How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda
Data availability and accessibility have brought in unseen changes in the finance systems and new theoretical and computational challenges. For example, in contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that rely heavily...
Saved in:
| Published in | International journal of information management data insights Vol. 2; no. 2; p. 100094 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier
01.11.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2667-0968 2667-0968 |
| DOI | 10.1016/j.jjimei.2022.100094 |
Cover
| Abstract | Data availability and accessibility have brought in unseen changes in the finance systems and new theoretical and computational challenges. For example, in contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that rely heavily on model assumptions, new developments from reinforcement learning (RL) can make full use of a large amount of financial data with fewer model assumptions and improve decisions in complex economic environments. This paper reviews the developments and use of Deep Learning(DL), RL, and Deep Reinforcement Learning (DRL)methods in information-based decision-making in financial industries. Therefore, it is necessary to understand the variety of learning methods, related terminology, and their applicability in the financial field. First, we introduce Markov decision processes, followed by Various algorithms focusing on value and policy-based methods that do not require any model assumptions. Next, connections are made with neural networks to extend the framework to encompass deep RL algorithms. Finally, the paper concludes by discussing the application of these RL and DRL algorithms in various decision-making problems in finance, including optimal execution, portfolio optimization, option pricing, hedging, and market-making. The survey results indicate that RL and DRL can provide better performance and higher efficiency than traditional algorithms while facing real economic problems in risk parameters and ever-increasing uncertainties. Moreover, it offers academics and practitioners insight and direction on the state-of-the-art application of deep learning models in finance. |
|---|---|
| AbstractList | Data availability and accessibility have brought in unseen changes in the finance systems and new theoretical and computational challenges. For example, in contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that rely heavily on model assumptions, new developments from reinforcement learning (RL) can make full use of a large amount of financial data with fewer model assumptions and improve decisions in complex economic environments. This paper reviews the developments and use of Deep Learning(DL), RL, and Deep Reinforcement Learning (DRL)methods in information-based decision-making in financial industries. Therefore, it is necessary to understand the variety of learning methods, related terminology, and their applicability in the financial field. First, we introduce Markov decision processes, followed by Various algorithms focusing on value and policy-based methods that do not require any model assumptions. Next, connections are made with neural networks to extend the framework to encompass deep RL algorithms. Finally, the paper concludes by discussing the application of these RL and DRL algorithms in various decision-making problems in finance, including optimal execution, portfolio optimization, option pricing, hedging, and market-making. The survey results indicate that RL and DRL can provide better performance and higher efficiency than traditional algorithms while facing real economic problems in risk parameters and ever-increasing uncertainties. Moreover, it offers academics and practitioners insight and direction on the state-of-the-art application of deep learning models in finance. |
| ArticleNumber | 100094 |
| Author | Chen, Shiuann-Shuoh kar, Arpan kumar Singhania, Minal Nanavati, Brijesh Singh, Vinay Gupta, Agam |
| Author_xml | – sequence: 1 givenname: Vinay orcidid: 0000-0002-8401-1123 surname: Singh fullname: Singh, Vinay – sequence: 2 givenname: Shiuann-Shuoh surname: Chen fullname: Chen, Shiuann-Shuoh – sequence: 3 givenname: Minal surname: Singhania fullname: Singhania, Minal – sequence: 4 givenname: Brijesh surname: Nanavati fullname: Nanavati, Brijesh – sequence: 5 givenname: Arpan kumar surname: kar fullname: kar, Arpan kumar – sequence: 6 givenname: Agam surname: Gupta fullname: Gupta, Agam |
| BookMark | eNqNkcFu1DAURS1UJErpH7DwD8xgO4kTd1dVLa1UiQ2srRf7OXWa2CM7w6g7_oEdn8eX4GkQqtjA6vld-dwrvfuWnIQYkJD3nG054_LDuB1HP6PfCiZEkRhT9StyKqRsN0zJ7uTF-w05z3ksX0THuZD8lPy4jQcKCWlCH1xMBmcMC50QUvBhoBAstYi7F8o0xOSXhznTfUZLC0R7P1ALC9AejpJF47OPgc7weER8oM4HCMbDVBa7z0vymH9--35Zcr96PDznJMwlxDxQGDBYeEdeO5gynv-eZ-TLzfXnq9vN_aePd1eX9xsj2q7eONXIGltlqw7ruumdaXnDbFX1VWNF7XrXS8ZF45rWMAlNb5TqrbTcdVyBguqM3K2-NsKod8nPkJ50BK-fhZgGDWnxZkLNAYR0rBaKdTVirwwwhZUQzqLgKItXs3rtww6eDjBNfww508e-9KjXvvSxL732VbiLlTMp5pzQaeMXWMoNlwR--hdc_wX_V-YvLH21TA |
| CitedBy_id | crossref_primary_10_1007_s00607_024_01269_y crossref_primary_10_1108_MD_10_2023_1926 crossref_primary_10_1007_s10796_022_10314_0 crossref_primary_10_1080_08874417_2023_2219668 crossref_primary_10_33317_ssurj_653 crossref_primary_10_1108_MD_09_2023_1525 crossref_primary_10_7717_peerj_cs_1998 crossref_primary_10_1016_j_jjimei_2024_100214 crossref_primary_10_1049_cit2_12359 crossref_primary_10_1016_j_eswa_2023_121475 crossref_primary_10_1016_j_jjimei_2023_100176 crossref_primary_10_1016_j_jjimei_2023_100177 crossref_primary_10_1016_j_jjimei_2023_100193 crossref_primary_10_1007_s40171_023_00356_x crossref_primary_10_1016_j_jjimei_2024_100251 crossref_primary_10_53982_ajerd_2023_0602_10_j crossref_primary_10_1016_j_jjimei_2023_100190 crossref_primary_10_1016_j_cie_2024_110044 crossref_primary_10_1109_ACCESS_2024_3378749 crossref_primary_10_69725_raida_v1i3_169 crossref_primary_10_35234_fumbd_1406688 crossref_primary_10_1016_j_jclepro_2022_134120 crossref_primary_10_1002_isaf_1565 crossref_primary_10_1088_1361_6579_acb03b crossref_primary_10_4018_JGIM_321728 crossref_primary_10_1109_ACCESS_2024_3515039 crossref_primary_10_1016_j_iswa_2023_200181 crossref_primary_10_4018_JOEUC_345244 crossref_primary_10_1016_j_energy_2024_132938 crossref_primary_10_1109_JIOT_2024_3486714 crossref_primary_10_1007_s10489_024_06107_4 crossref_primary_10_3390_su151310480 crossref_primary_10_1002_widm_1548 crossref_primary_10_4018_JOEUC_345242 crossref_primary_10_1016_j_jjimei_2023_100157 crossref_primary_10_1108_BPMJ_07_2024_0546 crossref_primary_10_1016_j_jjimei_2022_100153 crossref_primary_10_1142_S0219622022500961 crossref_primary_10_1016_j_jjimei_2024_100230 crossref_primary_10_1016_j_ejor_2023_12_025 crossref_primary_10_1109_ACCESS_2024_3449396 crossref_primary_10_1016_j_ijinfomgt_2023_102642 crossref_primary_10_1111_exsy_13725 crossref_primary_10_1007_s42979_023_02375_y crossref_primary_10_4018_JOEUC_343256 crossref_primary_10_4018_JOEUC_340383 crossref_primary_10_1016_j_jjimei_2023_100209 crossref_primary_10_1016_j_jjimei_2022_100105 crossref_primary_10_3390_risks13030040 crossref_primary_10_1142_S0219477524400236 crossref_primary_10_1016_j_jjimei_2023_100201 crossref_primary_10_1016_j_jjimei_2025_100324 crossref_primary_10_1016_j_teler_2024_100171 crossref_primary_10_1016_j_jjimei_2025_100323 crossref_primary_10_1016_j_jjimei_2022_100146 crossref_primary_10_4018_JOEUC_358454 crossref_primary_10_7717_peerj_cs_2690 |
| Cites_doi | 10.1016/j.eswa.2019.04.013 10.2139/ssrn.3428125 10.2139/ssrn.3971071 10.1016/j.jjimei.2021.100028 10.1137/19M1288012 10.1109/JSYST.2019.2891520 10.1016/j.eswa.2018.01.037 10.1111/1475-679X.12123 10.1007/BF00114723 10.2307/2171959 10.1016/j.ejor.2019.08.022 10.1016/j.eswa.2021.114632 10.1126/science.aar6404 10.1016/j.dss.2018.06.002 10.1515/jisys-2017-0567 10.1109/TSMC.2015.2417510 10.1371/journal.pone.0180944 10.1016/j.eswa.2019.112872 10.1016/j.engappai.2016.12.002 10.1073/pnas.1718942115 10.1016/j.knosys.2016.10.003 10.1109/ACCESS.2019.2938240 10.1007/s00521-021-06853-3 10.1016/j.dss.2010.08.006 10.1016/j.procs.2018.07.288 10.1016/j.eswa.2018.08.005 10.1016/j.asoc.2018.04.049 10.1016/j.jjimei.2020.100002 10.1109/TNNLS.2021.3139138 10.1016/j.jjimei.2021.100008 10.1016/j.cose.2015.09.005 10.1007/s11227-018-2577-1 10.1016/j.ejor.2020.09.051 10.3390/math8101640 10.1016/j.dss.2017.11.001 10.1109/ACCESS.2021.3052054 10.1016/j.eswa.2018.09.036 10.2139/ssrn.3228485 10.1016/j.eswa.2018.09.039 10.1126/science.aau6249 10.1016/j.asoc.2020.106384 10.3233/AF-170176 10.1016/j.aej.2021.12.022 10.1016/j.knosys.2017.12.025 10.1162/REST_a_00537 10.1016/j.eswa.2018.06.032 10.1007/s10994-021-06020-8 10.1016/j.jjimei.2021.100017 10.1186/2046-4053-4-1 10.1016/j.jretconser.2021.102573 10.1016/j.neucom.2016.12.110 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.jjimei.2022.100094 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Sciences (General) |
| EISSN | 2667-0968 |
| ExternalDocumentID | oai_doaj_org_article_1aa26f0429084eeb9ca09e322fde21e6 10.1016/j.jjimei.2022.100094 10_1016_j_jjimei_2022_100094 |
| GroupedDBID | 0R~ AAEDW AALRI AAXUO AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP CITATION EBS FDB GROUPED_DOAJ M~E OK1 ROL ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2784-f9564e79d38e445bfc7150d33b35d24fbfb60125f57c06a5bc99bd6d1f819a9a3 |
| IEDL.DBID | DOA |
| ISSN | 2667-0968 |
| IngestDate | Fri Oct 03 12:53:20 EDT 2025 Tue Aug 19 18:21:42 EDT 2025 Tue Jul 01 01:06:12 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2784-f9564e79d38e445bfc7150d33b35d24fbfb60125f57c06a5bc99bd6d1f819a9a3 |
| ORCID | 0000-0002-8401-1123 |
| OpenAccessLink | https://doaj.org/article/1aa26f0429084eeb9ca09e322fde21e6 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1aa26f0429084eeb9ca09e322fde21e6 unpaywall_primary_10_1016_j_jjimei_2022_100094 crossref_citationtrail_10_1016_j_jjimei_2022_100094 crossref_primary_10_1016_j_jjimei_2022_100094 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-00 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-00 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of information management data insights |
| PublicationYear | 2022 |
| Publisher | Elsevier |
| Publisher_xml | – name: Elsevier |
| References | Lei (10.1016/j.jjimei.2022.100094_bib0052) 2020; 140 10.1016/j.jjimei.2022.100094_bib0100 Chi (10.1016/j.jjimei.2022.100094_bib0017) 2021; 9 Rönnqvist (10.1016/j.jjimei.2022.100094_bib0082) 2017; 264 Zhang (10.1016/j.jjimei.2022.100094_bib0105) 2020; 58 10.1016/j.jjimei.2022.100094_bib0028 Luo (10.1016/j.jjimei.2022.100094_bib0062) 2017; 65 Dai (10.1016/j.jjimei.2022.100094_bib0018) 2022 Silver (10.1016/j.jjimei.2022.100094_bib0087) 2018; 362 Du (10.1016/j.jjimei.2022.100094_bib0022) 2016; 1 10.1016/j.jjimei.2022.100094_bib0030 Mosavi (10.1016/j.jjimei.2022.100094_bib0069) 2020; 8 Lee (10.1016/j.jjimei.2022.100094_bib0050) 2017 Li (10.1016/j.jjimei.2022.100094_bib0055) 2019; 7 Rawte (10.1016/j.jjimei.2022.100094_bib0080) 2018 Iwasaki (10.1016/j.jjimei.2022.100094_bib0037) 2018 Jiang (10.1016/j.jjimei.2022.100094_bib0041) 2017 Jurgovsky (10.1016/j.jjimei.2022.100094_bib0042) 2018; 100 Puterman (10.1016/j.jjimei.2022.100094_bib0078) 2014 Schulman (10.1016/j.jjimei.2022.100094_bib0084) 2015 Loughran (10.1016/j.jjimei.2022.100094_bib0061) 2016; 54 Mahmoudi (10.1016/j.jjimei.2022.100094_bib0063) 2018; 112 Hsu (10.1016/j.jjimei.2022.100094_bib0036) 2018 Boukas (10.1016/j.jjimei.2022.100094_bib0007) 2021; 110 Almahdi (10.1016/j.jjimei.2022.100094_bib0001) 2019; 130 Dixon (10.1016/j.jjimei.2022.100094_bib0021) 2017; 6 Jaderberg (10.1016/j.jjimei.2022.100094_bib0038) 2019; 364 10.1016/j.jjimei.2022.100094_bib0011 10.1016/j.jjimei.2022.100094_bib0058 Zhang (10.1016/j.jjimei.2022.100094_bib0106) 2022; 61 10.1016/j.jjimei.2022.100094_bib0057 Yang (10.1016/j.jjimei.2022.100094_bib0101) 2019; 14 Fujimoto (10.1016/j.jjimei.2022.100094_bib0025) 2018 Jiang (10.1016/j.jjimei.2022.100094_bib0040) 2020 Chang (10.1016/j.jjimei.2022.100094_bib0012) 2016 Day (10.1016/j.jjimei.2022.100094_bib0019) 2016 Zhang (10.1016/j.jjimei.2022.100094_bib0107) 2018; 143 Bradtke (10.1016/j.jjimei.2022.100094_bib0008) 1996; 22 Saleh (10.1016/j.jjimei.2022.100094_bib0083) 2020 Tsantekidis (10.1016/j.jjimei.2022.100094_bib0094) 2017 Bergemann (10.1016/j.jjimei.2022.100094_bib0006) 1996; 64 Liu (10.1016/j.jjimei.2022.100094_bib0060) 2015; 45 Moher (10.1016/j.jjimei.2022.100094_bib0068) 2015; 4 Sharma (10.1016/j.jjimei.2022.100094_bib0086) 2021; 1 Lanbouri (10.1016/j.jjimei.2022.100094_bib0049) 2015 Zhu (10.1016/j.jjimei.2022.100094_bib0109) 2018 Heryadi (10.1016/j.jjimei.2022.100094_bib0034) 2017 Bari (10.1016/j.jjimei.2022.100094_bib0005) 2020; 29 Ngai (10.1016/j.jjimei.2022.100094_bib0074) 2011; 50 Bao (10.1016/j.jjimei.2022.100094_bib0004) 2017; 12 Han (10.1016/j.jjimei.2022.100094_bib0031) 2018; 115 Gomes (10.1016/j.jjimei.2022.100094_bib0027) 2017 Singh (10.1016/j.jjimei.2022.100094_bib0088) 2022 Kumar (10.1016/j.jjimei.2022.100094_bib0046) 2016; 114 Neagoe (10.1016/j.jjimei.2022.100094_bib0072) 2018 Haarnoja (10.1016/j.jjimei.2022.100094_bib0029) 2018 Sohangir (10.1016/j.jjimei.2022.100094_bib0091) 2018 Cerchiello (10.1016/j.jjimei.2022.100094_bib0010) 2018 Serrano (10.1016/j.jjimei.2022.100094_bib0085) 2018; 126 Théate (10.1016/j.jjimei.2022.100094_bib0093) 2021; 173 Li (10.1016/j.jjimei.2022.100094_bib0056) 2017 Kumar (10.1016/j.jjimei.2022.100094_bib0047) 2021; 1 10.1016/j.jjimei.2022.100094_bib0097 Chatzis (10.1016/j.jjimei.2022.100094_bib0013) 2018; 112 Lim (10.1016/j.jjimei.2022.100094_bib0059) 2021; 34 Mnih (10.1016/j.jjimei.2022.100094_bib0067) 2016 Yu (10.1016/j.jjimei.2022.100094_bib0103) 2018; 69 Kushwaha (10.1016/j.jjimei.2022.100094_bib0048) 2021; 1 Jeong (10.1016/j.jjimei.2022.100094_bib0039) 2019; 117 Lee (10.1016/j.jjimei.2022.100094_bib0051) 2020; 76 Chen (10.1016/j.jjimei.2022.100094_bib0016) 2020; 23 West (10.1016/j.jjimei.2022.100094_bib0099) 2016; 57 Hosaka (10.1016/j.jjimei.2022.100094_bib0035) 2019; 117 Ying (10.1016/j.jjimei.2022.100094_bib0102) 2017 Singh (10.1016/j.jjimei.2022.100094_bib0089) 2022 Li (10.1016/j.jjimei.2022.100094_bib0054) 2020; 281 Ng (10.1016/j.jjimei.2022.100094_bib0073) 2018 Brzeszczyński (10.1016/j.jjimei.2022.100094_bib0009) 2019; 118 Chen (10.1016/j.jjimei.2022.100094_bib0015) 2021; 61 Rönnqvist (10.1016/j.jjimei.2022.100094_bib0081) 2015 Wang (10.1016/j.jjimei.2022.100094_bib0098) 2018; 105 Mavrotas (10.1016/j.jjimei.2022.100094_bib0065) 2021; 291 Arjun (10.1016/j.jjimei.2022.100094_bib0002) 2021; 1 Otterlo (10.1016/j.jjimei.2022.100094_bib0075) 2012 Ozbayoglu (10.1016/j.jjimei.2022.100094_bib0076) 2020; 93 Gobillon (10.1016/j.jjimei.2022.100094_bib0026) 2016; 98 Verma (10.1016/j.jjimei.2022.100094_bib0096) 2021; 1 |
| References_xml | – volume: 130 start-page: 145 year: 2019 ident: 10.1016/j.jjimei.2022.100094_bib0001 article-title: A constrained portfolio trading system using particle swarm algorithm and recurrent reinforcement learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.04.013 – ident: 10.1016/j.jjimei.2022.100094_bib0097 doi: 10.2139/ssrn.3428125 – start-page: 1866 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0102 article-title: A preliminary study on deep learning for predicting social insurance payment behavior – ident: 10.1016/j.jjimei.2022.100094_bib0030 doi: 10.2139/ssrn.3971071 – start-page: 890 year: 2015 ident: 10.1016/j.jjimei.2022.100094_bib0081 article-title: Detect & describe: Deep learning of bank stress in the news – volume: 1 issue: 2 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0086 article-title: Deep learning based semantic personalized recommendation system publication-title: International Journal of Information Management Data Insights doi: 10.1016/j.jjimei.2021.100028 – year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0040 article-title: (Re-)Imag(in)ing Price Trends publication-title: SSRN Electronic Journal – volume: 58 start-page: 3586 issue: 6 year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0105 article-title: Global convergence of policy gradient methods to (almost) locally optimal policies publication-title: SIAM Journal on Control and Optimization doi: 10.1137/19M1288012 – start-page: 205 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0109 article-title: A hybrid deep learning model for consumer credit scoring – year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0027 article-title: Identifying anomalies in parliamentary expenditures of brazilian chamber of deputies with deep autoencoders – start-page: 201 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0072 article-title: Deep convolutional neural networks versus multilayer perceptron for financial prediction – ident: 10.1016/j.jjimei.2022.100094_bib0028 – start-page: 3 year: 2012 ident: 10.1016/j.jjimei.2022.100094_bib0075 article-title: Reinforcement learning and markov decision processes – volume: 14 start-page: 51 issue: 1 year: 2019 ident: 10.1016/j.jjimei.2022.100094_bib0101 article-title: An actor-critic deep reinforcement learning approach for transmission scheduling in cognitive internet of things systems publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2019.2891520 – volume: 23 start-page: 185 issue: 2 year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0016 article-title: Developing a Cloud EBC System with 2P-Cloud Architecture publication-title: Journal of Applied Science and Engineering – volume: 100 start-page: 234 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0042 article-title: Sequence classification for credit-card fraud detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.01.037 – ident: 10.1016/j.jjimei.2022.100094_bib0057 – volume: 54 start-page: 1187 issue: 4 year: 2016 ident: 10.1016/j.jjimei.2022.100094_bib0061 article-title: Textual analysis in accounting and finance: A survey publication-title: Journal of Accounting Research doi: 10.1111/1475-679X.12123 – ident: 10.1016/j.jjimei.2022.100094_bib0011 – start-page: 1861 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0029 article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor – year: 2022 ident: 10.1016/j.jjimei.2022.100094_bib0088 article-title: Anomaly detection in procure to pay business processes: A clustering and time series analysis-based approach (SSRN Scholarly Paper ID 4012815) publication-title: Social Science Research Network – volume: 22 start-page: 33 issue: 1 year: 1996 ident: 10.1016/j.jjimei.2022.100094_bib0008 article-title: Linear least-squares algorithms for temporal difference learning publication-title: Machine learning doi: 10.1007/BF00114723 – start-page: 3216 year: 2016 ident: 10.1016/j.jjimei.2022.100094_bib0012 article-title: Measuring the information content of financial news – year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0083 – volume: 64 start-page: 1125 issue: 5 year: 1996 ident: 10.1016/j.jjimei.2022.100094_bib0006 article-title: Learning and strategic pricing publication-title: Econometrica doi: 10.2307/2171959 – volume: 281 start-page: 100 issue: 1 year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0054 article-title: An alternative efficient representation for the project portfolio selection problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2019.08.022 – start-page: 1928 year: 2016 ident: 10.1016/j.jjimei.2022.100094_bib0067 article-title: Asynchronous methods for deep reinforcement learning – year: 2014 ident: 10.1016/j.jjimei.2022.100094_bib0078 – volume: 173 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0093 article-title: An application of deep reinforcement learning to algorithmic trading publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114632 – ident: 10.1016/j.jjimei.2022.100094_bib0100 – start-page: 84 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0034 article-title: Learning temporal representation of transaction amount for fraudulent transaction recognition using CNN, Stacked LSTM, and CNN-LSTM – volume: 362 start-page: 1140 issue: 6419 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0087 article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play publication-title: Science (New York, N.Y.) doi: 10.1126/science.aar6404 – volume: 112 start-page: 23 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0063 article-title: Deep neural networks understand investors better publication-title: Decision Support Systems doi: 10.1016/j.dss.2018.06.002 – ident: 10.1016/j.jjimei.2022.100094_bib0058 – volume: 29 start-page: 753 issue: 1 year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0005 article-title: Ensembles of text and time-series models for automatic generation of financial trading signals from social media content publication-title: Journal of Intelligent Systems doi: 10.1515/jisys-2017-0567 – volume: 45 start-page: 1577 issue: 12 year: 2015 ident: 10.1016/j.jjimei.2022.100094_bib0060 article-title: Generalized policy iteration adaptive dynamic programming for discrete-time nonlinear systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2015.2417510 – volume: 1 issue: 1 year: 2016 ident: 10.1016/j.jjimei.2022.100094_bib0022 article-title: Algorithm trading using q-learning and recurrent reinforcement learning publication-title: positions – volume: 12 issue: 7 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0004 article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory publication-title: PloS one doi: 10.1371/journal.pone.0180944 – volume: 140 year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0052 article-title: Time-driven feature-aware jointly deep reinforcement learning for financial signal representation and algorithmic trading publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112872 – start-page: 18 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0010 article-title: Deep learning for assessing banks’ distress from news and numerical financial data publication-title: Michael J. Brennan Irish Finance Working Paper Series Research Paper – start-page: 1587 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0073 article-title: Temporal difference networks for video action recognition – volume: 65 start-page: 465 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0062 article-title: A deep learning approach for credit scoring using credit default swaps publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2016.12.002 – volume: 115 start-page: 8505 issue: 34 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0031 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1718942115 – volume: 114 start-page: 128 year: 2016 ident: 10.1016/j.jjimei.2022.100094_bib0046 article-title: A survey of the applications of text mining in financial domain publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2016.10.003 – volume: 7 start-page: 121922 year: 2019 ident: 10.1016/j.jjimei.2022.100094_bib0055 article-title: A reinforcement learning model based on temporal difference algorithm publication-title: IEEE access : Practical innovations, open solutions doi: 10.1109/ACCESS.2019.2938240 – volume: 34 start-page: 7125 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0059 article-title: Dynamic portfolio rebalancing through reinforcement learning publication-title: Neural Comput & Applic doi: 10.1007/s00521-021-06853-3 – volume: 50 start-page: 559 issue: 3 year: 2011 ident: 10.1016/j.jjimei.2022.100094_bib0074 article-title: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature publication-title: Decision support systems doi: 10.1016/j.dss.2010.08.006 – volume: 126 start-page: 537 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0085 article-title: Fintech model: The random neural network with genetic algorithm publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.07.288 – volume: 118 start-page: 381 year: 2019 ident: 10.1016/j.jjimei.2022.100094_bib0009 article-title: A stock market trading system based on foreign and domestic information publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.005 – start-page: 7 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0094 article-title: Forecasting stock prices from the limit order book using convolutional neural networks – volume: 69 start-page: 192 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0103 article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.04.049 – start-page: 99 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0036 article-title: A market making quotation strategy based on dual deep learning agents for option pricing and bid-ask spread estimation – volume: 1 issue: 1 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0096 article-title: Artificial intelligence in marketing: Systematic review and future research direction publication-title: International Journal of Information Management Data Insights doi: 10.1016/j.jjimei.2020.100002 – year: 2022 ident: 10.1016/j.jjimei.2022.100094_bib0018 article-title: Distributed Actor-Critic Algorithms for Multiagent Reinforcement Learning Over Directed Graphs publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3139138 – start-page: 1 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0080 article-title: Analysis of year-over-year changes in risk factors disclosure in 10-k filings – volume: 1 issue: 1 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0047 article-title: Applications of text mining in services management: A systematic literature review publication-title: International Journal of Information Management Data Insights doi: 10.1016/j.jjimei.2021.100008 – volume: 57 start-page: 47 year: 2016 ident: 10.1016/j.jjimei.2022.100094_bib0099 article-title: Intelligent financial fraud detection: A comprehensive review publication-title: Computers & security doi: 10.1016/j.cose.2015.09.005 – year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0025 article-title: Addressing function approximation error in actor-critic methods – start-page: 160 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0050 article-title: Predict stock price with financial news based on recurrent convolutional neural networks – volume: 76 start-page: 8040 issue: 10 year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0051 article-title: Threshold-based portfolio: The role of the threshold and its applications publication-title: The Journal of Supercomputing doi: 10.1007/s11227-018-2577-1 – volume: 291 start-page: 794 issue: 2 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0065 article-title: Combining multiple criteria analysis, mathematical programming and Monte Carlo simulation to tackle uncertainty in Research and Development project portfolio selection: A case study from Greece publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2020.09.051 – volume: 8 start-page: 1640 issue: 10 year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0069 article-title: Comprehensive review of deep reinforcement learning methods and applications in economics publication-title: Mathematics doi: 10.3390/math8101640 – volume: 1 issue: 2 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0002 article-title: Developing banking intelligence in emerging markets: Systematic review and agenda publication-title: International Journal of Information Management Data Insights – volume: 105 start-page: 87 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0098 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decision Support Systems doi: 10.1016/j.dss.2017.11.001 – volume: 9 start-page: 12750 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0017 article-title: Bond default prediction based on deep learning and knowledge graph technology publication-title: IEEE access : Practical innovations, open solutions doi: 10.1109/ACCESS.2021.3052054 – volume: 117 start-page: 125 year: 2019 ident: 10.1016/j.jjimei.2022.100094_bib0039 article-title: Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.09.036 – year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0037 article-title: Topic sentiment asset pricing with dnn supervised learning publication-title: SSRN Electronic Journal doi: 10.2139/ssrn.3228485 – volume: 117 start-page: 287 year: 2019 ident: 10.1016/j.jjimei.2022.100094_bib0035 article-title: Bankruptcy prediction using imaged financial ratios and convolutional neural networks publication-title: Expert systems with applications doi: 10.1016/j.eswa.2018.09.039 – volume: 364 start-page: 859 issue: 6443 year: 2019 ident: 10.1016/j.jjimei.2022.100094_bib0038 article-title: Human-level performance in 3D multiplayer games with population-based reinforcement learning publication-title: Science (New York, N.Y.) doi: 10.1126/science.aau6249 – start-page: 73 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0056 article-title: Credit risk assessment algorithm using deep neural networks with clustering and merging – volume: 93 year: 2020 ident: 10.1016/j.jjimei.2022.100094_bib0076 article-title: Deep learning for financial applications: A survey publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106384 – volume: 6 start-page: 67 issue: 3–4 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0021 article-title: Classification-based financial markets prediction using deep neural networks publication-title: Algorithmic Finance doi: 10.3233/AF-170176 – start-page: 1 year: 2015 ident: 10.1016/j.jjimei.2022.100094_bib0049 article-title: A hybrid Deep belief network approach for Financial distress prediction – volume: 61 start-page: 6755 issue: 9 year: 2022 ident: 10.1016/j.jjimei.2022.100094_bib0106 article-title: CNN-LSTM neural network model for fine-grained negative emotion computing in emergencies publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.12.022 – volume: 143 start-page: 236 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0107 article-title: Improving stock market prediction via heterogeneous information fusion publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.12.025 – volume: 98 start-page: 535 issue: 3 year: 2016 ident: 10.1016/j.jjimei.2022.100094_bib0026 article-title: Regional policy evaluation: Interactive fixed effects and synthetic controls publication-title: Review of Economics and Statistics doi: 10.1162/REST_a_00537 – volume: 112 start-page: 353 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0013 article-title: Forecasting stock market crisis events using deep and statistical machine learning techniques publication-title: Expert systems with applications doi: 10.1016/j.eswa.2018.06.032 – start-page: 1889 year: 2015 ident: 10.1016/j.jjimei.2022.100094_bib0084 article-title: Trust region policy optimization – start-page: 905 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0041 article-title: Cryptocurrency portfolio management with deep reinforcement learning – start-page: 399 year: 2018 ident: 10.1016/j.jjimei.2022.100094_bib0091 article-title: Finding expert authors in financial forum using deep learning methods – volume: 110 start-page: 2335 issue: 9 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0007 article-title: A deep reinforcement learning framework for continuous intraday market bidding publication-title: Machine Learning doi: 10.1007/s10994-021-06020-8 – volume: 1 issue: 2 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0048 article-title: Applications of big data in emerging management disciplines: A literature review using text mining publication-title: International Journal of Information Management Data Insights doi: 10.1016/j.jjimei.2021.100017 – volume: 4 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.jjimei.2022.100094_bib0068 article-title: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement publication-title: Systematic reviews doi: 10.1186/2046-4053-4-1 – volume: 61 year: 2021 ident: 10.1016/j.jjimei.2022.100094_bib0015 article-title: A neural network-based price sensitive recommender model to predict customer choices based on price effect publication-title: Journal of Retailing and Consumer Services doi: 10.1016/j.jretconser.2021.102573 – volume: 264 start-page: 57 year: 2017 ident: 10.1016/j.jjimei.2022.100094_bib0082 article-title: Bank distress in the news: Describing events through deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.110 – start-page: 1127 year: 2016 ident: 10.1016/j.jjimei.2022.100094_bib0019 article-title: Deep learning for financial sentiment analysis on finance news providers – start-page: 1 year: 2022 ident: 10.1016/j.jjimei.2022.100094_bib0089 article-title: Application of blockchain technology in shaping the future of food industry based on transparency and consumer trust publication-title: Journal of Food Science and Technology |
| SSID | ssj0002811261 |
| Score | 2.4338615 |
| SecondaryResourceType | review_article |
| Snippet | Data availability and accessibility have brought in unseen changes in the finance systems and new theoretical and computational challenges. For example, in... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 100094 |
| SubjectTerms | Big data Deep reinforcement learning Financial applications Markov decision process Online learning Reinforcement learning |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxtBDBapcyg9NH1Sl7To0EMLXbM7O_s6uqXBFBJ6qCE9LfPQOOvYa-MHoTnlP_TWn5dfkpndWZMUStPjDiNmQNJIWkmfAN4Z7hzbwgQR12HABRdBLiMWEE8MU1mshHANzscn6WjMv54mp3vwseuFuZO_b-qwptNqTpWN5BhzKX0bjjyA_TSxnncP9scn34Y_3Py41Oq79cbzrjvuL6R3rE8D0v8IHm7rpfh5IWazW5bl6ACOuzu1BSXng-1GDtTlH3CN9730E3jsXUwctjLxFPaofgb9tg8XvS6v8b0HnP7wHH6PFhcoVoQranBUVfPLEP1AiQmKWqMmWt5amU0Wq2pzNl_jdk0aLRHKaoKu3hSdYXQE7fAenDfzrrCq0XToHvajHRhC6-urX0Ns-2eaczz40Bnad67W4gWMj758_zwK_MyGQLkUZmBsvMUpK3ScE-eJNCqzLqeOYxknmnEjjbQhIEtMkqkwFYlURSF1qiNjXRNRiPgl9OpFTa8ADdc2mnPNsLrghjMpjMjjUGZZKF2ytw9xx8tSeUBzN1djVnaVa9Oy5UPp-FC2fOhDsKNatoAe_9j_yYnJbq-D424WLMNLr91lJARLjbPtYc6JZKFEWJB9K40mFlHah8FOyO516uv_JTiE3ma1pTfWQ9rIt14xbgBJXhE- priority: 102 providerName: Unpaywall |
| Title | How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda |
| URI | https://doi.org/10.1016/j.jjimei.2022.100094 https://doaj.org/article/1aa26f0429084eeb9ca09e322fde21e6 |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2667-0968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002811261 issn: 2667-0968 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2667-0968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002811261 issn: 2667-0968 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2667-0968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002811261 issn: 2667-0968 databaseCode: AKRWK dateStart: 20210401 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29btswECaKZGg7FOkf6qYNbujQDmwlirLE0SkSGAUSdKiBdBJI8ejIsGXDPwi6FHmHbn28Pkl4pGy4Uzp0ESCCFAXeSXdH3n0fY--cJMdWOZ5Km3CppealSQVHmTtRF1mtNRU4X1z2hyP55Sq_2qP6opywCA8cF-5TqrXoO_ptJqVENKrWiUKvhs6iSDGAbSel2gumJmHLiEpjKNryBqjg3k8vt3VzIblrMmlm2PjwUAjKE0iU_MsuBfj-x-zhpl3oHzd6Ot2zOedH7EnnLMIgvuRT9gDbZ6wXK2qh-ypX8L6Djv7wnP0ezm9ALxGWGBBR67D5Bx01xBh0a8EiLvZapuP5sllfz1awWaEFPwhMMwbKHAUycTQg0vDALDBXQdOC2-J0-JtI_YGrP7e_BhArYcI8HYzQNfg_lo_7X7DR-dm3z0PesS_wmg4jufORk8RC2axEKXPj6sI7jzbLTJZbIZ1xxgdzInd5USd9nZtaKWP7NnXeydBKZy_ZQTtv8RUDJ62Py6is1SrppDDa6TJLTFEkho5teyzbrn1Vd9DkxJAxrbY5aJMqSqwiiVVRYj3Gd6MWEZrjnv6nJNZdXwLWDg1e3apO3ar71K3HPu6U4p9mff0_Zj1mj-iRsQbyDTtYLzf41jtDa3MS9N5fL36enbDD0eXXwfc70I8LhA |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxtBDBapcyg9NH1Sl7To0EMLXbM7O_s6uqXBFBJ6qCE9LfPQOOvYa-MHoTnlP_TWn5dfkpndWZMUStPjDiNmQNJIWkmfAN4Z7hzbwgQR12HABRdBLiMWEE8MU1mshHANzscn6WjMv54mp3vwseuFuZO_b-qwptNqTpWN5BhzKX0bjjyA_TSxnncP9scn34Y_3Py41Oq79cbzrjvuL6R3rE8D0v8IHm7rpfh5IWazW5bl6ACOuzu1BSXng-1GDtTlH3CN9730E3jsXUwctjLxFPaofgb9tg8XvS6v8b0HnP7wHH6PFhcoVoQranBUVfPLEP1AiQmKWqMmWt5amU0Wq2pzNl_jdk0aLRHKaoKu3hSdYXQE7fAenDfzrrCq0XToHvajHRhC6-urX0Ns-2eaczz40Bnad67W4gWMj758_zwK_MyGQLkUZmBsvMUpK3ScE-eJNCqzLqeOYxknmnEjjbQhIEtMkqkwFYlURSF1qiNjXRNRiPgl9OpFTa8ADdc2mnPNsLrghjMpjMjjUGZZKF2ytw9xx8tSeUBzN1djVnaVa9Oy5UPp-FC2fOhDsKNatoAe_9j_yYnJbq-D424WLMNLr91lJARLjbPtYc6JZKFEWJB9K40mFlHah8FOyO516uv_JTiE3ma1pTfWQ9rIt14xbgBJXhE- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+are+reinforcement+learning+and+deep+learning+algorithms+used+for+big+data+based+decision+making+in+financial+industries%E2%80%93A+review+and+research+agenda&rft.jtitle=International+journal+of+information+management+data+insights&rft.au=Vinay+Singh&rft.au=Shiuann-Shuoh+Chen&rft.au=Minal+Singhania&rft.au=Brijesh+Nanavati&rft.date=2022-11-01&rft.pub=Elsevier&rft.issn=2667-0968&rft.eissn=2667-0968&rft.volume=2&rft.issue=2&rft.spage=100094&rft_id=info:doi/10.1016%2Fj.jjimei.2022.100094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1aa26f0429084eeb9ca09e322fde21e6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-0968&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-0968&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-0968&client=summon |