urso
  fullname: D’Urso, D.
  email: author@institute.xxx
  organization: University of Catania, Department of Electrical Electronic and Computer Engineering
– sequence: 2
  givenname: A.
  surname: Sinatra
  fullname: Sinatra, A.
  organization: University of Catania, Department of Electrical Electronic and Computer Engineering
– sequence: 3
  givenname: L.
  surname: Compagno
  fullname: Compagno, L.
  organization: University of Catania, Department of Electrical Electronic and Computer Engineering
– sequence: 4
  givenname: F.
  surname: Chiacchio
  fullname: Chiacchio, F.
  organization: University of Catania, Department of Electrical Electronic and Computer Engineering
BookMark eNqFkM1OwzAMgCM0JMbYE3DJC6w46dqkBw7TxJ80iQscOEVp6rJMbVMlYdLenoxxQBzAF1u2Psv-LslkcAMScs0gY8DKm102emdCxoHzDFiWl-KMTJkUYgEFVJMf9QWZh7CDFLmUFRNT8rYKAUPocYjUtTRukbox2l53dPS4T227R9prO0Qc9GCQjuita-hHsMM7DdGZrQ7RGro91N42tHcNdl2aXZHzVncB5995Rl7v717Wj4vN88PTerVZGC5kXOhSgERYFiVCo9tKFqLNa47QCl7WJS6N0bLUBrTgGlC2suAMlqbGvEgv6XxG8tNe410IHls1-nS_PygG6ihI7dSXIHUUpICpJChR1S_K2KijdUP02nb_sLcnFtNbe4teBWMxuWmsRxNV4-yf_CeJIodM
CitedBy_id crossref_primary_10_3390_systems10050175
crossref_primary_10_3390_app15073603
crossref_primary_10_1016_j_smse_2024_100021
crossref_primary_10_1016_j_enbuild_2022_112492
crossref_primary_10_3390_pr10122550
Cites_doi 10.1016/j.procs.2021.01.262
10.1115/DETC2014-34326
10.1016/j.ress.2020.106904
10.1080/07408170208928880
10.3390/app11052300
10.1108/JQME-02-2017-0008
10.1016/j.anucene.2019.107139
10.1080/24725854.2018.1437301
10.1080/03610918.2016.1183781
10.1109/ACCESS.2021.3067478
10.1016/j.cie.2019.106024
10.1016/j.ress.2018.03.022
10.1016/j.ress.2016.11.011
10.1177/1748006X14533958
10.1016/j.energy.2018.03.101
10.3390/info10090283
10.1016/j.eswa.2015.10.046
10.1016/j.jsp.2009.10.001
10.1016/j.renene.2020.06.142
10.1016/S1474-6670(17)32784-2
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2022.01.367
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1673
ExternalDocumentID 10_1016_j_procs_2022_01_367
S1877050922003763
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c278t-a6708e0456e0daf9857f3b2e0f726b6e4cca86ac0a72a0e8f852104cbe35050a3
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Jul 01 01:53:12 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Tue May 16 22:18:50 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Preventive Maintenance
Bearings
Monte Carlo Simulation
Stochastic Hybrid Automation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-a6708e0456e0daf9857f3b2e0f726b6e4cca86ac0a72a0e8f852104cbe35050a3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050922003763
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2022_01_367
crossref_citationtrail_10_1016_j_procs_2022_01_367
elsevier_sciencedirect_doi_10_1016_j_procs_2022_01_367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tzvetkova, S., & Klaassens, B. (2001). Preventive maintenance for industrial application. IFAC Proceedings Volumes, 34(29), 3-8.
D’Urso, Chiacchio, Borrometi, Costa, Compagno (bib0003) 2021; 180
Wang, Z., Zhang, X., Huang, H. Z., & Mourelatos, Z. P. (2014). A Simulation Method to Estimate the Time-Varying Failure Rate of Dynamic Systems. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 46322). American Society of Mechanical Engineers.
Leylek, Z. (1997). Development of a Computer Code for Estimating Composites Life using the Palmgreen/Miner-Rule.
Peng, Wang, Zi, Tsui, Zhang (bib0008) 2017; 159
Codetta-Raiteri, D., & Portinale, L. (2014). Approaching dynamic reliability with predictive and diagnostic purposes by exploiting dynamic Bayesian networks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 228(5), 488-503.
Zhao, Yang, Qin (bib00019) 2021; 9
Tripathi, Singh, Singh (bib0005) 2020; 140
Carvalho, Soares, Vita, Francisco, Basto, Alcalá (bib0001) 2019; 137
Chiacchio, D’Urso, Famoso, Brusca, Aizpurua, Catterson (bib0006) 2018; 151
Chiacchio, Aizpurua, Compagno, Khodayee, D’Urso (bib00011) 2019; 10
SKF handbook, Rolling Bearings (2018). SFK Group.
Baraldi, Enders (bib0007) 2010; 48
Arena, Roda, Chiacchio (bib0002) 2021; 11
Iravani, Duenyas (bib00016) 2002; 34
Chiacchio, Iacono, Compagno, D’Urso (bib00022) 2020; 199
Ewing, Thies, Shek, Ferreira (bib00013) 2020; 160
Fallahnezhad, Najafian (bib00018) 2017; 46
Chiacchio, Aizpurua, Compagno, D’Urso (bib00010) 2016; 47
Arts, Basten (bib00015) 2018; 50
Kim, Kim, Heo (bib00012) 2018; 175
Shagluf, Parkinson, Longstaff, Fletcher (bib00017) 2018
Fallahnezhad (10.1016/j.procs.2022.01.367_bib00018) 2017; 46
Ewing (10.1016/j.procs.2022.01.367_bib00013) 2020; 160
Carvalho (10.1016/j.procs.2022.01.367_bib0001) 2019; 137
Iravani (10.1016/j.procs.2022.01.367_bib00016) 2002; 34
Arts (10.1016/j.procs.2022.01.367_bib00015) 2018; 50
10.1016/j.procs.2022.01.367_bib00020
Chiacchio (10.1016/j.procs.2022.01.367_bib00010) 2016; 47
10.1016/j.procs.2022.01.367_bib00021
Kim (10.1016/j.procs.2022.01.367_bib00012) 2018; 175
D’Urso (10.1016/j.procs.2022.01.367_bib0003) 2021; 180
Shagluf (10.1016/j.procs.2022.01.367_bib00017) 2018
Chiacchio (10.1016/j.procs.2022.01.367_bib00022) 2020; 199
10.1016/j.procs.2022.01.367_bib0009
Baraldi (10.1016/j.procs.2022.01.367_bib0007) 2010; 48
Zhao (10.1016/j.procs.2022.01.367_bib00019) 2021; 9
10.1016/j.procs.2022.01.367_bib00014
10.1016/j.procs.2022.01.367_bib0004
Tripathi (10.1016/j.procs.2022.01.367_bib0005) 2020; 140
Arena (10.1016/j.procs.2022.01.367_bib0002) 2021; 11
Chiacchio (10.1016/j.procs.2022.01.367_bib00011) 2019; 10
Chiacchio (10.1016/j.procs.2022.01.367_bib0006) 2018; 151
Peng (10.1016/j.procs.2022.01.367_bib0008) 2017; 159
References_xml – volume: 175
  start-page: 225
  year: 2018
  end-page: 233
  ident: bib00012
  article-title: Failure rate updates using condition-based prognostics in probabilistic safety assessments
  publication-title: Reliability Engineering & System Safety
– reference: Leylek, Z. (1997). Development of a Computer Code for Estimating Composites Life using the Palmgreen/Miner-Rule.
– volume: 50
  start-page: 606
  year: 2018
  end-page: 615
  ident: bib00015
  article-title: Design of multi-component periodic maintenance programs with single-component models
  publication-title: IISE transactions
– volume: 11
  start-page: 2300
  year: 2021
  ident: bib0002
  article-title: Integrating Modelling of Maintenance Policies within a Stochastic Hybrid Automaton Framework of Dynamic Reliability
  publication-title: Applied Sciences
– volume: 180
  start-page: 456
  year: 2021
  end-page: 465
  ident: bib0003
  article-title: Dynamic failure rate model of an electric motor comparing the Military Standard and Svenska Kullagerfabriken (SKF) methods
  publication-title: Procedia Computer Science
– volume: 151
  start-page: 605
  year: 2018
  end-page: 621
  ident: bib0006
  article-title: On the use of dynamic reliability for an accurate modelling of renewable power plants
  publication-title: Energy
– volume: 47
  year: 2016
  ident: bib00010
  article-title: SHyFTOO, an object-oriented Monte Carlo simulation library for the modelling of Stochastic Hybrid Fault Tree Automaton
  publication-title: Expert Systems with Applications
– reference: SKF handbook, Rolling Bearings (2018). SFK Group.
– volume: 140
  start-page: 107139
  year: 2020
  ident: bib0005
  article-title: Dynamic reliability analysis framework for passive safety systems of Nuclear Power Plant
  publication-title: Annals of Nuclear Energy
– volume: 199
  start-page: 106904
  year: 2020
  ident: bib00022
  article-title: A general framework for dependability modelling coupling discrete-event and time-driven simulation
  publication-title: Reliability Engineering & System Safety
– reference: Codetta-Raiteri, D., & Portinale, L. (2014). Approaching dynamic reliability with predictive and diagnostic purposes by exploiting dynamic Bayesian networks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 228(5), 488-503.
– volume: 34
  start-page: 423
  year: 2002
  end-page: 435
  ident: bib00016
  article-title: Integrated maintenance and production control of a deteriorating production system
  publication-title: Iie Transactions
– volume: 160
  start-page: 987
  year: 2020
  end-page: 997
  ident: bib00013
  article-title: Probabilistic failure rate model of a tidal turbine pitch system
  publication-title: Renewable Energy
– volume: 46
  start-page: 5846
  year: 2017
  end-page: 5859
  ident: bib00018
  article-title: A model of preventive maintenance for parallel, series, and single-item replacement systems based on statistical analysis
  publication-title: Communications in Statistics-Simulation and Computation
– reference: Tzvetkova, S., & Klaassens, B. (2001). Preventive maintenance for industrial application. IFAC Proceedings Volumes, 34(29), 3-8.
– year: 2018
  ident: bib00017
  article-title: Adaptive decision support for suggesting a machine tool maintenance strategy: from reactive to preventative
  publication-title: Journal of Quality in Maintenance Engineering
– volume: 159
  start-page: 301
  year: 2017
  end-page: 309
  ident: bib0008
  article-title: Dynamic reliability assessment and prediction for repairable systems with interval-censored data
  publication-title: Reliability Engineering & System Safety
– volume: 9
  start-page: 45968
  year: 2021
  end-page: 45977
  ident: bib00019
  article-title: Optimal Condition-Based Maintenance Strategy via an Availability-Cost Hybrid Factor for a Single-Unit System During a Two-Stage Failure Process
  publication-title: IEEE Access
– volume: 137
  start-page: 106024
  year: 2019
  ident: bib0001
  article-title: A systematic literature review of machine learning methods applied to predictive maintenance
  publication-title: Computers & Industrial Engineering
– volume: 48
  start-page: 5
  year: 2010
  end-page: 37
  ident: bib0007
  article-title: An introduction to modern missing data analyses
  publication-title: J Sch Psychol
– volume: 10
  start-page: 283
  year: 2019
  ident: bib00011
  article-title: Modelling and Resolution of Dynamic Reliability Problems by the Coupling of Simulink and the Stochastic Hybrid Fault Tree Object Oriented (SHyFTOO) Library
  publication-title: Information
– reference: Wang, Z., Zhang, X., Huang, H. Z., & Mourelatos, Z. P. (2014). A Simulation Method to Estimate the Time-Varying Failure Rate of Dynamic Systems. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 46322). American Society of Mechanical Engineers.
– volume: 180
  start-page: 456
  year: 2021
  ident: 10.1016/j.procs.2022.01.367_bib0003
  article-title: Dynamic failure rate model of an electric motor comparing the Military Standard and Svenska Kullagerfabriken (SKF) methods
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2021.01.262
– ident: 10.1016/j.procs.2022.01.367_bib00014
  doi: 10.1115/DETC2014-34326
– volume: 199
  start-page: 106904
  year: 2020
  ident: 10.1016/j.procs.2022.01.367_bib00022
  article-title: A general framework for dependability modelling coupling discrete-event and time-driven simulation
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.106904
– volume: 34
  start-page: 423
  issue: 5
  year: 2002
  ident: 10.1016/j.procs.2022.01.367_bib00016
  article-title: Integrated maintenance and production control of a deteriorating production system
  publication-title: Iie Transactions
  doi: 10.1080/07408170208928880
– volume: 11
  start-page: 2300
  issue: 5
  year: 2021
  ident: 10.1016/j.procs.2022.01.367_bib0002
  article-title: Integrating Modelling of Maintenance Policies within a Stochastic Hybrid Automaton Framework of Dynamic Reliability
  publication-title: Applied Sciences
  doi: 10.3390/app11052300
– ident: 10.1016/j.procs.2022.01.367_bib0004
– year: 2018
  ident: 10.1016/j.procs.2022.01.367_bib00017
  article-title: Adaptive decision support for suggesting a machine tool maintenance strategy: from reactive to preventative
  publication-title: Journal of Quality in Maintenance Engineering
  doi: 10.1108/JQME-02-2017-0008
– volume: 140
  start-page: 107139
  year: 2020
  ident: 10.1016/j.procs.2022.01.367_bib0005
  article-title: Dynamic reliability analysis framework for passive safety systems of Nuclear Power Plant
  publication-title: Annals of Nuclear Energy
  doi: 10.1016/j.anucene.2019.107139
– volume: 50
  start-page: 606
  issue: 7
  year: 2018
  ident: 10.1016/j.procs.2022.01.367_bib00015
  article-title: Design of multi-component periodic maintenance programs with single-component models
  publication-title: IISE transactions
  doi: 10.1080/24725854.2018.1437301
– ident: 10.1016/j.procs.2022.01.367_bib00021
– volume: 46
  start-page: 5846
  issue: 7
  year: 2017
  ident: 10.1016/j.procs.2022.01.367_bib00018
  article-title: A model of preventive maintenance for parallel, series, and single-item replacement systems based on statistical analysis
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610918.2016.1183781
– volume: 9
  start-page: 45968
  year: 2021
  ident: 10.1016/j.procs.2022.01.367_bib00019
  article-title: Optimal Condition-Based Maintenance Strategy via an Availability-Cost Hybrid Factor for a Single-Unit System During a Two-Stage Failure Process
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067478
– volume: 137
  start-page: 106024
  year: 2019
  ident: 10.1016/j.procs.2022.01.367_bib0001
  article-title: A systematic literature review of machine learning methods applied to predictive maintenance
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.106024
– volume: 175
  start-page: 225
  year: 2018
  ident: 10.1016/j.procs.2022.01.367_bib00012
  article-title: Failure rate updates using condition-based prognostics in probabilistic safety assessments
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2018.03.022
– volume: 159
  start-page: 301
  year: 2017
  ident: 10.1016/j.procs.2022.01.367_bib0008
  article-title: Dynamic reliability assessment and prediction for repairable systems with interval-censored data
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2016.11.011
– ident: 10.1016/j.procs.2022.01.367_bib0009
  doi: 10.1177/1748006X14533958
– volume: 151
  start-page: 605
  year: 2018
  ident: 10.1016/j.procs.2022.01.367_bib0006
  article-title: On the use of dynamic reliability for an accurate modelling of renewable power plants
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.101
– volume: 10
  start-page: 283
  issue: 9
  year: 2019
  ident: 10.1016/j.procs.2022.01.367_bib00011
  article-title: Modelling and Resolution of Dynamic Reliability Problems by the Coupling of Simulink and the Stochastic Hybrid Fault Tree Object Oriented (SHyFTOO) Library
  publication-title: Information
  doi: 10.3390/info10090283
– volume: 47
  year: 2016
  ident: 10.1016/j.procs.2022.01.367_bib00010
  article-title: SHyFTOO, an object-oriented Monte Carlo simulation library for the modelling of Stochastic Hybrid Fault Tree Automaton
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.046
– volume: 48
  start-page: 5
  issue: 1
  year: 2010
  ident: 10.1016/j.procs.2022.01.367_bib0007
  article-title: An introduction to modern missing data analyses
  publication-title: J Sch Psychol
  doi: 10.1016/j.jsp.2009.10.001
– volume: 160
  start-page: 987
  year: 2020
  ident: 10.1016/j.procs.2022.01.367_bib00013
  article-title: Probabilistic failure rate model of a tidal turbine pitch system
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.06.142
– ident: 10.1016/j.procs.2022.01.367_bib00020
  doi: 10.1016/S1474-6670(17)32784-2
SSID ssj0000388917
Score 2.2684577
Snippet Also the maintenance world is heading towards the era of artificial intelligence applied to the evaluation of the residual life of devices and predictive...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1664
SubjectTerms Bearings
Monte Carlo Simulation
Preventive Maintenance
Stochastic Hybrid Automation
Title Assessment of the optimal preventive maintenance period using stochastic hybrid modelling
URI https://dx.doi.org/10.1016/j.procs.2022.01.367
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHjwautm8NsdaLMWiB7VYT8tuMrEV-0Cq4L93ZpMUBenBY0IGwuzuNx_LzPcxdgHC5r5KjRcjRHqhLTLPYtXxTAipD4VJwA2J3d7F_WF4M4pGDdatZ2GorbLC_hLTHVpXb9pVNtuLyaT94KskIfUSSf1VeEwQh2mqlIb4RlerexZSO0md8S5971FALT7k2ryoTpBst5Qk3xk4v_k_CtSPotPbYVsVW-Sd8od2WQNme2y7dmLg1cHcZ8-dlcAmnxccSR2fIxZMMXZRaTR9Ap8aEocghQ3gJHA8zzm1vb9wJIDZ2JBiMx9_0QgXdwY5NKl-wIa968du36tME7xMJmrpmTgRCoiogchNkaooKQIrQRSJjG0MIS6Zik0mTCKNAFUoLOAizCwESIaECQ5ZczafwRHjxkCEmQ0gIpvcHIlBGpsC11xKi7QgOmayzpTOKkVxMrZ403Xr2Kt26dWUXi18jek9ZperoEUpqLH-87heAv1rX2iE_HWBJ_8NPGWb9FRes5yx5vL9A86ReCxti210BvdPg5bbYd9a1Nn2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPejFt1ife_Bo6Gbz2ORYi6XVthdbqKdlk0xsxTZFquC_dyaPoiAevCYZCDOzMx_LzPcxdg0iSuwgNJaPJdJyozS2Iuw6lnEhtCE1CvIlscHQ747d-4k3qbF2tQtDY5Vl7S9qel6tyyfN0pvN5WzWfLQDpYi9RNJ8FR6TDbaJaEBQavcmt-uLFqI7CXPlXTKwyKJiH8rnvKhREG-3lMTf6eSC8790qG9dp7PHdkq4yFvFH-2zGiwO2G4lxcDLk3nInlprhk2epRxRHc-wGMzRdlmSNH0AnxtihyCKDeDEcJwlnObenzkiwHhqiLKZTz9ph4vnCjm0qn7Exp27UbtrlaoJVixVsLKMr0QAhNRAJCYNA0-lTiRBpEr6kQ8uxizwTSyMkkZAkAbYwYUbR-AgGhLGOWb1RbaAE8aNAQ9d64BHOrkJIoPQNykGXcoIcYHXYLLylI5LSnFStnjV1ezYi87dq8m9Wtga3dtgN2ujZcGo8ffnfhUC_SMxNNb8vwxP_2t4xba6o0Ff93vDhzO2TW-KO5dzVl-9vcMFopBVdJln2ReEutt2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+optimal+preventive+maintenance+period+using+stochastic+hybrid+modelling&rft.jtitle=Procedia+computer+science&rft.au=D%E2%80%99Urso%2C+D.&rft.au=Sinatra%2C+A.&rft.au=Compagno%2C+L.&rft.au=Chiacchio%2C+F.&rft.date=2022&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=200&rft.spage=1664&rft.epage=1673&rft_id=info:doi/10.1016%2Fj.procs.2022.01.367&rft.externalDocID=S1877050922003763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon