On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order

For the first time, we present for the general case of fully nonlinear elliptic differential equations of second order a nonstandard C¹ finite element method (FEM). We consider, throughout the paper, two cases in parallel: For convex, bounded, polyhedral domains in R$R^n $ , or for C² bounded domain...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on numerical analysis Vol. 46; no. 3; pp. 1212 - 1249
Main Author Böhmer, Klaus
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2008
Subjects
Online AccessGet full text
ISSN0036-1429
1095-7170
DOI10.1137/040621740

Cover

Abstract For the first time, we present for the general case of fully nonlinear elliptic differential equations of second order a nonstandard C¹ finite element method (FEM). We consider, throughout the paper, two cases in parallel: For convex, bounded, polyhedral domains in R$R^n $ , or for C² bounded domains in R² , we prove stability and convergence for the corresponding conforming or nonconforming C¹ FEM, respectively. The results for equations and systems of orders 2 and 2m and quadrature approximations appear elsewhere. The classical theory of discretization methods is applied to the differential operator or the combined differential and the boundary operator. The consistency error for satisfied or violated boundary conditions on polyhedral or curved domains has to be estimated. The stability has to be proved in an unusual way. This is the hard core of the paper. Essential tools are linearization, a compactness argument, the interplay between the weak and strong form of the linearized operator, and a new regularity result for solutions of finite element equations. An essential basis for our proofs are Davydov's results for C¹ FEs on polyhedral domains in R n or of local degree 5 for C² domains in R² . Better convergence and extensions to $R^n $ for C² domains are to be expected from his forthcoming results on curved domains. Our proof for the second case in $R^n $, includes the first essentially as a special case. The method applies to quasi-linear elliptic problems not in divergence form as well. A discrete Newton method is shown to converge locally quadratically, essentially independently of the actual grid size by the mesh independence principle.
AbstractList For the first time, we present for the general case of fully nonlinear elliptic differential equations of second order a nonstandard C¹ finite element method (FEM). We consider, throughout the paper, two cases in parallel: For convex, bounded, polyhedral domains in R$R^n $ , or for C² bounded domains in R² , we prove stability and convergence for the corresponding conforming or nonconforming C¹ FEM, respectively. The results for equations and systems of orders 2 and 2m and quadrature approximations appear elsewhere. The classical theory of discretization methods is applied to the differential operator or the combined differential and the boundary operator. The consistency error for satisfied or violated boundary conditions on polyhedral or curved domains has to be estimated. The stability has to be proved in an unusual way. This is the hard core of the paper. Essential tools are linearization, a compactness argument, the interplay between the weak and strong form of the linearized operator, and a new regularity result for solutions of finite element equations. An essential basis for our proofs are Davydov's results for C¹ FEs on polyhedral domains in R n or of local degree 5 for C² domains in R² . Better convergence and extensions to $R^n $ for C² domains are to be expected from his forthcoming results on curved domains. Our proof for the second case in $R^n $, includes the first essentially as a special case. The method applies to quasi-linear elliptic problems not in divergence form as well. A discrete Newton method is shown to converge locally quadratically, essentially independently of the actual grid size by the mesh independence principle.
For the first time, we present for the general case of fully nonlinear elliptic differential equations of second order a nonstandard $C^1$ finite element method (FEM). We consider, throughout the paper, two cases in parallel: For convex, bounded, polyhedral domains in ${\bf R}^n$, or for $C^2$ bounded domains in ${\bf R}^2$, we prove stability and convergence for the corresponding conforming or nonconforming $C^1$ FEM, respectively. The results for equations and systems of orders $2$ and $2m$ and quadrature approximations appear elsewhere. The classical theory of discretization methods is applied to the differential operator or the combined differential and the boundary operator. The consistency error for satisfied or violated boundary conditions on polyhedral or curved domains has to be estimated. The stability has to be proved in an unusual way. This is the hard core of the paper. Essential tools are linearization, a compactness argument, the interplay between the weak and strong form of the linearized operator, and a new regularity result for solutions of finite element equations. An essential basis for our proofs are Davydov's results for $C^1$ FEs on polyhedral domains in ${\bf R}^n$ or of local degree $5$ for $C^2$ domains in ${\bf R}^2$. Better convergence and extensions to ${\bf R}^n$ for $C^2$ domains are to be expected from his forthcoming results on curved domains. Our proof for the second case in ${\bf R}^n$, includes the first essentially as a special case. The method applies to quasi-linear elliptic problems not in divergence form as well. A discrete Newton method is shown to converge locally quadratically, essentially independently of the actual grid size by the mesh independence principle.
Author Böhmer, Klaus
Author_xml – sequence: 1
  givenname: Klaus
  surname: Böhmer
  fullname: Böhmer, Klaus
BookMark eNpt0E1LAzEQBuAgFWyrB3-AELx5WJuvzWaPUloVqhXU85KmE0zZJm2SPfTfu1rxIJ6GgeedGWaEBj54QOiSkltKeTUhgkhGK0FO0JCSuiwqWpEBGhLCZUEFq8_QKKUN6XtF-RC9LD2eO-8y4FkLW_AZP0H-COuEbYh43rXtAT8H3zoPOvamdbvsDJ7tO51d8AkHi1_BBL_Gy7iGeI5OrW4TXPzUMXqfz96mD8Vief84vVsUhlUqF5IpYEQoLYEpyySQFciaV4aAFaVg0tSl0UYZa4Wy2hJYa2aAG7biPV_xMbo-zt3FsO8g5WYTuuj7lU3NGJVKUtmjyRGZGFKKYBvj8vfdOWrXNpQ0X19rfr_WJ27-JHbRbXU8_GuvjnaTcoi_UBDGOSs5_wSfGHbk
CitedBy_id crossref_primary_10_1007_s10915_024_02604_3
crossref_primary_10_1017_S0962492917000071
crossref_primary_10_1007_s10915_018_0698_6
crossref_primary_10_1186_s13662_019_1968_9
crossref_primary_10_1007_s42967_021_00133_6
crossref_primary_10_1051_m2an_2010017
crossref_primary_10_1090_mcom_3554
crossref_primary_10_1007_s10915_016_0215_8
crossref_primary_10_1080_10236198_2019_1624737
crossref_primary_10_1137_130909536
crossref_primary_10_3390_sym8040018
crossref_primary_10_1016_j_mex_2022_101790
crossref_primary_10_1007_s10915_019_01080_4
crossref_primary_10_1007_s10915_021_01714_6
crossref_primary_10_1007_s00366_020_01150_4
crossref_primary_10_1137_100787672
crossref_primary_10_1007_s10915_012_9617_4
crossref_primary_10_1016_S0252_9602_18_30814_2
crossref_primary_10_1007_s00211_018_0988_9
crossref_primary_10_1137_120887655
crossref_primary_10_1007_s10598_012_9121_6
crossref_primary_10_1007_s10915_016_0220_y
crossref_primary_10_1007_s10915_018_0685_y
crossref_primary_10_1007_s00211_017_0898_2
crossref_primary_10_1007_s00211_021_01210_x
crossref_primary_10_1007_s10543_014_0524_y
crossref_primary_10_1016_j_cagd_2015_11_002
crossref_primary_10_1137_18M1165670
crossref_primary_10_1007_s11075_018_0612_1
crossref_primary_10_1137_110825960
crossref_primary_10_1007_s10915_017_0586_5
crossref_primary_10_1007_s10444_014_9391_y
crossref_primary_10_1007_s10915_024_02617_y
crossref_primary_10_1007_s00500_020_05505_3
crossref_primary_10_1016_j_camwa_2014_07_023
crossref_primary_10_1016_j_cam_2013_12_027
crossref_primary_10_1016_j_mex_2022_101980
crossref_primary_10_1090_cams_39
crossref_primary_10_1137_17M1160409
crossref_primary_10_1016_j_cam_2013_03_009
crossref_primary_10_1007_s10915_010_9439_1
crossref_primary_10_1016_j_apnum_2016_10_002
crossref_primary_10_1016_j_amc_2012_06_011
Cites_doi 10.1007/BF01117498
10.1007/BF01395805
10.1007/BF02238535
10.1007/BF01396184
10.1007/BF01396762
10.1090/S0025-5718-1990-1023049-9
10.1002/cnm.1630081001
10.1007/s00365-004-0593-2
10.1090/S0025-5718-00-01323-5
10.1137/0724086
10.1007/BF01349967
10.1016/0045-7825(93)90056-4
10.1016/S0045-7825(98)00199-6
10.1007/PL00005400
10.1137/0723036
10.1007/BF02576116
10.1090/S0025-5718-1975-0371058-7
10.1137/0715010
10.1007/s002110050228
10.1137/0723011
10.1007/BF01395985
10.1016/0022-1236(85)90011-4
10.1090/S0025-5718-1990-1011446-7
10.1016/S1631-073X(03)00149-3
10.1007/s00365-001-0006-8
10.1016/0045-7825(93)90111-A
10.1006/jath.2001.3577
ContentType Journal Article
Copyright Copyright 2009 Society for Industrial and Applied Mathematics
[Copyright] © 2008 Society for Industrial and Applied Mathematics
Copyright_xml – notice: Copyright 2009 Society for Industrial and Applied Mathematics
– notice: [Copyright] © 2008 Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
3V.
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1137/040621740
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global (OCUL)
Agricultural Science Database
Computing Database
Military Database
ProQuest Research Library
Science Database
Telecommunications Database
Biological Science Database
Engineering Database (subscription)
Research Library (Corporate)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection (ProQuest)
ProQuest Central Basic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1095-7170
EndPage 1249
ExternalDocumentID 2589748211
10_1137_040621740
40233253
GroupedDBID -DZ
-~X
.4S
.DC
123
2AX
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
AALVN
AASXH
AAWIL
ABAWQ
ABBHK
ABDBF
ABFAN
ABJCF
ABKAD
ABMZU
ABPFR
ABPQH
ABUWG
ABXSQ
ABYWD
ACBEA
ACGFO
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACPRK
ACTMH
ACUBG
ACUHS
ADBBV
ADODI
ADULT
AENEX
AEUPB
AFKRA
AFRAH
AFVYC
AFXHP
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CS3
CZ9
D1I
D1J
D1K
DQDLB
DSRWC
DU5
DWQXO
EAP
EBS
ECEWR
EDO
EJD
EMK
EST
ESX
FEDTE
FRNLG
FVMVE
GNUQQ
GUQSH
H13
HCIFZ
HQ6
I-F
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
N9A
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RSI
SA0
T9H
TAE
TN5
TUS
WH7
YNT
ZCG
3EH
3R3
8WZ
A6W
AAYJJ
AAYXX
CITATION
DQ2
HGD
HVGLF
H~9
MVM
NHB
P0-
PQGLB
PUEGO
RNS
WHG
YXE
3V.
7XB
88A
88K
8AL
8FK
JQ2
L.-
M0N
M2T
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c278t-628e2048a6e28f26e0be6937c0ef45426c95cac8cff48faf0eda2ce3c2b3f26b3
IEDL.DBID BENPR
ISSN 0036-1429
IngestDate Sat Aug 16 22:51:00 EDT 2025
Wed Oct 01 03:44:36 EDT 2025
Thu Apr 24 22:56:29 EDT 2025
Thu Jun 19 15:12:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-628e2048a6e28f26e0be6937c0ef45426c95cac8cff48faf0eda2ce3c2b3f26b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 922168616
PQPubID 666303
PageCount 38
ParticipantIDs proquest_journals_922168616
crossref_citationtrail_10_1137_040621740
crossref_primary_10_1137_040621740
jstor_primary_40233253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on numerical analysis
PublicationYear 2008
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References Clément P. (R20) 1975; 9
R61
R41
R40
R42
R23
R44
R24
R48
R29
R28
R1
Crouziex M. (R26) 1973; 3
R3
R4
R5
R6
R7
R30
R52
Dean E. J. (R33) 2006; 22
R32
R53
R12
R34
R14
R36
R57
R16
R15
References_xml – ident: R53
  doi: 10.1007/BF01117498
– ident: R16
  doi: 10.1007/BF01395805
– ident: R7
  doi: 10.1007/BF02238535
– ident: R15
  doi: 10.1007/BF01396184
– ident: R44
  doi: 10.1007/BF01396762
– ident: R41
  doi: 10.1090/S0025-5718-1990-1023049-9
– ident: R34
  doi: 10.1002/cnm.1630081001
– ident: R30
  doi: 10.1007/s00365-004-0593-2
– ident: R57
  doi: 10.1090/S0025-5718-00-01323-5
– ident: R3
  doi: 10.1137/0724086
– ident: R52
  doi: 10.1007/BF01349967
– ident: R6
  doi: 10.1016/0045-7825(93)90056-4
– ident: R12
  doi: 10.1016/S0045-7825(98)00199-6
– ident: R36
  doi: 10.1007/PL00005400
– volume: 3
  start-page: 33
  year: 1973
  ident: R26
  publication-title: Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge
– ident: R42
  doi: 10.1137/0723036
– ident: R1
  doi: 10.1007/BF02576116
– ident: R40
  doi: 10.1090/S0025-5718-1975-0371058-7
– ident: R61
  doi: 10.1137/0715010
– volume: 9
  start-page: 77
  issn: 0399-0516
  year: 1975
  ident: R20
  publication-title: RAIRO Anal. Numer.
– ident: R24
  doi: 10.1007/s002110050228
– volume: 22
  start-page: 71
  issn: 1097-4067
  year: 2006
  ident: R33
  publication-title: Electron. Trans. Numer. Anal.
– ident: R4
  doi: 10.1137/0723011
– ident: R14
  doi: 10.1007/BF01395985
– ident: R23
  doi: 10.1016/0022-1236(85)90011-4
– ident: R48
  doi: 10.1090/S0025-5718-1990-1011446-7
– ident: R32
  doi: 10.1016/S1631-073X(03)00149-3
– ident: R29
  doi: 10.1007/s00365-001-0006-8
– ident: R5
  doi: 10.1016/0045-7825(93)90111-A
– ident: R28
  doi: 10.1006/jath.2001.3577
SSID ssj0003813
Score 2.1454034
Snippet For the first time, we present for the general case of fully nonlinear elliptic differential equations of second order a nonstandard C¹ finite element method...
For the first time, we present for the general case of fully nonlinear elliptic differential equations of second order a nonstandard $C^1$ finite element...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1212
SubjectTerms Approximation
Boundary conditions
Differential equations
Elliptic equations
Finite element method
Interpolation
Linear equations
Methods
Newtons method
Numerical analysis
Perceptron convergence procedure
Triangulation
Title On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order
URI https://www.jstor.org/stable/40233253
https://www.proquest.com/docview/922168616
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1095-7170
  dateEnd: 20110731
  omitProxy: true
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: ABDBF
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: true
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: BENPR
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: true
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: 8FG
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB2F5AIHaEMRgRZZFQcuq-7ajuM9VKitkqJKSRAfEreV7R1LSCgBNhz49_XseldCrTh7TuPxmzf2-A3A6YR7MwmVT2JNgEApJSYW0Se5FNzYECEa6TfyfKEubuWfu_FdD-btXxhqq2wxsQbqcu3ojvxbznmmtMrU-eNTQkOj6HG1naBh4mSF8nutMLYFA07CWH0Y_JwuLq86aA7pqVPhzQISR6mhjER-QmYjep6-SVBNj-I_OF0nn9kH2I2skf1otvkj9HA1hL3IIFk8n9UQduadCmu1D5fLFZvdE6lk06ZLnM3rgdEVC1SVUfX5yhaNVoZ5ZtS-EQDEselTo_9dsbVn11Qxl2xJEp2f4HY2vfl1kcQJConjE71JFNdIyrxGIdeeK0wtqkBIXIpejkNydvnYGaed91J741MsDXcoHLcimFtxAP3VeoWHwOi5sbQizySiVCnPleaYq9JkLlWW2xGctW4rXJQXpykXD0VdZohJ0Xl4BF8708dGU-N_Rge17zuLUOgKwcdiBMftZhTxvFVFFx1H764ew3bT70FXKJ-hv3l-wS-BVGzsCWzp2e-TGDB_AWtuymk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROFAO_aCgLpTWQiBxiUhsrzc5oArorpaPXRAFiVtqO2MJCe0C2Qrx4_hvHSdOJNSqN84Z5TAez5tnj98AbPW40z1iPpHRlAKllBgZRBdlUnBtKEJS9K-RR2M1vJLH193rOXhu3sL4tsomJ1aJuphaf0a-m3GeqFQl6vvdfeSHRvnL1WaChg6TFYq9SmEsvOs4wadHYnDl3tEPWu5tzgf9y8NhFIYMRJb30lmkeIpevFYr5KnjCmODijDbxuhkl_DLZl2rbWqdk6nTLsZCc4vCciPI3Aj67xtYkEJmxP0WDvrj84sWCggOW9XfhDJ_kDZKvKgQIamnA_ELQKx7Iv_ChQrsBh_gXahS2X4dVh9hDifL8D5UrCzkg3IZlkat6mv5Cc7PJmxw44tY1q-70tmoGlBdMiqNmWe7T2xca3PoB-bbRShhWda_r_XGSzZ17Kdn6AU785KgK3D1Ks5chfnJdIKfgfnrzcKILJGIUsU8UynHTBU6sbEy3HRgp3FbboOcuZ-qcZtXtEb08tbDHdhsTe9qDY9_Ga1Wvm8tiFgLwbuiA-vNYuRhf5d5G41r__36DRaHl6PT_PRofLIOb-teE3988wXmZw-_cYMKmpn5GsKGwa_XjtQ_dPAIQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Finite+Element+Methods+for+Fully+Nonlinear+Elliptic+Equations+of+Second+Order&rft.jtitle=SIAM+journal+on+numerical+analysis&rft.au=B%C3%B6hmer%2C+Klaus&rft.date=2008-01-01&rft.issn=0036-1429&rft.eissn=1095-7170&rft.volume=46&rft.issue=3&rft.spage=1212&rft.epage=1249&rft_id=info:doi/10.1137%2F040621740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_040621740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1429&client=summon