Improved Monte Carlo Localization for Agricultural Mobile Robots with the Normal Distributions Transform
Localization is crucial for robots to navigate autonomously in agricultural environments. This paper introduces an improved Adaptive Monte Carlo Localization (AMCL) algorithm integrated with the Normal Distributions Transform (NDT) to address the challenges of navigation in agricultural fields. 2D L...
Saved in:
Published in | International journal of advanced computer science & applications Vol. 16; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
West Yorkshire
Science and Information (SAI) Organization Limited
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2158-107X 2156-5570 |
DOI | 10.14569/IJACSA.2025.01603100 |
Cover
Abstract | Localization is crucial for robots to navigate autonomously in agricultural environments. This paper introduces an improved Adaptive Monte Carlo Localization (AMCL) algorithm integrated with the Normal Distributions Transform (NDT) to address the challenges of navigation in agricultural fields. 2D Light Detection and Ranging (LiDAR) measures distances to surrounding objects using laser light, and captures distance data in a single horizontal plane, making it ideal for detecting obstacles and field features such as trees and crop rows. While conventional AMCL has been studied for indoor environments, there is a lack of research on its application in outdoor agricultural settings, particularly when using 2D LiDAR. The proposed method enhances localization accuracy by applying the NDT after the conventional AMCL estimation, refining the pose estimate through a more detailed alignment of the 2D LiDAR data with the map. Simulations conducted in a palm oil plantation environment demonstrate a 53% reduction in absolute pose error and a 50%reduction in relative position error compared to conventional AMCL. This highlights the potential of the AMCL-NDT approach with 2D LiDAR for cost-effective and scalable deployment in precision agriculture. |
---|---|
AbstractList | Localization is crucial for robots to navigate autonomously in agricultural environments. This paper introduces an improved Adaptive Monte Carlo Localization (AMCL) algorithm integrated with the Normal Distributions Transform (NDT) to address the challenges of navigation in agricultural fields. 2D Light Detection and Ranging (LiDAR) measures distances to surrounding objects using laser light, and captures distance data in a single horizontal plane, making it ideal for detecting obstacles and field features such as trees and crop rows. While conventional AMCL has been studied for indoor environments, there is a lack of research on its application in outdoor agricultural settings, particularly when using 2D LiDAR. The proposed method enhances localization accuracy by applying the NDT after the conventional AMCL estimation, refining the pose estimate through a more detailed alignment of the 2D LiDAR data with the map. Simulations conducted in a palm oil plantation environment demonstrate a 53% reduction in absolute pose error and a 50%reduction in relative position error compared to conventional AMCL. This highlights the potential of the AMCL-NDT approach with 2D LiDAR for cost-effective and scalable deployment in precision agriculture. |
Author | Ahmad, Norulhusna Binti Izhar, Mohd Azri Bin Mohd Hong, Brian Lai Lap |
Author_xml | – sequence: 1 givenname: Brian Lai Lap surname: Hong fullname: Hong, Brian Lai Lap – sequence: 2 givenname: Mohd Azri Bin Mohd surname: Izhar fullname: Izhar, Mohd Azri Bin Mohd – sequence: 3 givenname: Norulhusna Binti surname: Ahmad fullname: Ahmad, Norulhusna Binti |
BookMark | eNo1kF1LwzAUhoNMcM79BCHgdWc-lqS9LPVrMhV0gnchbVOX0TYzSRX99Wabnptz4LzvezjPKRj1ttcAnGM0w3PGs8vFfV685DOCCJshzBHFCB2BMcGMJ4wJNNrPaYKReDsBU-83KBbNCE_pGKwX3dbZT13DB9sHDQvlWguXtlKt-VHB2B421sH83ZlqaMPgVBuVpWk1fLalDR5-mbCGYa3ho3Vd3F4ZH5wph53Xw5VTvY8J3Rk4blTr9fSvT8DrzfWquEuWT7eLIl8mFRFpSFJaY0UaTDnjqOZNsxsRY3VdI43IvOKq5JyqCok61UykJdeYCyxEQwnNMjoBF4fc-NbHoH2QGzu4Pp6UFGeERgvlUcUOqspZ751u5NaZTrlviZHcc5UHrnLHVf5zpb84hW3b |
ContentType | Journal Article |
Copyright | 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.14569/IJACSA.2025.01603100 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Agriculture |
EISSN | 2156-5570 |
ExternalDocumentID | 10_14569_IJACSA_2025_01603100 |
GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c278t-83d1a2f136560d6fff136055ddd0e024c6ab663ac07d8e578b6e167177f323993 |
IEDL.DBID | 8FG |
ISSN | 2158-107X |
IngestDate | Fri Jul 25 20:16:16 EDT 2025 Tue Jul 01 05:10:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c278t-83d1a2f136560d6fff136055ddd0e024c6ab663ac07d8e578b6e167177f323993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3192357836?pq-origsite=%requestingapplication% |
PQID | 3192357836 |
PQPubID | 5444811 |
ParticipantIDs | proquest_journals_3192357836 crossref_primary_10_14569_IJACSA_2025_01603100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | West Yorkshire |
PublicationPlace_xml | – name: West Yorkshire |
PublicationTitle | International journal of advanced computer science & applications |
PublicationYear | 2025 |
Publisher | Science and Information (SAI) Organization Limited |
Publisher_xml | – name: Science and Information (SAI) Organization Limited |
SSID | ssj0000392683 |
Score | 2.2822123 |
Snippet | Localization is crucial for robots to navigate autonomously in agricultural environments. This paper introduces an improved Adaptive Monte Carlo Localization... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Accuracy Agriculture Algorithms Autonomous navigation Computer science Indoor environments Lidar Localization Obstacle avoidance Palm oil Position errors Robotics Robots Sensors |
Title | Improved Monte Carlo Localization for Agricultural Mobile Robots with the Normal Distributions Transform |
URI | https://www.proquest.com/docview/3192357836 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: ADMLS dateStart: 20231101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEN0oXPTgB2pEkezBa2X73Z5MRRCJEIOQcGu6H9UDoUjr_3em3YpevDVpsk3e7s57-7ozQ8gtUF7qJ5ZvsMRJDScUiRGEQhjAbaEteCptjj7kZOqNFs546S614Zbra5V1TCwDtcwEeuQ9G6WIizkH95tPA7tG4d9V3UJjnzRNC1YSZooPn348Fgbk75WVOIHYsIqpv9RJPCAbwt7zOOq_RXBGtLB0J7Zbxjy33_T0NzqXlDM8IUdaK9KomtxTsqfWLXIYvW91vQzVIsd1VwaqN-kZ-ah8AiXpBCtP0X6yXWX0BTlL51xSEKp0Nwx8YpJxiA50lvGsyCl6sxSEIZ2ioF3RRyyuq_ti5XReS91zshgO5v2RofspGMLyg8IIbGkmVooX2zwmvTTFR-a6UkqmgKuFl3AQIIlgvgwUYM09ZXpw3vNTG1Ng7QvSWGdrdUlowJTLEtNVluCO9O3A4WbALdQ7AhQMb5O7GsZ4U5XNiPG4gbjHFe4x4h7XuLdJpwY71rsoj3dzfvX_62tygKNV1kiHNIrtl7oBsVDwbrkiuqT5MJi-zr4BuOe9Zg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSDbyOKugc9VtpuXxyMISiCPA6KCbfafVQPhCJgjH_K3-gMbUUv3rg1abKbTGfn-2a68w3AOUJe7Ee2b5iRExtOVUZGUJXSQGyrcilixQXVIbs9r_nk3A_cQQG-8l4YulaZx8R5oFaJpBp5hRMVcann4Hr8ZtDUKPq7mo_QSN2irT8_MGWbXrVu8Pte2Hbjtl9vGtlUAUPafjAzAq6syI7pepdnKi-O6dF0XaWUqRGxpBcJhOFImr4KNO4oPG15mPX4MadGUI7rrsCqwzknrf6gcfdT0zGRbHhz5U8EUlJN9QdZ0xDSlGqldV-rP9YwJ7VJKpTGO1Nf3W84_IsGc4hrbMNmxk1ZLXWmHSjo0S5s1F4mmT6H3oWtfAoEy4LCHrymdQmtWJeUrlg9mgwT1iGMzHo8GRJjtlgGt-gmAqMRe0hEMpsyqgUzJKKsRwR6yG5IzDebwzVl_Zxa78PTUix9AMVRMtKHwAJTu2ZkudqWwlE-DxxhBcImfiWRMYkSXOZmDMepTEdI6Q3ZPUztHpLdw9zuJSjnxg6zUzsNFz529P_rM1hr9rudsNPqtY9hnVZOyzJlKM4m7_oEicpMnM69g8Hzst3xG8U692Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Monte+Carlo+Localization+for+Agricultural+Mobile+Robots+with+the+Normal+Distributions+Transform&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Hong%2C+Brian+Lai+Lap&rft.au=Izhar%2C+Mohd+Azri+Bin+Mohd&rft.au=Ahmad%2C+Norulhusna+Binti&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=3&rft_id=info:doi/10.14569%2FIJACSA.2025.01603100&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_01603100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |