Improved Monte Carlo Localization for Agricultural Mobile Robots with the Normal Distributions Transform

Localization is crucial for robots to navigate autonomously in agricultural environments. This paper introduces an improved Adaptive Monte Carlo Localization (AMCL) algorithm integrated with the Normal Distributions Transform (NDT) to address the challenges of navigation in agricultural fields. 2D L...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 16; no. 3
Main Authors Hong, Brian Lai Lap, Izhar, Mohd Azri Bin Mohd, Ahmad, Norulhusna Binti
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2025
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
DOI10.14569/IJACSA.2025.01603100

Cover

Abstract Localization is crucial for robots to navigate autonomously in agricultural environments. This paper introduces an improved Adaptive Monte Carlo Localization (AMCL) algorithm integrated with the Normal Distributions Transform (NDT) to address the challenges of navigation in agricultural fields. 2D Light Detection and Ranging (LiDAR) measures distances to surrounding objects using laser light, and captures distance data in a single horizontal plane, making it ideal for detecting obstacles and field features such as trees and crop rows. While conventional AMCL has been studied for indoor environments, there is a lack of research on its application in outdoor agricultural settings, particularly when using 2D LiDAR. The proposed method enhances localization accuracy by applying the NDT after the conventional AMCL estimation, refining the pose estimate through a more detailed alignment of the 2D LiDAR data with the map. Simulations conducted in a palm oil plantation environment demonstrate a 53% reduction in absolute pose error and a 50%reduction in relative position error compared to conventional AMCL. This highlights the potential of the AMCL-NDT approach with 2D LiDAR for cost-effective and scalable deployment in precision agriculture.
AbstractList Localization is crucial for robots to navigate autonomously in agricultural environments. This paper introduces an improved Adaptive Monte Carlo Localization (AMCL) algorithm integrated with the Normal Distributions Transform (NDT) to address the challenges of navigation in agricultural fields. 2D Light Detection and Ranging (LiDAR) measures distances to surrounding objects using laser light, and captures distance data in a single horizontal plane, making it ideal for detecting obstacles and field features such as trees and crop rows. While conventional AMCL has been studied for indoor environments, there is a lack of research on its application in outdoor agricultural settings, particularly when using 2D LiDAR. The proposed method enhances localization accuracy by applying the NDT after the conventional AMCL estimation, refining the pose estimate through a more detailed alignment of the 2D LiDAR data with the map. Simulations conducted in a palm oil plantation environment demonstrate a 53% reduction in absolute pose error and a 50%reduction in relative position error compared to conventional AMCL. This highlights the potential of the AMCL-NDT approach with 2D LiDAR for cost-effective and scalable deployment in precision agriculture.
Author Ahmad, Norulhusna Binti
Izhar, Mohd Azri Bin Mohd
Hong, Brian Lai Lap
Author_xml – sequence: 1
  givenname: Brian Lai Lap
  surname: Hong
  fullname: Hong, Brian Lai Lap
– sequence: 2
  givenname: Mohd Azri Bin Mohd
  surname: Izhar
  fullname: Izhar, Mohd Azri Bin Mohd
– sequence: 3
  givenname: Norulhusna Binti
  surname: Ahmad
  fullname: Ahmad, Norulhusna Binti
BookMark eNo1kF1LwzAUhoNMcM79BCHgdWc-lqS9LPVrMhV0gnchbVOX0TYzSRX99Wabnptz4LzvezjPKRj1ttcAnGM0w3PGs8vFfV685DOCCJshzBHFCB2BMcGMJ4wJNNrPaYKReDsBU-83KBbNCE_pGKwX3dbZT13DB9sHDQvlWguXtlKt-VHB2B421sH83ZlqaMPgVBuVpWk1fLalDR5-mbCGYa3ho3Vd3F4ZH5wph53Xw5VTvY8J3Rk4blTr9fSvT8DrzfWquEuWT7eLIl8mFRFpSFJaY0UaTDnjqOZNsxsRY3VdI43IvOKq5JyqCok61UykJdeYCyxEQwnNMjoBF4fc-NbHoH2QGzu4Pp6UFGeERgvlUcUOqspZ751u5NaZTrlviZHcc5UHrnLHVf5zpb84hW3b
ContentType Journal Article
Copyright 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2025.01603100
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Agriculture
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2025_01603100
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c278t-83d1a2f136560d6fff136055ddd0e024c6ab663ac07d8e578b6e167177f323993
IEDL.DBID 8FG
ISSN 2158-107X
IngestDate Fri Jul 25 20:16:16 EDT 2025
Tue Jul 01 05:10:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-83d1a2f136560d6fff136055ddd0e024c6ab663ac07d8e578b6e167177f323993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3192357836?pq-origsite=%requestingapplication%
PQID 3192357836
PQPubID 5444811
ParticipantIDs proquest_journals_3192357836
crossref_primary_10_14569_IJACSA_2025_01603100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2025
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2822123
Snippet Localization is crucial for robots to navigate autonomously in agricultural environments. This paper introduces an improved Adaptive Monte Carlo Localization...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Accuracy
Agriculture
Algorithms
Autonomous navigation
Computer science
Indoor environments
Lidar
Localization
Obstacle avoidance
Palm oil
Position errors
Robotics
Robots
Sensors
Title Improved Monte Carlo Localization for Agricultural Mobile Robots with the Normal Distributions Transform
URI https://www.proquest.com/docview/3192357836
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: ADMLS
  dateStart: 20231101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEN0oXPTgB2pEkezBa2X73Z5MRRCJEIOQcGu6H9UDoUjr_3em3YpevDVpsk3e7s57-7ozQ8gtUF7qJ5ZvsMRJDScUiRGEQhjAbaEteCptjj7kZOqNFs546S614Zbra5V1TCwDtcwEeuQ9G6WIizkH95tPA7tG4d9V3UJjnzRNC1YSZooPn348Fgbk75WVOIHYsIqpv9RJPCAbwt7zOOq_RXBGtLB0J7Zbxjy33_T0NzqXlDM8IUdaK9KomtxTsqfWLXIYvW91vQzVIsd1VwaqN-kZ-ah8AiXpBCtP0X6yXWX0BTlL51xSEKp0Nwx8YpJxiA50lvGsyCl6sxSEIZ2ioF3RRyyuq_ti5XReS91zshgO5v2RofspGMLyg8IIbGkmVooX2zwmvTTFR-a6UkqmgKuFl3AQIIlgvgwUYM09ZXpw3vNTG1Ng7QvSWGdrdUlowJTLEtNVluCO9O3A4WbALdQ7AhQMb5O7GsZ4U5XNiPG4gbjHFe4x4h7XuLdJpwY71rsoj3dzfvX_62tygKNV1kiHNIrtl7oBsVDwbrkiuqT5MJi-zr4BuOe9Zg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSDbyOKugc9VtpuXxyMISiCPA6KCbfafVQPhCJgjH_K3-gMbUUv3rg1abKbTGfn-2a68w3AOUJe7Ee2b5iRExtOVUZGUJXSQGyrcilixQXVIbs9r_nk3A_cQQG-8l4YulaZx8R5oFaJpBp5hRMVcann4Hr8ZtDUKPq7mo_QSN2irT8_MGWbXrVu8Pte2Hbjtl9vGtlUAUPafjAzAq6syI7pepdnKi-O6dF0XaWUqRGxpBcJhOFImr4KNO4oPG15mPX4MadGUI7rrsCqwzknrf6gcfdT0zGRbHhz5U8EUlJN9QdZ0xDSlGqldV-rP9YwJ7VJKpTGO1Nf3W84_IsGc4hrbMNmxk1ZLXWmHSjo0S5s1F4mmT6H3oWtfAoEy4LCHrymdQmtWJeUrlg9mgwT1iGMzHo8GRJjtlgGt-gmAqMRe0hEMpsyqgUzJKKsRwR6yG5IzDebwzVl_Zxa78PTUix9AMVRMtKHwAJTu2ZkudqWwlE-DxxhBcImfiWRMYkSXOZmDMepTEdI6Q3ZPUztHpLdw9zuJSjnxg6zUzsNFz529P_rM1hr9rudsNPqtY9hnVZOyzJlKM4m7_oEicpMnM69g8Hzst3xG8U692Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Monte+Carlo+Localization+for+Agricultural+Mobile+Robots+with+the+Normal+Distributions+Transform&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Hong%2C+Brian+Lai+Lap&rft.au=Izhar%2C+Mohd+Azri+Bin+Mohd&rft.au=Ahmad%2C+Norulhusna+Binti&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=3&rft_id=info:doi/10.14569%2FIJACSA.2025.01603100&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_01603100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon