EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models
Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation, lockdown, vaccination,etc). Hand-designing such strategies is not trivial because of the number of possibleinterventions and the difficulty to predi...
Saved in:
| Published in | IDEAS Working Paper Series from RePEc Vol. 71; pp. 479 - 519 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article Paper |
| Language | English |
| Published |
San Francisco
AI Access Foundation
2021
Federal Reserve Bank of St. Louis Association for the Advancement of Artificial Intelligence |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1076-9757 1943-5037 1076-9757 1943-5037 |
| DOI | 10.1613/jair.1.12588 |
Cover
| Abstract | Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation, lockdown, vaccination,etc). Hand-designing such strategies is not trivial because of the number of possibleinterventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain|epidemic modeling or solving optimization problems|requires strong collaborationsbetween researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers inepidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on QLearning with deep neural networks (DQN) and evolutionary algorithms (NSGA-II) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies fordynamical on-o lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (SEIR) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choicesto be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface.
This article is part of the special track on AI and COVID-19. |
|---|---|
| AbstractList | Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation, lockdown, vaccination,etc). Hand-designing such strategies is not trivial because of the number of possibleinterventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain|epidemic modeling or solving optimization problems|requires strong collaborationsbetween researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers inepidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on QLearning with deep neural networks (DQN) and evolutionary algorithms (NSGA-II) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies fordynamical on-o lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (SEIR) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choicesto be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface.
This article is part of the special track on AI and COVID-19. Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceutical and non-pharmaceutical interventions (contact limitation, lockdown, vaccination, etc). Hand-designing such strategies is not trivial because of the number of possible interventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain—epidemic modeling or solving optimization problems—requires strong collaborations between researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers in epidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on Q-Learning with deep neural networks (dqn) and evolutionary algorithms (nsga-ii) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies for dynamical on-off lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (seir) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choices to be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. ©2021 AI Access Foundation. All rights reserved. Modelling the dynamics of epidemics helps proposing control strategies based on phar-maceutical and non-pharmaceutical interventions (contact limitation, lock down, vaccina-tion, etc). Hand-designing such strategies is not trivial because of the number of pos-sible interventions and the difficulty to predict long-term effects. This task can be castas an optimization problem where state-of-the-art machine learning algorithms such asdeep reinforcement learning, might bring significant value. However, the specificity ofeach domain – epidemic modelling or solving optimization problem – requires strong col-laborations between researchers from different fields of expertise. This is why we intro-duce EpidemiOptim, a Python toolbox that facilitates collaborations between researchersin epidemiology and optimization. EpidemiOptim turns epidemiological models and costfunctions into optimization problems via a standard interface commonly used by optimiza-tion practitioners (OpenAI Gym). Reinforcement learning algorithms based on Q-Learningwith deep neural networks (dqn) and evolutionary algorithms (nsga-ii) are already im-plemented. We illustrate the use of EpidemiOptim to find optimal policies for dynamicalon-off lock-down control under the optimization of death toll and economic recess using aSusceptible-Exposed-Infectious-Removed (seir) model for COVID-19. Using EpidemiOp-tim and its interactive visualization platform in Jupyter notebooks, epidemiologists, op-timization practitioners and others (e.g. economists) can easily compare epidemiologicalmodels, costs functions and optimization algorithms to address important choices to bemade by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation, lockdown, vaccination,etc). Hand-designing such strategies is not trivial because of the number of possibleinterventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain|epidemic modeling or solving optimization problems|requires strong collaborationsbetween researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers inepidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on QLearning with deep neural networks (DQN) and evolutionary algorithms (NSGA-II) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies fordynamical on-o lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (SEIR) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choicesto be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. This article is part of the special track on AI and COVID-19. |
| Author | Colas, Cédric Rouillon, Sebastien Thiébaut, Rodolphe Moulin-Frier, Clément Prague, Mélanie Oudeyer, Pierre-Yves Hejblum, Boris |
| Author_xml | – sequence: 1 givenname: Cédric surname: Colas fullname: Colas, Cédric – sequence: 2 givenname: Boris surname: Hejblum fullname: Hejblum, Boris – sequence: 3 givenname: Sebastien surname: Rouillon fullname: Rouillon, Sebastien – sequence: 4 givenname: Rodolphe surname: Thiébaut fullname: Thiébaut, Rodolphe – sequence: 5 givenname: Pierre-Yves surname: Oudeyer fullname: Oudeyer, Pierre-Yves – sequence: 6 givenname: Clément surname: Moulin-Frier fullname: Moulin-Frier, Clément – sequence: 7 givenname: Mélanie surname: Prague fullname: Prague, Mélanie |
| BackLink | https://inria.hal.science/hal-03099898$$DView record in HAL |
| BookMark | eNp9kMtLAzEQxoMo-Lz5BwQ8CW7No9lNvJVSH1DRQ714CWk20ZR0Z81uff31bltBEexphpnfDN_37aPtCiqH0DElPZpTfj4zIfVojzIh5Rbao6TIM1WIYvtXv4v2m2ZGCFV9JvfQ46gOpZuHu7oN8ws8wBOAOIV37CHh9tnh1SJ8mjZAhcHjIVRtgojvIQYbXINDhb9_QISnYE3Et1C62ByiHW9i446-6wF6uBxNhtfZ-O7qZjgYZ5YVUmZWmWJqhGA-L3OWW9opK_tCTgvDmewrrrg1ntv-lHhplJdK-LLkgpTGlY4LfoCy9d9FVZuPNxOjrlOYm_ShKdHLYPQyGE31KpiOP13zz-aHBBP09WCslzPCiVJSyVfWsSdrtk7wsnBNq2ewSFVnR7Oc5EoQqfhGSohcUcYK0lFsTdkETZOc1za0q1zbZEL8T-zZn6ON3r4Ad2Kezg |
| CitedBy_id | crossref_primary_10_3389_fpubh_2022_994949 crossref_primary_10_3934_mbe_2023640 crossref_primary_10_1016_j_orp_2023_100293 crossref_primary_10_1016_j_trip_2024_101183 crossref_primary_10_1016_j_ins_2023_119065 crossref_primary_10_1371_journal_pcbi_1012010 crossref_primary_10_1038_s41467_024_55461_x crossref_primary_10_3390_a16030140 crossref_primary_10_1051_mmnp_2024005 |
| ContentType | Journal Article Paper |
| Copyright | 2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about 2021. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://research.stlouisfed.org/research_terms.html . Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about – notice: 2021. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://research.stlouisfed.org/research_terms.html . – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 3V. 7WY 7WZ 7XB 87Z 8FK 8FL AAFGM ABLUL ABPUF ABSSA ACIOU ADZZV AGAJT AGSBL AJNOY AQTIP BEZIV BOUDT CBHQV FRNLG F~G K60 K6~ L.- M0C PQBIZ PQBZA PQCXX Q9U 1XC VOOES ADTOC UNPAY |
| DOI | 10.1613/jair.1.12588 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central Korea - hybrid linking Business Premium Collection - hybrid linking ABI/INFORM Collection (Alumni) - hybrid linking ABI/INFORM Collection - hybrid linking ABI/INFORM Global - hybrid linking ProQuest Central (Alumni) - hybrid linking ProQuest Central Essentials - hybrid linking ABI/INFORM Global (Alumni) - hybrid linking Business Premium Collection (Alumni) - hybrid linking ProQuest Women's & Gender Studies - hybrid linking Business Premium Collection ProQuest One Business - hybrid linking ProQuest One Business (Alumni) - hybrid linking Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest One Business ProQuest One Business (Alumni) ProQuest Central - hybrid linking ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ABI/INFORM Complete ABI/INFORM Professional Advanced ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Business Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1076-9757 1943-5037 |
| EndPage | 519 |
| ExternalDocumentID | 10.1613/jair.1.12588 oai:HAL:hal-03099898v2 10_1613_jair_1_12588 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | .DC 29J 2WC 5GY 5VS AAKMM AAKPC AALFJ AAYFX AAYXX ACGFO ACM ADBBV ADBSK ADMLS AEFXT AEJOY AENEX AFKRA AFWXC AKRVB ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS BCNDV BENPR BGLVJ CCPQU CITATION E3Z EBS EJD F5P FRJ FRP GROUPED_DOAJ GUFHI HCIFZ K7- KQ8 LHSKQ LPJ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PUEGO RNS TR2 XSB 8FE 8FG ABUWG AZQEC COVID DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS 3V. 7WY 7XB 8FK 8FL BEZIV FRNLG K60 K6~ L.- M0C PQBIZ PQBZA Q9U 1XC VOOES ADTOC AFFNX C1A UNPAY |
| ID | FETCH-LOGICAL-c2788-c9a7ba552f6d626c1194d458b7a32849393caf3c4b0f8a9f895fdd350daede353 |
| IEDL.DBID | BENPR |
| ISSN | 1076-9757 1943-5037 |
| IngestDate | Sun Oct 26 04:01:14 EDT 2025 Tue Oct 14 20:33:33 EDT 2025 Mon Jun 30 17:13:43 EDT 2025 Fri Jul 25 07:42:33 EDT 2025 Wed Oct 01 04:00:54 EDT 2025 Thu Apr 24 22:52:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Decision Making Visualization Cost Functions Epidemiological Models Control Strategies Optimization Algorithms Reinforcement Learning Learning Systems Deep Neural Networks Epidemiology Optimization Learning Algorithms Deep Learning Non-Pharmaceutical Interventions Optimization Problems Interactive Visualizations Standard Interface Evolutionary Algorithms State-Of-The-Art Machine Learning Methods |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2788-c9a7ba552f6d626c1194d458b7a32849393caf3c4b0f8a9f895fdd350daede353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ORCID | 0000-0002-5235-3962 0000-0002-9404-7613 0000-0001-9809-7848 0000-0003-0212-427X 0000-0002-1277-130X 0000-0002-7258-7256 0000-0003-0646-452X |
| OpenAccessLink | https://www.proquest.com/docview/2606950893?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2556912270 |
| PQPubID | 5160723 |
| PageCount | 41 |
| ParticipantIDs | unpaywall_primary_10_1613_jair_1_12588 hal_primary_oai_HAL_hal_03099898v2 proquest_journals_2606950893 proquest_journals_2556912270 crossref_citationtrail_10_1613_jair_1_12588 crossref_primary_10_1613_jair_1_12588 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | San Francisco |
| PublicationPlace_xml | – name: San Francisco – name: St. Louis |
| PublicationTitle | IDEAS Working Paper Series from RePEc |
| PublicationYear | 2021 |
| Publisher | AI Access Foundation Federal Reserve Bank of St. Louis Association for the Advancement of Artificial Intelligence |
| Publisher_xml | – name: AI Access Foundation – name: Federal Reserve Bank of St. Louis – name: Association for the Advancement of Artificial Intelligence |
| SSID | ssj0019428 |
| Score | 2.4037938 |
| Snippet | Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation,... Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceutical and non-pharmaceutical interventions (contact limitation,... Modelling the dynamics of epidemics helps proposing control strategies based on phar-maceutical and non-pharmaceutical interventions (contact limitation, lock... |
| SourceID | unpaywall hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 479 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Computer Science Coronaviruses Cost function COVID-19 Decision making Deep learning Disease control Economic models Epidemics Epidemiology Evolutionary algorithms Fatalities Life Sciences Machine Learning Modelling Optimization Policies Quantitative Methods |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wNcaHmpW0plIeCCvJvEcRwjLqtqqxWCwqErFSQU-RGLQppU7S7Q_nrGTrIUBAhxtUeJMx7nm7HH3wA8ZsY6blJBYy40TR2LKMIwpzq2knPrnRK_NfD6MJvN05fH_HgNXvR3YT6pk_NwgB_IAj1DRGgad3ocW08h3yg7RmDG2A3hRYp12Mg4euID2Jgfvp28a9MMMypFIPrEMJ1RHjHR5b0jgLWviUfhIT8h0vpHnw95zdm8sazP1OVXVVXXcOdgEz70I27TTT6Plgs9Mle_kDn-7ydtwa3OISWTVuw2rJX1Hdjsiz2Qbu3fhffTtpbsG_zHnD4nE3LUNJVuvhH0egl6kSR0dLc6SePIfpsETwLzMMbj5KQm0x_1aL1xEF-Jrbq4B_OD6dH-jHaFGahJMGSmRiqhFeeJyywGRCZGFduU51oohnAnmWRGOWZSHblcSZdL7qxlPLKqtCXj7D4M6qYut4EIoRFCUwyUc_SNMp2XRkdp7KQqmUy5GcKzfnIK07GW--IZVeGjF5zKwuuyiIugvCE8WUmftWwdf5B7hPO8EvEU27PJq8K3-SMnX1PzSzKE3d4Mim5hXxSesU3GSSKi33djPOjr6ko2hKcry_nrWHb-VfAB3Ex8Qk3Y_9mFweJ8WT5Ej2ih9zrD_w4qTQkE priority: 102 providerName: Unpaywall |
| Title | EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models |
| URI | https://www.proquest.com/docview/2556912270 https://www.proquest.com/docview/2606950893 https://inria.hal.science/hal-03099898 https://jair.org/index.php/jair/article/download/12588/26697 |
| UnpaywallVersion | publishedVersion |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: KQ8 dateStart: 19930101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: AMVHM dateStart: 20130501 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: ADMLS dateStart: 20130501 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1076-9757 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: BENPR dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6t7QO8DQGisFUWAl5QtiS2mxgJTWVqKROUalqlwUvkH7HYlCWl22D899ylSbcH2GNiK4rubH939vn7AF5x67y0IgkimZhAeB4GCMMyMJFTUjoKSmhr4MtsOF2Io1N5ugWz9i4MlVW2a2K9ULvK0h75PsbdQ1IsVfxg-TMg1Sg6XW0lNHQjreDe1xRjHejFxIzVhd6H8Wx-3FS8I3TtH40-He9Fe4jrtdjKLRZ1flAl5J0w88F1udR_fuuiuIM4k23ozfUyXz2Crbx8DN_HayHXrzjBL96xETupqsJUNwxDToYhHKsbmiuVrPLscF2BzmraX0yG2VnJxrdisOQZRjJoxeUTWEzGJ4fToFFFCGyM-WpglU6MljL2Q4fZiI0iJZyQqUk0R6xRXHGrPbfChD7VyqdKeue4DJ3OXc4lfwrdsirzZ8CSxCB-CcxSUwxMhibNrQlF5JXOuRLS9uFta5_MNpThpFxRZJQ6oDWzc322yqKstmYfXm96L9dUGf_p9xJNvelC_NbT0eeM3tF5Dwla_or7sNN6Imtm1WVGdGkqiuMk_HfzZoj04c3Geff-y_P7v_MCHsZUw1JvuexA92p1ne9iEHJlBtBJJx8Hzfga1Kk8Pi1m89G3v68M4CM |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYYfWBvTGNaN7ZZaOxlCiSx3cST0FRYUQulQ6hIaC-ef8SCKUu6Fsb45_a37S5NCg-MN15jK4rOl7vvs8_3EfKeWeeF5UkQicQE3LMwgDQsAhM5KYRDUIJbA0ejTv-UH5yJsyXyt7kLg2WVTUysArUrLe6RbwPu7qBiqWSfJ78CVI3C09VGQkPX0gpup2oxVl_sOMxuroHCzXYGX2C9N-N4vzfe6we1ykBgY-B_gZU6MVqI2HccoHsbAa13XKQm0Qxit2SSWe2Z5Sb0qZY-lcI7x0TodOaySjUCUkCLMy6B_LV2e6Pjk7rCHlLl9kF3cLIVbQGOqMRdbnPfk3OsvLwDa1euiom-udZ5fifD7a-S1rGeZNNnZCkrnpNvvblw7FcIKD8_0S4dl2Vuyj8UIC4FyEirgfoKJy093ZtXvNOqzTCQb3pR0N6t-Cx6AkXZtXy2Rk4fxT4vyHJRFtlLQpPEQL7kwIpTAEIdk2bWhDzyUmdMcmHb5GNjH2XrFuWolJErpCpgTfVDX0xVpCprtsnmYvZk3prjP_M2wNSLKdhPu98dKnyG50sooPk7bpP1ZiVU_RfPFLZnk1EcJ-H9wwuXbJMPi8V78FtePfyed2SlPz4aquFgdPiaPI2xfqba7lkny5fTq-wNAKBL87b2Mkq-P7Zj_wPpRhnZ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wNcaHmpW0plIeCCvJvEcRwjLqtqqxWCwqErFSQU-RGLQppU7S7Q_nrGTrIUBAhxtUeJMx7nm7HH3wA8ZsY6blJBYy40TR2LKMIwpzq2knPrnRK_NfD6MJvN05fH_HgNXvR3YT6pk_NwgB_IAj1DRGgad3ocW08h3yg7RmDG2A3hRYp12Mg4euID2Jgfvp28a9MMMypFIPrEMJ1RHjHR5b0jgLWviUfhIT8h0vpHnw95zdm8sazP1OVXVVXXcOdgEz70I27TTT6Plgs9Mle_kDn-7ydtwa3OISWTVuw2rJX1Hdjsiz2Qbu3fhffTtpbsG_zHnD4nE3LUNJVuvhH0egl6kSR0dLc6SePIfpsETwLzMMbj5KQm0x_1aL1xEF-Jrbq4B_OD6dH-jHaFGahJMGSmRiqhFeeJyywGRCZGFduU51oohnAnmWRGOWZSHblcSZdL7qxlPLKqtCXj7D4M6qYut4EIoRFCUwyUc_SNMp2XRkdp7KQqmUy5GcKzfnIK07GW--IZVeGjF5zKwuuyiIugvCE8WUmftWwdf5B7hPO8EvEU27PJq8K3-SMnX1PzSzKE3d4Mim5hXxSesU3GSSKi33djPOjr6ko2hKcry_nrWHb-VfAB3Ex8Qk3Y_9mFweJ8WT5Ej2ih9zrD_w4qTQkE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EpidemiOptim%3A+A+Toolbox+for+the+Optimization+of+Control+Policies+in+Epidemiological+Models&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Colas%2C+C%C3%A9dric&rft.au=Hejblum%2C+Boris&rft.au=Rouillon%2C+Sebastien&rft.au=Thi%C3%A9baut%2C+Rodolphe&rft.date=2021&rft.pub=AI+Access+Foundation&rft.issn=1076-9757&rft.eissn=1943-5037&rft.volume=71&rft.spage=479&rft_id=info:doi/10.1613%2Fjair.1.12588 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon |