Assessment of the optimal preventive maintenance period using stochastic hybrid modelling
Also the maintenance world is heading towards the era of artificial intelligence applied to the evaluation of the residual life of devices and predictive maintenance. On the other hand, when the operating conditions can change significantly and randomly, influencing the performance of the system sub...
Saved in:
Published in | Procedia computer science Vol. 200; pp. 1664 - 1673 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-0509 1877-0509 |
DOI | 10.1016/j.procs.2022.01.367 |
Cover
Abstract | Also the maintenance world is heading towards the era of artificial intelligence applied to the evaluation of the residual life of devices and predictive maintenance. On the other hand, when the operating conditions can change significantly and randomly, influencing the performance of the system subject to aging phenomena, then the use of a stochastic hybrid approach for the reliability modeling of the system can lead to a closer representation of the reality. This latter approach is applied to the evaluation of the costs associated with the preventive maintenance of the bearings of a centrifugal pump used in petroleum processes. The evaluation is obtained by means of the Monte Carlo simulation methodology. |
---|---|
AbstractList | Also the maintenance world is heading towards the era of artificial intelligence applied to the evaluation of the residual life of devices and predictive maintenance. On the other hand, when the operating conditions can change significantly and randomly, influencing the performance of the system subject to aging phenomena, then the use of a stochastic hybrid approach for the reliability modeling of the system can lead to a closer representation of the reality. This latter approach is applied to the evaluation of the costs associated with the preventive maintenance of the bearings of a centrifugal pump used in petroleum processes. The evaluation is obtained by means of the Monte Carlo simulation methodology. |
Author | Chiacchio, F. Compagno, L. D’Urso, D. Sinatra, A. |
Author_xml | – sequence: 1 givenname: D. surname: D’Urso fullname: D’Urso, D. email: author@institute.xxx organization: University of Catania, Department of Electrical Electronic and Computer Engineering – sequence: 2 givenname: A. surname: Sinatra fullname: Sinatra, A. organization: University of Catania, Department of Electrical Electronic and Computer Engineering – sequence: 3 givenname: L. surname: Compagno fullname: Compagno, L. organization: University of Catania, Department of Electrical Electronic and Computer Engineering – sequence: 4 givenname: F. surname: Chiacchio fullname: Chiacchio, F. organization: University of Catania, Department of Electrical Electronic and Computer Engineering |
BookMark | eNqFkM1OwzAMgCM0JMbYE3DJC6w46dqkBw7TxJ80iQscOEVp6rJMbVMlYdLenoxxQBzAF1u2Psv-LslkcAMScs0gY8DKm102emdCxoHzDFiWl-KMTJkUYgEFVJMf9QWZh7CDFLmUFRNT8rYKAUPocYjUtTRukbox2l53dPS4T227R9prO0Qc9GCQjuita-hHsMM7DdGZrQ7RGro91N42tHcNdl2aXZHzVncB5995Rl7v717Wj4vN88PTerVZGC5kXOhSgERYFiVCo9tKFqLNa47QCl7WJS6N0bLUBrTgGlC2suAMlqbGvEgv6XxG8tNe410IHls1-nS_PygG6ihI7dSXIHUUpICpJChR1S_K2KijdUP02nb_sLcnFtNbe4teBWMxuWmsRxNV4-yf_CeJIodM |
CitedBy_id | crossref_primary_10_3390_systems10050175 crossref_primary_10_3390_app15073603 crossref_primary_10_1016_j_smse_2024_100021 crossref_primary_10_1016_j_enbuild_2022_112492 crossref_primary_10_3390_pr10122550 |
Cites_doi | 10.1016/j.procs.2021.01.262 10.1115/DETC2014-34326 10.1016/j.ress.2020.106904 10.1080/07408170208928880 10.3390/app11052300 10.1108/JQME-02-2017-0008 10.1016/j.anucene.2019.107139 10.1080/24725854.2018.1437301 10.1080/03610918.2016.1183781 10.1109/ACCESS.2021.3067478 10.1016/j.cie.2019.106024 10.1016/j.ress.2018.03.022 10.1016/j.ress.2016.11.011 10.1177/1748006X14533958 10.1016/j.energy.2018.03.101 10.3390/info10090283 10.1016/j.eswa.2015.10.046 10.1016/j.jsp.2009.10.001 10.1016/j.renene.2020.06.142 10.1016/S1474-6670(17)32784-2 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2022.01.367 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 1673 |
ExternalDocumentID | 10_1016_j_procs_2022_01_367 S1877050922003763 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c278t-a6708e0456e0daf9857f3b2e0f726b6e4cca86ac0a72a0e8f852104cbe35050a3 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Tue Jul 01 01:53:12 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Tue May 16 22:18:50 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Preventive Maintenance Bearings Monte Carlo Simulation Stochastic Hybrid Automation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c278t-a6708e0456e0daf9857f3b2e0f726b6e4cca86ac0a72a0e8f852104cbe35050a3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050922003763 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2022_01_367 crossref_citationtrail_10_1016_j_procs_2022_01_367 elsevier_sciencedirect_doi_10_1016_j_procs_2022_01_367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tzvetkova, S., & Klaassens, B. (2001). Preventive maintenance for industrial application. IFAC Proceedings Volumes, 34(29), 3-8. D’Urso, Chiacchio, Borrometi, Costa, Compagno (bib0003) 2021; 180 Wang, Z., Zhang, X., Huang, H. Z., & Mourelatos, Z. P. (2014). A Simulation Method to Estimate the Time-Varying Failure Rate of Dynamic Systems. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 46322). American Society of Mechanical Engineers. Leylek, Z. (1997). Development of a Computer Code for Estimating Composites Life using the Palmgreen/Miner-Rule. Peng, Wang, Zi, Tsui, Zhang (bib0008) 2017; 159 Codetta-Raiteri, D., & Portinale, L. (2014). Approaching dynamic reliability with predictive and diagnostic purposes by exploiting dynamic Bayesian networks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 228(5), 488-503. Zhao, Yang, Qin (bib00019) 2021; 9 Tripathi, Singh, Singh (bib0005) 2020; 140 Carvalho, Soares, Vita, Francisco, Basto, Alcalá (bib0001) 2019; 137 Chiacchio, D’Urso, Famoso, Brusca, Aizpurua, Catterson (bib0006) 2018; 151 Chiacchio, Aizpurua, Compagno, Khodayee, D’Urso (bib00011) 2019; 10 SKF handbook, Rolling Bearings (2018). SFK Group. Baraldi, Enders (bib0007) 2010; 48 Arena, Roda, Chiacchio (bib0002) 2021; 11 Iravani, Duenyas (bib00016) 2002; 34 Chiacchio, Iacono, Compagno, D’Urso (bib00022) 2020; 199 Ewing, Thies, Shek, Ferreira (bib00013) 2020; 160 Fallahnezhad, Najafian (bib00018) 2017; 46 Chiacchio, Aizpurua, Compagno, D’Urso (bib00010) 2016; 47 Arts, Basten (bib00015) 2018; 50 Kim, Kim, Heo (bib00012) 2018; 175 Shagluf, Parkinson, Longstaff, Fletcher (bib00017) 2018 Fallahnezhad (10.1016/j.procs.2022.01.367_bib00018) 2017; 46 Ewing (10.1016/j.procs.2022.01.367_bib00013) 2020; 160 Carvalho (10.1016/j.procs.2022.01.367_bib0001) 2019; 137 Iravani (10.1016/j.procs.2022.01.367_bib00016) 2002; 34 Arts (10.1016/j.procs.2022.01.367_bib00015) 2018; 50 10.1016/j.procs.2022.01.367_bib00020 Chiacchio (10.1016/j.procs.2022.01.367_bib00010) 2016; 47 10.1016/j.procs.2022.01.367_bib00021 Kim (10.1016/j.procs.2022.01.367_bib00012) 2018; 175 D’Urso (10.1016/j.procs.2022.01.367_bib0003) 2021; 180 Shagluf (10.1016/j.procs.2022.01.367_bib00017) 2018 Chiacchio (10.1016/j.procs.2022.01.367_bib00022) 2020; 199 10.1016/j.procs.2022.01.367_bib0009 Baraldi (10.1016/j.procs.2022.01.367_bib0007) 2010; 48 Zhao (10.1016/j.procs.2022.01.367_bib00019) 2021; 9 10.1016/j.procs.2022.01.367_bib00014 10.1016/j.procs.2022.01.367_bib0004 Tripathi (10.1016/j.procs.2022.01.367_bib0005) 2020; 140 Arena (10.1016/j.procs.2022.01.367_bib0002) 2021; 11 Chiacchio (10.1016/j.procs.2022.01.367_bib00011) 2019; 10 Chiacchio (10.1016/j.procs.2022.01.367_bib0006) 2018; 151 Peng (10.1016/j.procs.2022.01.367_bib0008) 2017; 159 |
References_xml | – volume: 175 start-page: 225 year: 2018 end-page: 233 ident: bib00012 article-title: Failure rate updates using condition-based prognostics in probabilistic safety assessments publication-title: Reliability Engineering & System Safety – reference: Leylek, Z. (1997). Development of a Computer Code for Estimating Composites Life using the Palmgreen/Miner-Rule. – volume: 50 start-page: 606 year: 2018 end-page: 615 ident: bib00015 article-title: Design of multi-component periodic maintenance programs with single-component models publication-title: IISE transactions – volume: 11 start-page: 2300 year: 2021 ident: bib0002 article-title: Integrating Modelling of Maintenance Policies within a Stochastic Hybrid Automaton Framework of Dynamic Reliability publication-title: Applied Sciences – volume: 180 start-page: 456 year: 2021 end-page: 465 ident: bib0003 article-title: Dynamic failure rate model of an electric motor comparing the Military Standard and Svenska Kullagerfabriken (SKF) methods publication-title: Procedia Computer Science – volume: 151 start-page: 605 year: 2018 end-page: 621 ident: bib0006 article-title: On the use of dynamic reliability for an accurate modelling of renewable power plants publication-title: Energy – volume: 47 year: 2016 ident: bib00010 article-title: SHyFTOO, an object-oriented Monte Carlo simulation library for the modelling of Stochastic Hybrid Fault Tree Automaton publication-title: Expert Systems with Applications – reference: SKF handbook, Rolling Bearings (2018). SFK Group. – volume: 140 start-page: 107139 year: 2020 ident: bib0005 article-title: Dynamic reliability analysis framework for passive safety systems of Nuclear Power Plant publication-title: Annals of Nuclear Energy – volume: 199 start-page: 106904 year: 2020 ident: bib00022 article-title: A general framework for dependability modelling coupling discrete-event and time-driven simulation publication-title: Reliability Engineering & System Safety – reference: Codetta-Raiteri, D., & Portinale, L. (2014). Approaching dynamic reliability with predictive and diagnostic purposes by exploiting dynamic Bayesian networks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 228(5), 488-503. – volume: 34 start-page: 423 year: 2002 end-page: 435 ident: bib00016 article-title: Integrated maintenance and production control of a deteriorating production system publication-title: Iie Transactions – volume: 160 start-page: 987 year: 2020 end-page: 997 ident: bib00013 article-title: Probabilistic failure rate model of a tidal turbine pitch system publication-title: Renewable Energy – volume: 46 start-page: 5846 year: 2017 end-page: 5859 ident: bib00018 article-title: A model of preventive maintenance for parallel, series, and single-item replacement systems based on statistical analysis publication-title: Communications in Statistics-Simulation and Computation – reference: Tzvetkova, S., & Klaassens, B. (2001). Preventive maintenance for industrial application. IFAC Proceedings Volumes, 34(29), 3-8. – year: 2018 ident: bib00017 article-title: Adaptive decision support for suggesting a machine tool maintenance strategy: from reactive to preventative publication-title: Journal of Quality in Maintenance Engineering – volume: 159 start-page: 301 year: 2017 end-page: 309 ident: bib0008 article-title: Dynamic reliability assessment and prediction for repairable systems with interval-censored data publication-title: Reliability Engineering & System Safety – volume: 9 start-page: 45968 year: 2021 end-page: 45977 ident: bib00019 article-title: Optimal Condition-Based Maintenance Strategy via an Availability-Cost Hybrid Factor for a Single-Unit System During a Two-Stage Failure Process publication-title: IEEE Access – volume: 137 start-page: 106024 year: 2019 ident: bib0001 article-title: A systematic literature review of machine learning methods applied to predictive maintenance publication-title: Computers & Industrial Engineering – volume: 48 start-page: 5 year: 2010 end-page: 37 ident: bib0007 article-title: An introduction to modern missing data analyses publication-title: J Sch Psychol – volume: 10 start-page: 283 year: 2019 ident: bib00011 article-title: Modelling and Resolution of Dynamic Reliability Problems by the Coupling of Simulink and the Stochastic Hybrid Fault Tree Object Oriented (SHyFTOO) Library publication-title: Information – reference: Wang, Z., Zhang, X., Huang, H. Z., & Mourelatos, Z. P. (2014). A Simulation Method to Estimate the Time-Varying Failure Rate of Dynamic Systems. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 46322). American Society of Mechanical Engineers. – volume: 180 start-page: 456 year: 2021 ident: 10.1016/j.procs.2022.01.367_bib0003 article-title: Dynamic failure rate model of an electric motor comparing the Military Standard and Svenska Kullagerfabriken (SKF) methods publication-title: Procedia Computer Science doi: 10.1016/j.procs.2021.01.262 – ident: 10.1016/j.procs.2022.01.367_bib00014 doi: 10.1115/DETC2014-34326 – volume: 199 start-page: 106904 year: 2020 ident: 10.1016/j.procs.2022.01.367_bib00022 article-title: A general framework for dependability modelling coupling discrete-event and time-driven simulation publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.106904 – volume: 34 start-page: 423 issue: 5 year: 2002 ident: 10.1016/j.procs.2022.01.367_bib00016 article-title: Integrated maintenance and production control of a deteriorating production system publication-title: Iie Transactions doi: 10.1080/07408170208928880 – volume: 11 start-page: 2300 issue: 5 year: 2021 ident: 10.1016/j.procs.2022.01.367_bib0002 article-title: Integrating Modelling of Maintenance Policies within a Stochastic Hybrid Automaton Framework of Dynamic Reliability publication-title: Applied Sciences doi: 10.3390/app11052300 – ident: 10.1016/j.procs.2022.01.367_bib0004 – year: 2018 ident: 10.1016/j.procs.2022.01.367_bib00017 article-title: Adaptive decision support for suggesting a machine tool maintenance strategy: from reactive to preventative publication-title: Journal of Quality in Maintenance Engineering doi: 10.1108/JQME-02-2017-0008 – volume: 140 start-page: 107139 year: 2020 ident: 10.1016/j.procs.2022.01.367_bib0005 article-title: Dynamic reliability analysis framework for passive safety systems of Nuclear Power Plant publication-title: Annals of Nuclear Energy doi: 10.1016/j.anucene.2019.107139 – volume: 50 start-page: 606 issue: 7 year: 2018 ident: 10.1016/j.procs.2022.01.367_bib00015 article-title: Design of multi-component periodic maintenance programs with single-component models publication-title: IISE transactions doi: 10.1080/24725854.2018.1437301 – ident: 10.1016/j.procs.2022.01.367_bib00021 – volume: 46 start-page: 5846 issue: 7 year: 2017 ident: 10.1016/j.procs.2022.01.367_bib00018 article-title: A model of preventive maintenance for parallel, series, and single-item replacement systems based on statistical analysis publication-title: Communications in Statistics-Simulation and Computation doi: 10.1080/03610918.2016.1183781 – volume: 9 start-page: 45968 year: 2021 ident: 10.1016/j.procs.2022.01.367_bib00019 article-title: Optimal Condition-Based Maintenance Strategy via an Availability-Cost Hybrid Factor for a Single-Unit System During a Two-Stage Failure Process publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3067478 – volume: 137 start-page: 106024 year: 2019 ident: 10.1016/j.procs.2022.01.367_bib0001 article-title: A systematic literature review of machine learning methods applied to predictive maintenance publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.106024 – volume: 175 start-page: 225 year: 2018 ident: 10.1016/j.procs.2022.01.367_bib00012 article-title: Failure rate updates using condition-based prognostics in probabilistic safety assessments publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2018.03.022 – volume: 159 start-page: 301 year: 2017 ident: 10.1016/j.procs.2022.01.367_bib0008 article-title: Dynamic reliability assessment and prediction for repairable systems with interval-censored data publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2016.11.011 – ident: 10.1016/j.procs.2022.01.367_bib0009 doi: 10.1177/1748006X14533958 – volume: 151 start-page: 605 year: 2018 ident: 10.1016/j.procs.2022.01.367_bib0006 article-title: On the use of dynamic reliability for an accurate modelling of renewable power plants publication-title: Energy doi: 10.1016/j.energy.2018.03.101 – volume: 10 start-page: 283 issue: 9 year: 2019 ident: 10.1016/j.procs.2022.01.367_bib00011 article-title: Modelling and Resolution of Dynamic Reliability Problems by the Coupling of Simulink and the Stochastic Hybrid Fault Tree Object Oriented (SHyFTOO) Library publication-title: Information doi: 10.3390/info10090283 – volume: 47 year: 2016 ident: 10.1016/j.procs.2022.01.367_bib00010 article-title: SHyFTOO, an object-oriented Monte Carlo simulation library for the modelling of Stochastic Hybrid Fault Tree Automaton publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.046 – volume: 48 start-page: 5 issue: 1 year: 2010 ident: 10.1016/j.procs.2022.01.367_bib0007 article-title: An introduction to modern missing data analyses publication-title: J Sch Psychol doi: 10.1016/j.jsp.2009.10.001 – volume: 160 start-page: 987 year: 2020 ident: 10.1016/j.procs.2022.01.367_bib00013 article-title: Probabilistic failure rate model of a tidal turbine pitch system publication-title: Renewable Energy doi: 10.1016/j.renene.2020.06.142 – ident: 10.1016/j.procs.2022.01.367_bib00020 doi: 10.1016/S1474-6670(17)32784-2 |
SSID | ssj0000388917 |
Score | 2.2684577 |
Snippet | Also the maintenance world is heading towards the era of artificial intelligence applied to the evaluation of the residual life of devices and predictive... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1664 |
SubjectTerms | Bearings Monte Carlo Simulation Preventive Maintenance Stochastic Hybrid Automation |
Title | Assessment of the optimal preventive maintenance period using stochastic hybrid modelling |
URI | https://dx.doi.org/10.1016/j.procs.2022.01.367 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHjwautm8NsdaLMWiB7VYT8tuMrEV-0Cq4L93ZpMUBenBY0IGwuzuNx_LzPcxdgHC5r5KjRcjRHqhLTLPYtXxTAipD4VJwA2J3d7F_WF4M4pGDdatZ2GorbLC_hLTHVpXb9pVNtuLyaT94KskIfUSSf1VeEwQh2mqlIb4RlerexZSO0md8S5971FALT7k2ryoTpBst5Qk3xk4v_k_CtSPotPbYVsVW-Sd8od2WQNme2y7dmLg1cHcZ8-dlcAmnxccSR2fIxZMMXZRaTR9Ap8aEocghQ3gJHA8zzm1vb9wJIDZ2JBiMx9_0QgXdwY5NKl-wIa968du36tME7xMJmrpmTgRCoiogchNkaooKQIrQRSJjG0MIS6Zik0mTCKNAFUoLOAizCwESIaECQ5ZczafwRHjxkCEmQ0gIpvcHIlBGpsC11xKi7QgOmayzpTOKkVxMrZ403Xr2Kt26dWUXi18jek9ZperoEUpqLH-87heAv1rX2iE_HWBJ_8NPGWb9FRes5yx5vL9A86ReCxti210BvdPg5bbYd9a1Nn2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPejFt1ife_Bo6Gbz2ORYi6XVthdbqKdlk0xsxTZFquC_dyaPoiAevCYZCDOzMx_LzPcxdg0iSuwgNJaPJdJyozS2Iuw6lnEhtCE1CvIlscHQ747d-4k3qbF2tQtDY5Vl7S9qel6tyyfN0pvN5WzWfLQDpYi9RNJ8FR6TDbaJaEBQavcmt-uLFqI7CXPlXTKwyKJiH8rnvKhREG-3lMTf6eSC8790qG9dp7PHdkq4yFvFH-2zGiwO2G4lxcDLk3nInlprhk2epRxRHc-wGMzRdlmSNH0AnxtihyCKDeDEcJwlnObenzkiwHhqiLKZTz9ph4vnCjm0qn7Exp27UbtrlaoJVixVsLKMr0QAhNRAJCYNA0-lTiRBpEr6kQ8uxizwTSyMkkZAkAbYwYUbR-AgGhLGOWb1RbaAE8aNAQ9d64BHOrkJIoPQNykGXcoIcYHXYLLylI5LSnFStnjV1ezYi87dq8m9Wtga3dtgN2ujZcGo8ffnfhUC_SMxNNb8vwxP_2t4xba6o0Ff93vDhzO2TW-KO5dzVl-9vcMFopBVdJln2ReEutt2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+optimal+preventive+maintenance+period+using+stochastic+hybrid+modelling&rft.jtitle=Procedia+computer+science&rft.au=D%E2%80%99Urso%2C+D.&rft.au=Sinatra%2C+A.&rft.au=Compagno%2C+L.&rft.au=Chiacchio%2C+F.&rft.date=2022&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=200&rft.spage=1664&rft.epage=1673&rft_id=info:doi/10.1016%2Fj.procs.2022.01.367&rft.externalDocID=S1877050922003763 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |