EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models

Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation, lockdown, vaccination,etc). Hand-designing such strategies is not trivial because of the number of possibleinterventions and the difficulty to predi...

Full description

Saved in:
Bibliographic Details
Published inIDEAS Working Paper Series from RePEc Vol. 71; pp. 479 - 519
Main Authors Colas, Cédric, Hejblum, Boris, Rouillon, Sebastien, Thiébaut, Rodolphe, Oudeyer, Pierre-Yves, Moulin-Frier, Clément, Prague, Mélanie
Format Journal Article Paper
LanguageEnglish
Published San Francisco AI Access Foundation 2021
Federal Reserve Bank of St. Louis
Association for the Advancement of Artificial Intelligence
Subjects
Online AccessGet full text
ISSN1076-9757
1943-5037
1076-9757
1943-5037
DOI10.1613/jair.1.12588

Cover

Abstract Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation, lockdown, vaccination,etc). Hand-designing such strategies is not trivial because of the number of possibleinterventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain|epidemic modeling or solving optimization problems|requires strong collaborationsbetween researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers inepidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on QLearning with deep neural networks (DQN) and evolutionary algorithms (NSGA-II) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies fordynamical on-o  lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (SEIR) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choicesto be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. This article is part of the special track on AI and COVID-19.
AbstractList Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation, lockdown, vaccination,etc). Hand-designing such strategies is not trivial because of the number of possibleinterventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain|epidemic modeling or solving optimization problems|requires strong collaborationsbetween researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers inepidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on QLearning with deep neural networks (DQN) and evolutionary algorithms (NSGA-II) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies fordynamical on-o  lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (SEIR) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choicesto be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. This article is part of the special track on AI and COVID-19.
Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceutical and non-pharmaceutical interventions (contact limitation, lockdown, vaccination, etc). Hand-designing such strategies is not trivial because of the number of possible interventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain—epidemic modeling or solving optimization problems—requires strong collaborations between researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers in epidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on Q-Learning with deep neural networks (dqn) and evolutionary algorithms (nsga-ii) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies for dynamical on-off lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (seir) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choices to be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. ©2021 AI Access Foundation. All rights reserved.
Modelling the dynamics of epidemics helps proposing control strategies based on phar-maceutical and non-pharmaceutical interventions (contact limitation, lock down, vaccina-tion, etc). Hand-designing such strategies is not trivial because of the number of pos-sible interventions and the difficulty to predict long-term effects. This task can be castas an optimization problem where state-of-the-art machine learning algorithms such asdeep reinforcement learning, might bring significant value. However, the specificity ofeach domain – epidemic modelling or solving optimization problem – requires strong col-laborations between researchers from different fields of expertise. This is why we intro-duce EpidemiOptim, a Python toolbox that facilitates collaborations between researchersin epidemiology and optimization. EpidemiOptim turns epidemiological models and costfunctions into optimization problems via a standard interface commonly used by optimiza-tion practitioners (OpenAI Gym). Reinforcement learning algorithms based on Q-Learningwith deep neural networks (dqn) and evolutionary algorithms (nsga-ii) are already im-plemented. We illustrate the use of EpidemiOptim to find optimal policies for dynamicalon-off lock-down control under the optimization of death toll and economic recess using aSusceptible-Exposed-Infectious-Removed (seir) model for COVID-19. Using EpidemiOp-tim and its interactive visualization platform in Jupyter notebooks, epidemiologists, op-timization practitioners and others (e.g. economists) can easily compare epidemiologicalmodels, costs functions and optimization algorithms to address important choices to bemade by health decision-makers. Trained models can be explored by experts and non-experts via a web interface.
Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation, lockdown, vaccination,etc). Hand-designing such strategies is not trivial because of the number of possibleinterventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain|epidemic modeling or solving optimization problems|requires strong collaborationsbetween researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers inepidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on QLearning with deep neural networks (DQN) and evolutionary algorithms (NSGA-II) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies fordynamical on-o  lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (SEIR) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choicesto be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. This article is part of the special track on AI and COVID-19.
Author Colas, Cédric
Rouillon, Sebastien
Thiébaut, Rodolphe
Moulin-Frier, Clément
Prague, Mélanie
Oudeyer, Pierre-Yves
Hejblum, Boris
Author_xml – sequence: 1
  givenname: Cédric
  surname: Colas
  fullname: Colas, Cédric
– sequence: 2
  givenname: Boris
  surname: Hejblum
  fullname: Hejblum, Boris
– sequence: 3
  givenname: Sebastien
  surname: Rouillon
  fullname: Rouillon, Sebastien
– sequence: 4
  givenname: Rodolphe
  surname: Thiébaut
  fullname: Thiébaut, Rodolphe
– sequence: 5
  givenname: Pierre-Yves
  surname: Oudeyer
  fullname: Oudeyer, Pierre-Yves
– sequence: 6
  givenname: Clément
  surname: Moulin-Frier
  fullname: Moulin-Frier, Clément
– sequence: 7
  givenname: Mélanie
  surname: Prague
  fullname: Prague, Mélanie
BackLink https://inria.hal.science/hal-03099898$$DView record in HAL
BookMark eNp9kMtLAzEQxoMo-Lz5BwQ8CW7No9lNvJVSH1DRQ714CWk20ZR0Z81uff31bltBEexphpnfDN_37aPtCiqH0DElPZpTfj4zIfVojzIh5Rbao6TIM1WIYvtXv4v2m2ZGCFV9JvfQ46gOpZuHu7oN8ws8wBOAOIV37CHh9tnh1SJ8mjZAhcHjIVRtgojvIQYbXINDhb9_QISnYE3Et1C62ByiHW9i446-6wF6uBxNhtfZ-O7qZjgYZ5YVUmZWmWJqhGA-L3OWW9opK_tCTgvDmewrrrg1ntv-lHhplJdK-LLkgpTGlY4LfoCy9d9FVZuPNxOjrlOYm_ShKdHLYPQyGE31KpiOP13zz-aHBBP09WCslzPCiVJSyVfWsSdrtk7wsnBNq2ewSFVnR7Oc5EoQqfhGSohcUcYK0lFsTdkETZOc1za0q1zbZEL8T-zZn6ON3r4Ad2Kezg
CitedBy_id crossref_primary_10_3389_fpubh_2022_994949
crossref_primary_10_3934_mbe_2023640
crossref_primary_10_1016_j_orp_2023_100293
crossref_primary_10_1016_j_trip_2024_101183
crossref_primary_10_1016_j_ins_2023_119065
crossref_primary_10_1371_journal_pcbi_1012010
crossref_primary_10_1038_s41467_024_55461_x
crossref_primary_10_3390_a16030140
crossref_primary_10_1051_mmnp_2024005
ContentType Journal Article
Paper
Copyright 2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
2021. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://research.stlouisfed.org/research_terms.html .
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
– notice: 2021. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://research.stlouisfed.org/research_terms.html .
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
AAFGM
ABLUL
ABPUF
ABSSA
ACIOU
ADZZV
AGAJT
AGSBL
AJNOY
AQTIP
BEZIV
BOUDT
CBHQV
FRNLG
F~G
K60
K6~
L.-
M0C
PQBIZ
PQBZA
PQCXX
Q9U
1XC
VOOES
ADTOC
UNPAY
DOI 10.1613/jair.1.12588
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central Korea - hybrid linking
Business Premium Collection - hybrid linking
ABI/INFORM Collection (Alumni) - hybrid linking
ABI/INFORM Collection - hybrid linking
ABI/INFORM Global - hybrid linking
ProQuest Central (Alumni) - hybrid linking
ProQuest Central Essentials - hybrid linking
ABI/INFORM Global (Alumni) - hybrid linking
Business Premium Collection (Alumni) - hybrid linking
ProQuest Women's & Gender Studies - hybrid linking
Business Premium Collection
ProQuest One Business - hybrid linking
ProQuest One Business (Alumni) - hybrid linking
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest Central - hybrid linking
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ABI/INFORM Complete
ABI/INFORM Professional Advanced
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Business Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1076-9757
1943-5037
EndPage 519
ExternalDocumentID 10.1613/jair.1.12588
oai:HAL:hal-03099898v2
10_1613_jair_1_12588
Genre Working Paper/Pre-Print
GroupedDBID .DC
29J
2WC
5GY
5VS
AAKMM
AAKPC
AALFJ
AAYFX
AAYXX
ACGFO
ACM
ADBBV
ADBSK
ADMLS
AEFXT
AEJOY
AENEX
AFKRA
AFWXC
AKRVB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
EBS
EJD
F5P
FRJ
FRP
GROUPED_DOAJ
GUFHI
HCIFZ
K7-
KQ8
LHSKQ
LPJ
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
TR2
XSB
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
3V.
7WY
7XB
8FK
8FL
BEZIV
FRNLG
K60
K6~
L.-
M0C
PQBIZ
PQBZA
Q9U
1XC
VOOES
ADTOC
AFFNX
C1A
UNPAY
ID FETCH-LOGICAL-c2788-c9a7ba552f6d626c1194d458b7a32849393caf3c4b0f8a9f895fdd350daede353
IEDL.DBID BENPR
ISSN 1076-9757
1943-5037
IngestDate Sun Oct 26 04:01:14 EDT 2025
Tue Oct 14 20:33:33 EDT 2025
Mon Jun 30 17:13:43 EDT 2025
Fri Jul 25 07:42:33 EDT 2025
Wed Oct 01 04:00:54 EDT 2025
Thu Apr 24 22:52:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Decision Making
Visualization
Cost Functions
Epidemiological Models
Control Strategies
Optimization Algorithms
Reinforcement Learning
Learning Systems
Deep Neural Networks
Epidemiology
Optimization
Learning Algorithms
Deep Learning
Non-Pharmaceutical Interventions
Optimization Problems
Interactive Visualizations
Standard Interface
Evolutionary Algorithms
State-Of-The-Art Machine Learning Methods
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2788-c9a7ba552f6d626c1194d458b7a32849393caf3c4b0f8a9f895fdd350daede353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ORCID 0000-0002-5235-3962
0000-0002-9404-7613
0000-0001-9809-7848
0000-0003-0212-427X
0000-0002-1277-130X
0000-0002-7258-7256
0000-0003-0646-452X
OpenAccessLink https://www.proquest.com/docview/2606950893?pq-origsite=%requestingapplication%&accountid=15518
PQID 2556912270
PQPubID 5160723
PageCount 41
ParticipantIDs unpaywall_primary_10_1613_jair_1_12588
hal_primary_oai_HAL_hal_03099898v2
proquest_journals_2606950893
proquest_journals_2556912270
crossref_citationtrail_10_1613_jair_1_12588
crossref_primary_10_1613_jair_1_12588
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: St. Louis
PublicationTitle IDEAS Working Paper Series from RePEc
PublicationYear 2021
Publisher AI Access Foundation
Federal Reserve Bank of St. Louis
Association for the Advancement of Artificial Intelligence
Publisher_xml – name: AI Access Foundation
– name: Federal Reserve Bank of St. Louis
– name: Association for the Advancement of Artificial Intelligence
SSID ssj0019428
Score 2.4037938
Snippet Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation,...
Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceutical and non-pharmaceutical interventions (contact limitation,...
Modelling the dynamics of epidemics helps proposing control strategies based on phar-maceutical and non-pharmaceutical interventions (contact limitation, lock...
SourceID unpaywall
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 479
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Computer Science
Coronaviruses
Cost function
COVID-19
Decision making
Deep learning
Disease control
Economic models
Epidemics
Epidemiology
Evolutionary algorithms
Fatalities
Life Sciences
Machine Learning
Modelling
Optimization
Policies
Quantitative Methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wNcaHmpW0plIeCCvJvEcRwjLqtqqxWCwqErFSQU-RGLQppU7S7Q_nrGTrIUBAhxtUeJMx7nm7HH3wA8ZsY6blJBYy40TR2LKMIwpzq2knPrnRK_NfD6MJvN05fH_HgNXvR3YT6pk_NwgB_IAj1DRGgad3ocW08h3yg7RmDG2A3hRYp12Mg4euID2Jgfvp28a9MMMypFIPrEMJ1RHjHR5b0jgLWviUfhIT8h0vpHnw95zdm8sazP1OVXVVXXcOdgEz70I27TTT6Plgs9Mle_kDn-7ydtwa3OISWTVuw2rJX1Hdjsiz2Qbu3fhffTtpbsG_zHnD4nE3LUNJVuvhH0egl6kSR0dLc6SePIfpsETwLzMMbj5KQm0x_1aL1xEF-Jrbq4B_OD6dH-jHaFGahJMGSmRiqhFeeJyywGRCZGFduU51oohnAnmWRGOWZSHblcSZdL7qxlPLKqtCXj7D4M6qYut4EIoRFCUwyUc_SNMp2XRkdp7KQqmUy5GcKzfnIK07GW--IZVeGjF5zKwuuyiIugvCE8WUmftWwdf5B7hPO8EvEU27PJq8K3-SMnX1PzSzKE3d4Mim5hXxSesU3GSSKi33djPOjr6ko2hKcry_nrWHb-VfAB3Ex8Qk3Y_9mFweJ8WT5Ej2ih9zrD_w4qTQkE
  priority: 102
  providerName: Unpaywall
Title EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models
URI https://www.proquest.com/docview/2556912270
https://www.proquest.com/docview/2606950893
https://inria.hal.science/hal-03099898
https://jair.org/index.php/jair/article/download/12588/26697
UnpaywallVersion publishedVersion
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: KQ8
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: DOA
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: AMVHM
  dateStart: 20130501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: ADMLS
  dateStart: 20130501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: BENPR
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6t7QO8DQGisFUWAl5QtiS2mxgJTWVqKROUalqlwUvkH7HYlCWl22D899ylSbcH2GNiK4rubH939vn7AF5x67y0IgkimZhAeB4GCMMyMJFTUjoKSmhr4MtsOF2Io1N5ugWz9i4MlVW2a2K9ULvK0h75PsbdQ1IsVfxg-TMg1Sg6XW0lNHQjreDe1xRjHejFxIzVhd6H8Wx-3FS8I3TtH40-He9Fe4jrtdjKLRZ1flAl5J0w88F1udR_fuuiuIM4k23ozfUyXz2Crbx8DN_HayHXrzjBL96xETupqsJUNwxDToYhHKsbmiuVrPLscF2BzmraX0yG2VnJxrdisOQZRjJoxeUTWEzGJ4fToFFFCGyM-WpglU6MljL2Q4fZiI0iJZyQqUk0R6xRXHGrPbfChD7VyqdKeue4DJ3OXc4lfwrdsirzZ8CSxCB-CcxSUwxMhibNrQlF5JXOuRLS9uFta5_MNpThpFxRZJQ6oDWzc322yqKstmYfXm96L9dUGf_p9xJNvelC_NbT0eeM3tF5Dwla_or7sNN6Imtm1WVGdGkqiuMk_HfzZoj04c3Geff-y_P7v_MCHsZUw1JvuexA92p1ne9iEHJlBtBJJx8Hzfga1Kk8Pi1m89G3v68M4CM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYYfWBvTGNaN7ZZaOxlCiSx3cST0FRYUQulQ6hIaC-ef8SCKUu6Fsb45_a37S5NCg-MN15jK4rOl7vvs8_3EfKeWeeF5UkQicQE3LMwgDQsAhM5KYRDUIJbA0ejTv-UH5yJsyXyt7kLg2WVTUysArUrLe6RbwPu7qBiqWSfJ78CVI3C09VGQkPX0gpup2oxVl_sOMxuroHCzXYGX2C9N-N4vzfe6we1ykBgY-B_gZU6MVqI2HccoHsbAa13XKQm0Qxit2SSWe2Z5Sb0qZY-lcI7x0TodOaySjUCUkCLMy6B_LV2e6Pjk7rCHlLl9kF3cLIVbQGOqMRdbnPfk3OsvLwDa1euiom-udZ5fifD7a-S1rGeZNNnZCkrnpNvvblw7FcIKD8_0S4dl2Vuyj8UIC4FyEirgfoKJy093ZtXvNOqzTCQb3pR0N6t-Cx6AkXZtXy2Rk4fxT4vyHJRFtlLQpPEQL7kwIpTAEIdk2bWhDzyUmdMcmHb5GNjH2XrFuWolJErpCpgTfVDX0xVpCprtsnmYvZk3prjP_M2wNSLKdhPu98dKnyG50sooPk7bpP1ZiVU_RfPFLZnk1EcJ-H9wwuXbJMPi8V78FtePfyed2SlPz4aquFgdPiaPI2xfqba7lkny5fTq-wNAKBL87b2Mkq-P7Zj_wPpRhnZ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wNcaHmpW0plIeCCvJvEcRwjLqtqqxWCwqErFSQU-RGLQppU7S7Q_nrGTrIUBAhxtUeJMx7nm7HH3wA8ZsY6blJBYy40TR2LKMIwpzq2knPrnRK_NfD6MJvN05fH_HgNXvR3YT6pk_NwgB_IAj1DRGgad3ocW08h3yg7RmDG2A3hRYp12Mg4euID2Jgfvp28a9MMMypFIPrEMJ1RHjHR5b0jgLWviUfhIT8h0vpHnw95zdm8sazP1OVXVVXXcOdgEz70I27TTT6Plgs9Mle_kDn-7ydtwa3OISWTVuw2rJX1Hdjsiz2Qbu3fhffTtpbsG_zHnD4nE3LUNJVuvhH0egl6kSR0dLc6SePIfpsETwLzMMbj5KQm0x_1aL1xEF-Jrbq4B_OD6dH-jHaFGahJMGSmRiqhFeeJyywGRCZGFduU51oohnAnmWRGOWZSHblcSZdL7qxlPLKqtCXj7D4M6qYut4EIoRFCUwyUc_SNMp2XRkdp7KQqmUy5GcKzfnIK07GW--IZVeGjF5zKwuuyiIugvCE8WUmftWwdf5B7hPO8EvEU27PJq8K3-SMnX1PzSzKE3d4Mim5hXxSesU3GSSKi33djPOjr6ko2hKcry_nrWHb-VfAB3Ex8Qk3Y_9mFweJ8WT5Ej2ih9zrD_w4qTQkE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EpidemiOptim%3A+A+Toolbox+for+the+Optimization+of+Control+Policies+in+Epidemiological+Models&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Colas%2C+C%C3%A9dric&rft.au=Hejblum%2C+Boris&rft.au=Rouillon%2C+Sebastien&rft.au=Thi%C3%A9baut%2C+Rodolphe&rft.date=2021&rft.pub=AI+Access+Foundation&rft.issn=1076-9757&rft.eissn=1943-5037&rft.volume=71&rft.spage=479&rft_id=info:doi/10.1613%2Fjair.1.12588
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon