The evolution of planetary nebulae IV. On the physics of the luminosity function
Context. The luminosity function of planetary nebulae, in use for about two decades in extragalactic distance determinations, is still subject to controversial interpretations. Aims. The physical basis of the luminosity function is investigated by means of several evolutionary sequences of model pla...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 473; no. 2; pp. 467 - 484 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2007
|
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361:20077437 |
Cover
Abstract | Context. The luminosity function of planetary nebulae, in use for about two decades in extragalactic distance determinations, is still subject to controversial interpretations. Aims. The physical basis of the luminosity function is investigated by means of several evolutionary sequences of model planetary nebulae computed with a 1D radiation- hydrodynamics code. Methods. The nebular evolution is followed from the vicinity of the asymptotic-giant branch across the Hertzsprung-Russell diagram until the white-dwarf domain is reached, using various central-star models coupled to different initial envelope configurations. Along each sequence the relevant line emissions of the nebulae are computed and analysed. Results. Maximum line luminosities in H\beta and [O III] 5007 Aa are achieved at stellar effective temperatures of about 65 000 K and 95 000...100 000 K, respectively, provided the nebula remains optically thick for ionising photons. In the optically thin case, the maximum line emission occurs at or shortly after the thick/thin transition. Our models suggest that most planetary nebulae with hotter (\ga 45 000 K) central stars are optically thin in the Lyman continuum, and that their [O III] 5007 Aa emission fails to explain the bright end of the observed planetary nebulae luminosity function. However, sequences with central stars of \ga 0.6 M_{\odot} and rather dense initial envelopes remain virtually optically thick and are able to populate the bright end of the luminosity function. Individual luminosity functions depend strongly on the central-star mass and on the variation of the nebular optical depth with time. Conclusions. Hydrodynamical simulations of planetary nebulae are essential for any understanding of the basic physics behind their observed luminosity function. In particular, our models do not support the claim of Marigo et al. (2004, A&A, 423, 995) according to which the maximum 5007 Aa luminosity occurs during the recombination phase well beyond 100 000 K when the stellar luminosity declines and the nebular models become, at least partially, optically thick. Consequently, there is no need to invoke relatively massive central stars of, say > 0.7 M_{\odot}, to account for the bright end of the luminosity function. |
---|---|
AbstractList | Context. The luminosity function of planetary nebulae, in use for about two decades in extragalactic distance determinations, is still subject to controversial interpretations. Aims. The physical basis of the luminosity function is investigated by means of several evolutionary sequences of model planetary nebulae computed with a 1D radiation- hydrodynamics code. Methods. The nebular evolution is followed from the vicinity of the asymptotic-giant branch across the Hertzsprung-Russell diagram until the white-dwarf domain is reached, using various central-star models coupled to different initial envelope configurations. Along each sequence the relevant line emissions of the nebulae are computed and analysed. Results. Maximum line luminosities in H\beta and [O III] 5007 Aa are achieved at stellar effective temperatures of about 65 000 K and 95 000...100 000 K, respectively, provided the nebula remains optically thick for ionising photons. In the optically thin case, the maximum line emission occurs at or shortly after the thick/thin transition. Our models suggest that most planetary nebulae with hotter (\ga 45 000 K) central stars are optically thin in the Lyman continuum, and that their [O III] 5007 Aa emission fails to explain the bright end of the observed planetary nebulae luminosity function. However, sequences with central stars of \ga 0.6 M_{\odot} and rather dense initial envelopes remain virtually optically thick and are able to populate the bright end of the luminosity function. Individual luminosity functions depend strongly on the central-star mass and on the variation of the nebular optical depth with time. Conclusions. Hydrodynamical simulations of planetary nebulae are essential for any understanding of the basic physics behind their observed luminosity function. In particular, our models do not support the claim of Marigo et al. (2004, A&A, 423, 995) according to which the maximum 5007 Aa luminosity occurs during the recombination phase well beyond 100 000 K when the stellar luminosity declines and the nebular models become, at least partially, optically thick. Consequently, there is no need to invoke relatively massive central stars of, say > 0.7 M_{\odot}, to account for the bright end of the luminosity function. |
Author | Jacob, R. Schönberner, D. Sandin, C. Steffen, M. |
Author_xml | – sequence: 1 givenname: D. surname: Schönberner fullname: Schönberner, D. – sequence: 2 givenname: R. surname: Jacob fullname: Jacob, R. – sequence: 3 givenname: M. surname: Steffen fullname: Steffen, M. – sequence: 4 givenname: C. surname: Sandin fullname: Sandin, C. |
BookMark | eNp9kEtLxDAUhYOMYGf0D7gqLtxV82oe7mTwBQNuxnVIMglWOk1NUsF_b8OoCxfezeXCOZfznSVYDGFwAJwjeIVgi64hhLRhhKEbDCHnlPAjUCFKcAM5ZQtQ_QpOwDKlt_nESJAKXGxfXe0-Qj_lLgx18PXY68FlHT_rwZmp1-4UHHvdJ3f2vVfg5f5uu35sNs8PT-vbTWMxF7lh3GgprCQ723LpqCEYY-olptxiybwWO2k0EcYIwhjVLSPWQSE1l55C3ZIVuDz8HWN4n1zKat8l6_qSJ0xJYUjmkUWID0IbQ0rReTXGbj8nVgiqUocqtKrQqp86ZpP4Y7Jd1gU6R931_1m_AJ4YY9E |
CitedBy_id | crossref_primary_10_1088_0004_637X_792_2_121 crossref_primary_10_1093_mnras_stz2650 crossref_primary_10_1051_0004_6361_202244597 crossref_primary_10_1111_j_1365_2966_2009_14551_x crossref_primary_10_1093_mnras_sts393 crossref_primary_10_1038_s41550_018_0453_9 crossref_primary_10_1086_590333 crossref_primary_10_1051_0004_6361_20078520 crossref_primary_10_1051_0004_6361_201731788 crossref_primary_10_1088_1742_6596_728_3_032001 crossref_primary_10_1093_mnras_stad3116 crossref_primary_10_1051_0004_6361_201321532 crossref_primary_10_5303_JKAS_2007_40_4_183 crossref_primary_10_1093_mnras_stv249 crossref_primary_10_1051_0004_6361_202038366 crossref_primary_10_3847_1538_4357_ab4e96 crossref_primary_10_1051_0004_6361_201731383 crossref_primary_10_1088_0004_637X_774_1_3 crossref_primary_10_1088_1538_3873_ac32b1 crossref_primary_10_1051_0004_6361_200913427 crossref_primary_10_1086_588808 crossref_primary_10_1088_0004_637X_703_2_L95 crossref_primary_10_3847_1538_4357_aaa1e5 crossref_primary_10_1086_528846 crossref_primary_10_1093_mnras_stab687 crossref_primary_10_1007_s10509_024_04342_2 crossref_primary_10_3847_1538_4357_834_2_174 crossref_primary_10_1088_0004_637X_807_2_181 crossref_primary_10_1093_mnras_stac3490 crossref_primary_10_1111_j_1365_2966_2011_18900_x crossref_primary_10_1007_s10509_012_1061_2 crossref_primary_10_1093_mnras_staa2632 crossref_primary_10_1051_0004_6361_202141890 crossref_primary_10_1086_592737 crossref_primary_10_1111_j_1365_2966_2010_16635_x crossref_primary_10_1051_0004_6361_201118391 crossref_primary_10_1051_0004_6361_201016137 crossref_primary_10_1088_0004_637X_716_1_857 crossref_primary_10_1051_0004_6361_201423713 |
Cites_doi | 10.1051/0004-6361:20031653 10.1086/161333 10.1017/S1743921306002912 10.1086/431353 10.1086/313118 10.1051/0004-6361:20047064 10.1017/S0074180900208401 10.1051/0004-6361:20053108 10.1051/0004-6361:20040234 10.1086/191592 10.1086/168900 10.1086/317145 10.1086/191536 10.1023/A:1002779716429 10.1051/0004-6361:20041669 10.1086/169607 10.1017/S1743921306003966 10.1017/S007418090020987X 10.1086/309252 10.1086/168300 10.1086/176325 10.1086/304705 10.1086/170377 10.1086/171186 10.1086/167274 10.1051/0004-6361:20011270 10.1086/191962 10.1086/508469 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7TG KL. |
DOI | 10.1051/0004-6361:20077437 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
EndPage | 484 |
ExternalDocumentID | 10_1051_0004_6361_20077437 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 7TG KL. |
ID | FETCH-LOGICAL-c278t-67ba98c93dc579e4b32224f9247c296fa8d9ba38bb83664a563ce089a79f40a53 |
ISSN | 0004-6361 |
IngestDate | Thu Sep 04 17:34:30 EDT 2025 Tue Jul 01 00:39:58 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c278t-67ba98c93dc579e4b32224f9247c296fa8d9ba38bb83664a563ce089a79f40a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 20333395 |
PQPubID | 23462 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_20333395 crossref_primary_10_1051_0004_6361_20077437 crossref_citationtrail_10_1051_0004_6361_20077437 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-10-01 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2007 |
References | Méndez (R26) 1993; 275 Corradi (R5) 2000; 354 Shaw (R41) 2006; 167 Dopita (R6) 1990; 357 Latter (R19) 2000; 539 Méndez (R24) 1997; 321 Dopita (R8) 1991; 377 Blöcker (R1) 1995; 299 R3 Schönberner (R32) 1983; 273 Górny (R13) 2004; 427 Vilkoviskii (R48) 1983; 27 R34 R33 R36 Steffen (R46) 1998; 337 Gesicki (R11) 1996; 309 R35 R39 Chevalier (R2) 1997; 488 Dopita (R9) 1992; 389 Zhang (R51) 1998; 117 Meatheringham (R27) 1991; 75 Dopita (R7) 1991; 367 Marten (R23) 1997; 248 Stasinska (R44) 1989; 213 Ciardullo (R4) 2005; 629 Marigo (R22) 2004; 423 Méndez (R25) 1992; 260 R40 R45 Perinotto (R31) 2004; 414 Gabler (R12) 1991; 245 Shu (R42) 2002; 580 Herwig (R17) 1998; 340 Marigo (R21) 2001; 378 Meatheringham (R28) 1991; 76 Schönberner (R38) 2005; 441 Vassiliadis (R47) 1994; 92 Herwig (R15) 2001; 275 Leuenhagen (R20) 1996; 312 Weinberger (R50) 1989; 78 Schönberner (R37) 2005; 431 Gruenwald (R14) 2000; 543 Perinotto (R30) 1998; 332 Franco (R10) 1990; 349 Stanghellini (R43) 1995; 452 Volk (R49) 1985; 153 (R18) 1989; 339 Herwig (R16) 1997; 324 Paczynski (R29) 1970; 20 |
References_xml | – volume: 245 start-page: 587 year: 1991 ident: R12 publication-title: A&A – volume: 337 start-page: 149 year: 1998 ident: R46 publication-title: A&A – volume: 414 start-page: 993 year: 2004 ident: R31 publication-title: A&A doi: 10.1051/0004-6361:20031653 – volume: 273 start-page: 708 year: 1983 ident: R32 publication-title: ApJ doi: 10.1086/161333 – ident: R40 doi: 10.1017/S1743921306002912 – volume: 629 start-page: 499 year: 2005 ident: R4 publication-title: ApJ doi: 10.1086/431353 – volume: 321 start-page: 898 year: 1997 ident: R24 publication-title: A&A – volume: 117 start-page: 341 year: 1998 ident: R51 publication-title: ApJS doi: 10.1086/313118 – volume: 78 start-page: 301 year: 1989 ident: R50 publication-title: A&AS – volume: 354 start-page: 1071 year: 2000 ident: R5 publication-title: A&A – volume: 427 start-page: 231 year: 2004 ident: R13 publication-title: A&A doi: 10.1051/0004-6361:20047064 – ident: R33 – ident: R34 doi: 10.1017/S0074180900208401 – volume: 248 start-page: 590 year: 1997 ident: R23 publication-title: A&A – volume: 275 start-page: 534 year: 1993 ident: R26 publication-title: A&A – volume: 441 start-page: 573 year: 2005 ident: R38 publication-title: A&A doi: 10.1051/0004-6361:20053108 – volume: 423 start-page: 995 year: 2004 ident: R22 publication-title: A&A doi: 10.1051/0004-6361:20040234 – volume: 76 start-page: 1085 year: 1991 ident: R28 publication-title: ApJS doi: 10.1086/191592 – volume: 357 start-page: 140 year: 1990 ident: R6 publication-title: ApJ doi: 10.1086/168900 – volume: 543 start-page: 889 year: 2000 ident: R14 publication-title: ApJ doi: 10.1086/317145 – ident: R36 – volume: 75 start-page: 407 year: 1991 ident: R27 publication-title: ApJS doi: 10.1086/191536 – volume: 324 start-page: L81 year: 1997 ident: R16 publication-title: A&A – volume: 275 start-page: 15 year: 2001 ident: R15 publication-title: Ap&SS doi: 10.1023/A:1002779716429 – volume: 431 start-page: 965 year: 2005 ident: R37 publication-title: A&A doi: 10.1051/0004-6361:20041669 – volume: 367 start-page: 115 year: 1991 ident: R7 publication-title: ApJ doi: 10.1086/169607 – volume: 340 start-page: L43 year: 1998 ident: R17 publication-title: A&A – ident: R39 doi: 10.1017/S1743921306003966 – ident: R3 doi: 10.1017/S007418090020987X – ident: R35 – volume: 312 start-page: 167 year: 1996 ident: R20 publication-title: A&A – volume: 539 start-page: 783 year: 2000 ident: R19 publication-title: ApJ doi: 10.1086/309252 – volume: 349 start-page: 126 year: 1990 ident: R10 publication-title: ApJ doi: 10.1086/168300 – volume: 309 start-page: 907 year: 1996 ident: R11 publication-title: A&A – volume: 452 start-page: 515 year: 1995 ident: R43 publication-title: ApJ doi: 10.1086/176325 – volume: 153 start-page: 79 year: 1985 ident: R49 publication-title: A&A – volume: 580 start-page: 969 year: 2002 ident: R42 publication-title: A&A – ident: R45 – volume: 332 start-page: 1044 year: 1998 ident: R30 publication-title: A&A – volume: 488 start-page: 263 year: 1997 ident: R2 publication-title: ApJ doi: 10.1086/304705 – volume: 377 start-page: 480 year: 1991 ident: R8 publication-title: ApJ doi: 10.1086/170377 – volume: 389 start-page: 27 year: 1992 ident: R9 publication-title: ApJ doi: 10.1086/171186 – volume: 260 start-page: 329 year: 1992 ident: R25 publication-title: A&A – volume: 339 start-page: 39 year: 1989 ident: R18 publication-title: ApJ doi: 10.1086/167274 – volume: 213 start-page: 274 year: 1989 ident: R44 publication-title: A&A – volume: 20 start-page: 47 year: 1970 ident: R29 publication-title: AcA – volume: 378 start-page: 958 year: 2001 ident: R21 publication-title: A&A doi: 10.1051/0004-6361:20011270 – volume: 92 start-page: 125 year: 1994 ident: R47 publication-title: ApJS doi: 10.1086/191962 – volume: 27 start-page: 194 year: 1983 ident: R48 publication-title: Soviet Ast. – volume: 299 start-page: 755 year: 1995 ident: R1 publication-title: A&A – volume: 167 start-page: 201 year: 2006 ident: R41 publication-title: ApJS doi: 10.1086/508469 |
SSID | ssj0002183 |
Score | 2.150773 |
Snippet | Context. The luminosity function of planetary nebulae, in use for about two decades in extragalactic distance determinations, is still subject to controversial... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 467 |
Subtitle | IV. On the physics of the luminosity function |
Title | The evolution of planetary nebulae |
URI | https://www.proquest.com/docview/20333395 |
Volume | 473 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4qBIX1EIR0FeEUC8oy2787m37QMABoQJSb5HtJOIAuwiyHHrob--M7Xh3aakKOURZKxmvPKOZ8cw3Y0J2K2dV1VCea8b7OZNW5YYJmivjDFhjCRbCo3xPxOEFO_7BZxLtvrqktT338691Jc_hKowBX7FK9gmcTURhAJ6Bv3AHDsP9v3lc38cpPHYZoastAuFGtZ1cmTmcz_AOw97j69BxyeCvENfwgdfQ92omMHDmLjGL_lkgBCyWxXztJcQNaFKfyvmehs5aBIcEbPB00JfN-HBsby7CIBNWbao1WS5oaJreq4OiZBRRqzF8GDUpC6eSRJEpZvQiC2duRBMb2pf-qb1BQQS4Y5gOFhv_Dvg4cmqtugz9AyOWoIU-qc4HmFRnJVIpOxqLZLmQ4GBhRfjRr2Su0UcMe6Qwa6ysAhr7aexTR2Pee5k33t4jOX9JVuNWIhsGuXhFFurRGtlMXM4-ZsMZHq-RF6fhaZ3sgOBkSXCycZMlwcmi4LwmFwffzr8c5vGwjNwVUrW5kNZo5TStHJe6ZhZTaKyB7bV0hRaNUZW2hiprFRWCGS6oq_tKG6kb1jecbpCl0XhUb5KsMWgFioHoq4o5ZYxsrHZVo6m2suBuiwy6RShd7CSPB5pclY8v_hbZS9_chD4q_3z7Q7e2Jag7zGHBKownd_AGhUvz7SfRe0NWpoL9liy1t5P6HTiTrX3vheE3bdNnKg |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+evolution+of+planetary+nebulae&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Sch%C3%B6nberner%2C+D.&rft.au=Jacob%2C+R.&rft.au=Steffen%2C+M.&rft.au=Sandin%2C+C.&rft.date=2007-10-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=473&rft.issue=2&rft.spage=467&rft.epage=484&rft_id=info:doi/10.1051%2F0004-6361%3A20077437&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_20077437 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |