How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda

Data availability and accessibility have brought in unseen changes in the finance systems and new theoretical and computational challenges. For example, in contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that rely heavily...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of information management data insights Vol. 2; no. 2; p. 100094
Main Authors Singh, Vinay, Chen, Shiuann-Shuoh, Singhania, Minal, Nanavati, Brijesh, kar, Arpan kumar, Gupta, Agam
Format Journal Article
LanguageEnglish
Published Elsevier 01.11.2022
Subjects
Online AccessGet full text
ISSN2667-0968
2667-0968
DOI10.1016/j.jjimei.2022.100094

Cover

Abstract Data availability and accessibility have brought in unseen changes in the finance systems and new theoretical and computational challenges. For example, in contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that rely heavily on model assumptions, new developments from reinforcement learning (RL) can make full use of a large amount of financial data with fewer model assumptions and improve decisions in complex economic environments. This paper reviews the developments and use of Deep Learning(DL), RL, and Deep Reinforcement Learning (DRL)methods in information-based decision-making in financial industries. Therefore, it is necessary to understand the variety of learning methods, related terminology, and their applicability in the financial field. First, we introduce Markov decision processes, followed by Various algorithms focusing on value and policy-based methods that do not require any model assumptions. Next, connections are made with neural networks to extend the framework to encompass deep RL algorithms. Finally, the paper concludes by discussing the application of these RL and DRL algorithms in various decision-making problems in finance, including optimal execution, portfolio optimization, option pricing, hedging, and market-making. The survey results indicate that RL and DRL can provide better performance and higher efficiency than traditional algorithms while facing real economic problems in risk parameters and ever-increasing uncertainties. Moreover, it offers academics and practitioners insight and direction on the state-of-the-art application of deep learning models in finance.
AbstractList Data availability and accessibility have brought in unseen changes in the finance systems and new theoretical and computational challenges. For example, in contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that rely heavily on model assumptions, new developments from reinforcement learning (RL) can make full use of a large amount of financial data with fewer model assumptions and improve decisions in complex economic environments. This paper reviews the developments and use of Deep Learning(DL), RL, and Deep Reinforcement Learning (DRL)methods in information-based decision-making in financial industries. Therefore, it is necessary to understand the variety of learning methods, related terminology, and their applicability in the financial field. First, we introduce Markov decision processes, followed by Various algorithms focusing on value and policy-based methods that do not require any model assumptions. Next, connections are made with neural networks to extend the framework to encompass deep RL algorithms. Finally, the paper concludes by discussing the application of these RL and DRL algorithms in various decision-making problems in finance, including optimal execution, portfolio optimization, option pricing, hedging, and market-making. The survey results indicate that RL and DRL can provide better performance and higher efficiency than traditional algorithms while facing real economic problems in risk parameters and ever-increasing uncertainties. Moreover, it offers academics and practitioners insight and direction on the state-of-the-art application of deep learning models in finance.
ArticleNumber 100094
Author Chen, Shiuann-Shuoh
kar, Arpan kumar
Singhania, Minal
Nanavati, Brijesh
Singh, Vinay
Gupta, Agam
Author_xml – sequence: 1
  givenname: Vinay
  orcidid: 0000-0002-8401-1123
  surname: Singh
  fullname: Singh, Vinay
– sequence: 2
  givenname: Shiuann-Shuoh
  surname: Chen
  fullname: Chen, Shiuann-Shuoh
– sequence: 3
  givenname: Minal
  surname: Singhania
  fullname: Singhania, Minal
– sequence: 4
  givenname: Brijesh
  surname: Nanavati
  fullname: Nanavati, Brijesh
– sequence: 5
  givenname: Arpan kumar
  surname: kar
  fullname: kar, Arpan kumar
– sequence: 6
  givenname: Agam
  surname: Gupta
  fullname: Gupta, Agam
BookMark eNqNkcFu1DAURS1UJErpH7DwD8xgO4kTd1dVLa1UiQ2srRf7OXWa2CM7w6g7_oEdn8eX4GkQqtjA6vld-dwrvfuWnIQYkJD3nG054_LDuB1HP6PfCiZEkRhT9StyKqRsN0zJ7uTF-w05z3ksX0THuZD8lPy4jQcKCWlCH1xMBmcMC50QUvBhoBAstYi7F8o0xOSXhznTfUZLC0R7P1ALC9AejpJF47OPgc7weER8oM4HCMbDVBa7z0vymH9--35Zcr96PDznJMwlxDxQGDBYeEdeO5gynv-eZ-TLzfXnq9vN_aePd1eX9xsj2q7eONXIGltlqw7ruumdaXnDbFX1VWNF7XrXS8ZF45rWMAlNb5TqrbTcdVyBguqM3K2-NsKod8nPkJ50BK-fhZgGDWnxZkLNAYR0rBaKdTVirwwwhZUQzqLgKItXs3rtww6eDjBNfww508e-9KjXvvSxL732VbiLlTMp5pzQaeMXWMoNlwR--hdc_wX_V-YvLH21TA
CitedBy_id crossref_primary_10_1007_s00607_024_01269_y
crossref_primary_10_1108_MD_10_2023_1926
crossref_primary_10_1007_s10796_022_10314_0
crossref_primary_10_1080_08874417_2023_2219668
crossref_primary_10_33317_ssurj_653
crossref_primary_10_1108_MD_09_2023_1525
crossref_primary_10_7717_peerj_cs_1998
crossref_primary_10_1016_j_jjimei_2024_100214
crossref_primary_10_1049_cit2_12359
crossref_primary_10_1016_j_eswa_2023_121475
crossref_primary_10_1016_j_jjimei_2023_100176
crossref_primary_10_1016_j_jjimei_2023_100177
crossref_primary_10_1016_j_jjimei_2023_100193
crossref_primary_10_1007_s40171_023_00356_x
crossref_primary_10_1016_j_jjimei_2024_100251
crossref_primary_10_53982_ajerd_2023_0602_10_j
crossref_primary_10_1016_j_jjimei_2023_100190
crossref_primary_10_1016_j_cie_2024_110044
crossref_primary_10_1109_ACCESS_2024_3378749
crossref_primary_10_69725_raida_v1i3_169
crossref_primary_10_35234_fumbd_1406688
crossref_primary_10_1016_j_jclepro_2022_134120
crossref_primary_10_1002_isaf_1565
crossref_primary_10_1088_1361_6579_acb03b
crossref_primary_10_4018_JGIM_321728
crossref_primary_10_1109_ACCESS_2024_3515039
crossref_primary_10_1016_j_iswa_2023_200181
crossref_primary_10_4018_JOEUC_345244
crossref_primary_10_1016_j_energy_2024_132938
crossref_primary_10_1109_JIOT_2024_3486714
crossref_primary_10_1007_s10489_024_06107_4
crossref_primary_10_3390_su151310480
crossref_primary_10_1002_widm_1548
crossref_primary_10_4018_JOEUC_345242
crossref_primary_10_1016_j_jjimei_2023_100157
crossref_primary_10_1108_BPMJ_07_2024_0546
crossref_primary_10_1016_j_jjimei_2022_100153
crossref_primary_10_1142_S0219622022500961
crossref_primary_10_1016_j_jjimei_2024_100230
crossref_primary_10_1016_j_ejor_2023_12_025
crossref_primary_10_1109_ACCESS_2024_3449396
crossref_primary_10_1016_j_ijinfomgt_2023_102642
crossref_primary_10_1111_exsy_13725
crossref_primary_10_1007_s42979_023_02375_y
crossref_primary_10_4018_JOEUC_343256
crossref_primary_10_4018_JOEUC_340383
crossref_primary_10_1016_j_jjimei_2023_100209
crossref_primary_10_1016_j_jjimei_2022_100105
crossref_primary_10_3390_risks13030040
crossref_primary_10_1142_S0219477524400236
crossref_primary_10_1016_j_jjimei_2023_100201
crossref_primary_10_1016_j_jjimei_2025_100324
crossref_primary_10_1016_j_teler_2024_100171
crossref_primary_10_1016_j_jjimei_2025_100323
crossref_primary_10_1016_j_jjimei_2022_100146
crossref_primary_10_4018_JOEUC_358454
crossref_primary_10_7717_peerj_cs_2690
Cites_doi 10.1016/j.eswa.2019.04.013
10.2139/ssrn.3428125
10.2139/ssrn.3971071
10.1016/j.jjimei.2021.100028
10.1137/19M1288012
10.1109/JSYST.2019.2891520
10.1016/j.eswa.2018.01.037
10.1111/1475-679X.12123
10.1007/BF00114723
10.2307/2171959
10.1016/j.ejor.2019.08.022
10.1016/j.eswa.2021.114632
10.1126/science.aar6404
10.1016/j.dss.2018.06.002
10.1515/jisys-2017-0567
10.1109/TSMC.2015.2417510
10.1371/journal.pone.0180944
10.1016/j.eswa.2019.112872
10.1016/j.engappai.2016.12.002
10.1073/pnas.1718942115
10.1016/j.knosys.2016.10.003
10.1109/ACCESS.2019.2938240
10.1007/s00521-021-06853-3
10.1016/j.dss.2010.08.006
10.1016/j.procs.2018.07.288
10.1016/j.eswa.2018.08.005
10.1016/j.asoc.2018.04.049
10.1016/j.jjimei.2020.100002
10.1109/TNNLS.2021.3139138
10.1016/j.jjimei.2021.100008
10.1016/j.cose.2015.09.005
10.1007/s11227-018-2577-1
10.1016/j.ejor.2020.09.051
10.3390/math8101640
10.1016/j.dss.2017.11.001
10.1109/ACCESS.2021.3052054
10.1016/j.eswa.2018.09.036
10.2139/ssrn.3228485
10.1016/j.eswa.2018.09.039
10.1126/science.aau6249
10.1016/j.asoc.2020.106384
10.3233/AF-170176
10.1016/j.aej.2021.12.022
10.1016/j.knosys.2017.12.025
10.1162/REST_a_00537
10.1016/j.eswa.2018.06.032
10.1007/s10994-021-06020-8
10.1016/j.jjimei.2021.100017
10.1186/2046-4053-4-1
10.1016/j.jretconser.2021.102573
10.1016/j.neucom.2016.12.110
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.jjimei.2022.100094
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2667-0968
ExternalDocumentID oai_doaj_org_article_1aa26f0429084eeb9ca09e322fde21e6
10.1016/j.jjimei.2022.100094
10_1016_j_jjimei_2022_100094
GroupedDBID 0R~
AAEDW
AALRI
AAXUO
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
CITATION
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
ADTOC
UNPAY
ID FETCH-LOGICAL-c2784-f9564e79d38e445bfc7150d33b35d24fbfb60125f57c06a5bc99bd6d1f819a9a3
IEDL.DBID DOA
ISSN 2667-0968
IngestDate Fri Oct 03 12:53:20 EDT 2025
Tue Aug 19 18:21:42 EDT 2025
Tue Jul 01 01:06:12 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2784-f9564e79d38e445bfc7150d33b35d24fbfb60125f57c06a5bc99bd6d1f819a9a3
ORCID 0000-0002-8401-1123
OpenAccessLink https://doaj.org/article/1aa26f0429084eeb9ca09e322fde21e6
ParticipantIDs doaj_primary_oai_doaj_org_article_1aa26f0429084eeb9ca09e322fde21e6
unpaywall_primary_10_1016_j_jjimei_2022_100094
crossref_citationtrail_10_1016_j_jjimei_2022_100094
crossref_primary_10_1016_j_jjimei_2022_100094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-00
PublicationDecade 2020
PublicationTitle International journal of information management data insights
PublicationYear 2022
Publisher Elsevier
Publisher_xml – name: Elsevier
References Lei (10.1016/j.jjimei.2022.100094_bib0052) 2020; 140
10.1016/j.jjimei.2022.100094_bib0100
Chi (10.1016/j.jjimei.2022.100094_bib0017) 2021; 9
Rönnqvist (10.1016/j.jjimei.2022.100094_bib0082) 2017; 264
Zhang (10.1016/j.jjimei.2022.100094_bib0105) 2020; 58
10.1016/j.jjimei.2022.100094_bib0028
Luo (10.1016/j.jjimei.2022.100094_bib0062) 2017; 65
Dai (10.1016/j.jjimei.2022.100094_bib0018) 2022
Silver (10.1016/j.jjimei.2022.100094_bib0087) 2018; 362
Du (10.1016/j.jjimei.2022.100094_bib0022) 2016; 1
10.1016/j.jjimei.2022.100094_bib0030
Mosavi (10.1016/j.jjimei.2022.100094_bib0069) 2020; 8
Lee (10.1016/j.jjimei.2022.100094_bib0050) 2017
Li (10.1016/j.jjimei.2022.100094_bib0055) 2019; 7
Rawte (10.1016/j.jjimei.2022.100094_bib0080) 2018
Iwasaki (10.1016/j.jjimei.2022.100094_bib0037) 2018
Jiang (10.1016/j.jjimei.2022.100094_bib0041) 2017
Jurgovsky (10.1016/j.jjimei.2022.100094_bib0042) 2018; 100
Puterman (10.1016/j.jjimei.2022.100094_bib0078) 2014
Schulman (10.1016/j.jjimei.2022.100094_bib0084) 2015
Loughran (10.1016/j.jjimei.2022.100094_bib0061) 2016; 54
Mahmoudi (10.1016/j.jjimei.2022.100094_bib0063) 2018; 112
Hsu (10.1016/j.jjimei.2022.100094_bib0036) 2018
Boukas (10.1016/j.jjimei.2022.100094_bib0007) 2021; 110
Almahdi (10.1016/j.jjimei.2022.100094_bib0001) 2019; 130
Dixon (10.1016/j.jjimei.2022.100094_bib0021) 2017; 6
Jaderberg (10.1016/j.jjimei.2022.100094_bib0038) 2019; 364
10.1016/j.jjimei.2022.100094_bib0011
10.1016/j.jjimei.2022.100094_bib0058
Zhang (10.1016/j.jjimei.2022.100094_bib0106) 2022; 61
10.1016/j.jjimei.2022.100094_bib0057
Yang (10.1016/j.jjimei.2022.100094_bib0101) 2019; 14
Fujimoto (10.1016/j.jjimei.2022.100094_bib0025) 2018
Jiang (10.1016/j.jjimei.2022.100094_bib0040) 2020
Chang (10.1016/j.jjimei.2022.100094_bib0012) 2016
Day (10.1016/j.jjimei.2022.100094_bib0019) 2016
Zhang (10.1016/j.jjimei.2022.100094_bib0107) 2018; 143
Bradtke (10.1016/j.jjimei.2022.100094_bib0008) 1996; 22
Saleh (10.1016/j.jjimei.2022.100094_bib0083) 2020
Tsantekidis (10.1016/j.jjimei.2022.100094_bib0094) 2017
Bergemann (10.1016/j.jjimei.2022.100094_bib0006) 1996; 64
Liu (10.1016/j.jjimei.2022.100094_bib0060) 2015; 45
Moher (10.1016/j.jjimei.2022.100094_bib0068) 2015; 4
Sharma (10.1016/j.jjimei.2022.100094_bib0086) 2021; 1
Lanbouri (10.1016/j.jjimei.2022.100094_bib0049) 2015
Zhu (10.1016/j.jjimei.2022.100094_bib0109) 2018
Heryadi (10.1016/j.jjimei.2022.100094_bib0034) 2017
Bari (10.1016/j.jjimei.2022.100094_bib0005) 2020; 29
Ngai (10.1016/j.jjimei.2022.100094_bib0074) 2011; 50
Bao (10.1016/j.jjimei.2022.100094_bib0004) 2017; 12
Han (10.1016/j.jjimei.2022.100094_bib0031) 2018; 115
Gomes (10.1016/j.jjimei.2022.100094_bib0027) 2017
Singh (10.1016/j.jjimei.2022.100094_bib0088) 2022
Kumar (10.1016/j.jjimei.2022.100094_bib0046) 2016; 114
Neagoe (10.1016/j.jjimei.2022.100094_bib0072) 2018
Haarnoja (10.1016/j.jjimei.2022.100094_bib0029) 2018
Sohangir (10.1016/j.jjimei.2022.100094_bib0091) 2018
Cerchiello (10.1016/j.jjimei.2022.100094_bib0010) 2018
Serrano (10.1016/j.jjimei.2022.100094_bib0085) 2018; 126
Théate (10.1016/j.jjimei.2022.100094_bib0093) 2021; 173
Li (10.1016/j.jjimei.2022.100094_bib0056) 2017
Kumar (10.1016/j.jjimei.2022.100094_bib0047) 2021; 1
10.1016/j.jjimei.2022.100094_bib0097
Chatzis (10.1016/j.jjimei.2022.100094_bib0013) 2018; 112
Lim (10.1016/j.jjimei.2022.100094_bib0059) 2021; 34
Mnih (10.1016/j.jjimei.2022.100094_bib0067) 2016
Yu (10.1016/j.jjimei.2022.100094_bib0103) 2018; 69
Kushwaha (10.1016/j.jjimei.2022.100094_bib0048) 2021; 1
Jeong (10.1016/j.jjimei.2022.100094_bib0039) 2019; 117
Lee (10.1016/j.jjimei.2022.100094_bib0051) 2020; 76
Chen (10.1016/j.jjimei.2022.100094_bib0016) 2020; 23
West (10.1016/j.jjimei.2022.100094_bib0099) 2016; 57
Hosaka (10.1016/j.jjimei.2022.100094_bib0035) 2019; 117
Ying (10.1016/j.jjimei.2022.100094_bib0102) 2017
Singh (10.1016/j.jjimei.2022.100094_bib0089) 2022
Li (10.1016/j.jjimei.2022.100094_bib0054) 2020; 281
Ng (10.1016/j.jjimei.2022.100094_bib0073) 2018
Brzeszczyński (10.1016/j.jjimei.2022.100094_bib0009) 2019; 118
Chen (10.1016/j.jjimei.2022.100094_bib0015) 2021; 61
Rönnqvist (10.1016/j.jjimei.2022.100094_bib0081) 2015
Wang (10.1016/j.jjimei.2022.100094_bib0098) 2018; 105
Mavrotas (10.1016/j.jjimei.2022.100094_bib0065) 2021; 291
Arjun (10.1016/j.jjimei.2022.100094_bib0002) 2021; 1
Otterlo (10.1016/j.jjimei.2022.100094_bib0075) 2012
Ozbayoglu (10.1016/j.jjimei.2022.100094_bib0076) 2020; 93
Gobillon (10.1016/j.jjimei.2022.100094_bib0026) 2016; 98
Verma (10.1016/j.jjimei.2022.100094_bib0096) 2021; 1
References_xml – volume: 130
  start-page: 145
  year: 2019
  ident: 10.1016/j.jjimei.2022.100094_bib0001
  article-title: A constrained portfolio trading system using particle swarm algorithm and recurrent reinforcement learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.04.013
– ident: 10.1016/j.jjimei.2022.100094_bib0097
  doi: 10.2139/ssrn.3428125
– start-page: 1866
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0102
  article-title: A preliminary study on deep learning for predicting social insurance payment behavior
– ident: 10.1016/j.jjimei.2022.100094_bib0030
  doi: 10.2139/ssrn.3971071
– start-page: 890
  year: 2015
  ident: 10.1016/j.jjimei.2022.100094_bib0081
  article-title: Detect & describe: Deep learning of bank stress in the news
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0086
  article-title: Deep learning based semantic personalized recommendation system
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2021.100028
– year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0040
  article-title: (Re-)Imag(in)ing Price Trends
  publication-title: SSRN Electronic Journal
– volume: 58
  start-page: 3586
  issue: 6
  year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0105
  article-title: Global convergence of policy gradient methods to (almost) locally optimal policies
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/19M1288012
– start-page: 205
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0109
  article-title: A hybrid deep learning model for consumer credit scoring
– year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0027
  article-title: Identifying anomalies in parliamentary expenditures of brazilian chamber of deputies with deep autoencoders
– start-page: 201
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0072
  article-title: Deep convolutional neural networks versus multilayer perceptron for financial prediction
– ident: 10.1016/j.jjimei.2022.100094_bib0028
– start-page: 3
  year: 2012
  ident: 10.1016/j.jjimei.2022.100094_bib0075
  article-title: Reinforcement learning and markov decision processes
– volume: 14
  start-page: 51
  issue: 1
  year: 2019
  ident: 10.1016/j.jjimei.2022.100094_bib0101
  article-title: An actor-critic deep reinforcement learning approach for transmission scheduling in cognitive internet of things systems
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2019.2891520
– volume: 23
  start-page: 185
  issue: 2
  year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0016
  article-title: Developing a Cloud EBC System with 2P-Cloud Architecture
  publication-title: Journal of Applied Science and Engineering
– volume: 100
  start-page: 234
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0042
  article-title: Sequence classification for credit-card fraud detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.01.037
– ident: 10.1016/j.jjimei.2022.100094_bib0057
– volume: 54
  start-page: 1187
  issue: 4
  year: 2016
  ident: 10.1016/j.jjimei.2022.100094_bib0061
  article-title: Textual analysis in accounting and finance: A survey
  publication-title: Journal of Accounting Research
  doi: 10.1111/1475-679X.12123
– ident: 10.1016/j.jjimei.2022.100094_bib0011
– start-page: 1861
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0029
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
– year: 2022
  ident: 10.1016/j.jjimei.2022.100094_bib0088
  article-title: Anomaly detection in procure to pay business processes: A clustering and time series analysis-based approach (SSRN Scholarly Paper ID 4012815)
  publication-title: Social Science Research Network
– volume: 22
  start-page: 33
  issue: 1
  year: 1996
  ident: 10.1016/j.jjimei.2022.100094_bib0008
  article-title: Linear least-squares algorithms for temporal difference learning
  publication-title: Machine learning
  doi: 10.1007/BF00114723
– start-page: 3216
  year: 2016
  ident: 10.1016/j.jjimei.2022.100094_bib0012
  article-title: Measuring the information content of financial news
– year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0083
– volume: 64
  start-page: 1125
  issue: 5
  year: 1996
  ident: 10.1016/j.jjimei.2022.100094_bib0006
  article-title: Learning and strategic pricing
  publication-title: Econometrica
  doi: 10.2307/2171959
– volume: 281
  start-page: 100
  issue: 1
  year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0054
  article-title: An alternative efficient representation for the project portfolio selection problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.08.022
– start-page: 1928
  year: 2016
  ident: 10.1016/j.jjimei.2022.100094_bib0067
  article-title: Asynchronous methods for deep reinforcement learning
– year: 2014
  ident: 10.1016/j.jjimei.2022.100094_bib0078
– volume: 173
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0093
  article-title: An application of deep reinforcement learning to algorithmic trading
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114632
– ident: 10.1016/j.jjimei.2022.100094_bib0100
– start-page: 84
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0034
  article-title: Learning temporal representation of transaction amount for fraudulent transaction recognition using CNN, Stacked LSTM, and CNN-LSTM
– volume: 362
  start-page: 1140
  issue: 6419
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0087
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.aar6404
– volume: 112
  start-page: 23
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0063
  article-title: Deep neural networks understand investors better
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2018.06.002
– ident: 10.1016/j.jjimei.2022.100094_bib0058
– volume: 29
  start-page: 753
  issue: 1
  year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0005
  article-title: Ensembles of text and time-series models for automatic generation of financial trading signals from social media content
  publication-title: Journal of Intelligent Systems
  doi: 10.1515/jisys-2017-0567
– volume: 45
  start-page: 1577
  issue: 12
  year: 2015
  ident: 10.1016/j.jjimei.2022.100094_bib0060
  article-title: Generalized policy iteration adaptive dynamic programming for discrete-time nonlinear systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2015.2417510
– volume: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jjimei.2022.100094_bib0022
  article-title: Algorithm trading using q-learning and recurrent reinforcement learning
  publication-title: positions
– volume: 12
  issue: 7
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0004
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PloS one
  doi: 10.1371/journal.pone.0180944
– volume: 140
  year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0052
  article-title: Time-driven feature-aware jointly deep reinforcement learning for financial signal representation and algorithmic trading
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112872
– start-page: 18
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0010
  article-title: Deep learning for assessing banks’ distress from news and numerical financial data
  publication-title: Michael J. Brennan Irish Finance Working Paper Series Research Paper
– start-page: 1587
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0073
  article-title: Temporal difference networks for video action recognition
– volume: 65
  start-page: 465
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0062
  article-title: A deep learning approach for credit scoring using credit default swaps
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2016.12.002
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0031
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1718942115
– volume: 114
  start-page: 128
  year: 2016
  ident: 10.1016/j.jjimei.2022.100094_bib0046
  article-title: A survey of the applications of text mining in financial domain
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.10.003
– volume: 7
  start-page: 121922
  year: 2019
  ident: 10.1016/j.jjimei.2022.100094_bib0055
  article-title: A reinforcement learning model based on temporal difference algorithm
  publication-title: IEEE access : Practical innovations, open solutions
  doi: 10.1109/ACCESS.2019.2938240
– volume: 34
  start-page: 7125
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0059
  article-title: Dynamic portfolio rebalancing through reinforcement learning
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-021-06853-3
– volume: 50
  start-page: 559
  issue: 3
  year: 2011
  ident: 10.1016/j.jjimei.2022.100094_bib0074
  article-title: The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature
  publication-title: Decision support systems
  doi: 10.1016/j.dss.2010.08.006
– volume: 126
  start-page: 537
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0085
  article-title: Fintech model: The random neural network with genetic algorithm
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.07.288
– volume: 118
  start-page: 381
  year: 2019
  ident: 10.1016/j.jjimei.2022.100094_bib0009
  article-title: A stock market trading system based on foreign and domestic information
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.005
– start-page: 7
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0094
  article-title: Forecasting stock prices from the limit order book using convolutional neural networks
– volume: 69
  start-page: 192
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0103
  article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.04.049
– start-page: 99
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0036
  article-title: A market making quotation strategy based on dual deep learning agents for option pricing and bid-ask spread estimation
– volume: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0096
  article-title: Artificial intelligence in marketing: Systematic review and future research direction
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2020.100002
– year: 2022
  ident: 10.1016/j.jjimei.2022.100094_bib0018
  article-title: Distributed Actor-Critic Algorithms for Multiagent Reinforcement Learning Over Directed Graphs
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3139138
– start-page: 1
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0080
  article-title: Analysis of year-over-year changes in risk factors disclosure in 10-k filings
– volume: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0047
  article-title: Applications of text mining in services management: A systematic literature review
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2021.100008
– volume: 57
  start-page: 47
  year: 2016
  ident: 10.1016/j.jjimei.2022.100094_bib0099
  article-title: Intelligent financial fraud detection: A comprehensive review
  publication-title: Computers & security
  doi: 10.1016/j.cose.2015.09.005
– year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0025
  article-title: Addressing function approximation error in actor-critic methods
– start-page: 160
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0050
  article-title: Predict stock price with financial news based on recurrent convolutional neural networks
– volume: 76
  start-page: 8040
  issue: 10
  year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0051
  article-title: Threshold-based portfolio: The role of the threshold and its applications
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-018-2577-1
– volume: 291
  start-page: 794
  issue: 2
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0065
  article-title: Combining multiple criteria analysis, mathematical programming and Monte Carlo simulation to tackle uncertainty in Research and Development project portfolio selection: A case study from Greece
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.09.051
– volume: 8
  start-page: 1640
  issue: 10
  year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0069
  article-title: Comprehensive review of deep reinforcement learning methods and applications in economics
  publication-title: Mathematics
  doi: 10.3390/math8101640
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0002
  article-title: Developing banking intelligence in emerging markets: Systematic review and agenda
  publication-title: International Journal of Information Management Data Insights
– volume: 105
  start-page: 87
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0098
  article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2017.11.001
– volume: 9
  start-page: 12750
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0017
  article-title: Bond default prediction based on deep learning and knowledge graph technology
  publication-title: IEEE access : Practical innovations, open solutions
  doi: 10.1109/ACCESS.2021.3052054
– volume: 117
  start-page: 125
  year: 2019
  ident: 10.1016/j.jjimei.2022.100094_bib0039
  article-title: Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.09.036
– year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0037
  article-title: Topic sentiment asset pricing with dnn supervised learning
  publication-title: SSRN Electronic Journal
  doi: 10.2139/ssrn.3228485
– volume: 117
  start-page: 287
  year: 2019
  ident: 10.1016/j.jjimei.2022.100094_bib0035
  article-title: Bankruptcy prediction using imaged financial ratios and convolutional neural networks
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2018.09.039
– volume: 364
  start-page: 859
  issue: 6443
  year: 2019
  ident: 10.1016/j.jjimei.2022.100094_bib0038
  article-title: Human-level performance in 3D multiplayer games with population-based reinforcement learning
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.aau6249
– start-page: 73
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0056
  article-title: Credit risk assessment algorithm using deep neural networks with clustering and merging
– volume: 93
  year: 2020
  ident: 10.1016/j.jjimei.2022.100094_bib0076
  article-title: Deep learning for financial applications: A survey
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106384
– volume: 6
  start-page: 67
  issue: 3–4
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0021
  article-title: Classification-based financial markets prediction using deep neural networks
  publication-title: Algorithmic Finance
  doi: 10.3233/AF-170176
– start-page: 1
  year: 2015
  ident: 10.1016/j.jjimei.2022.100094_bib0049
  article-title: A hybrid Deep belief network approach for Financial distress prediction
– volume: 61
  start-page: 6755
  issue: 9
  year: 2022
  ident: 10.1016/j.jjimei.2022.100094_bib0106
  article-title: CNN-LSTM neural network model for fine-grained negative emotion computing in emergencies
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.12.022
– volume: 143
  start-page: 236
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0107
  article-title: Improving stock market prediction via heterogeneous information fusion
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.12.025
– volume: 98
  start-page: 535
  issue: 3
  year: 2016
  ident: 10.1016/j.jjimei.2022.100094_bib0026
  article-title: Regional policy evaluation: Interactive fixed effects and synthetic controls
  publication-title: Review of Economics and Statistics
  doi: 10.1162/REST_a_00537
– volume: 112
  start-page: 353
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0013
  article-title: Forecasting stock market crisis events using deep and statistical machine learning techniques
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2018.06.032
– start-page: 1889
  year: 2015
  ident: 10.1016/j.jjimei.2022.100094_bib0084
  article-title: Trust region policy optimization
– start-page: 905
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0041
  article-title: Cryptocurrency portfolio management with deep reinforcement learning
– start-page: 399
  year: 2018
  ident: 10.1016/j.jjimei.2022.100094_bib0091
  article-title: Finding expert authors in financial forum using deep learning methods
– volume: 110
  start-page: 2335
  issue: 9
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0007
  article-title: A deep reinforcement learning framework for continuous intraday market bidding
  publication-title: Machine Learning
  doi: 10.1007/s10994-021-06020-8
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0048
  article-title: Applications of big data in emerging management disciplines: A literature review using text mining
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2021.100017
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.jjimei.2022.100094_bib0068
  article-title: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement
  publication-title: Systematic reviews
  doi: 10.1186/2046-4053-4-1
– volume: 61
  year: 2021
  ident: 10.1016/j.jjimei.2022.100094_bib0015
  article-title: A neural network-based price sensitive recommender model to predict customer choices based on price effect
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2021.102573
– volume: 264
  start-page: 57
  year: 2017
  ident: 10.1016/j.jjimei.2022.100094_bib0082
  article-title: Bank distress in the news: Describing events through deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.110
– start-page: 1127
  year: 2016
  ident: 10.1016/j.jjimei.2022.100094_bib0019
  article-title: Deep learning for financial sentiment analysis on finance news providers
– start-page: 1
  year: 2022
  ident: 10.1016/j.jjimei.2022.100094_bib0089
  article-title: Application of blockchain technology in shaping the future of food industry based on transparency and consumer trust
  publication-title: Journal of Food Science and Technology
SSID ssj0002811261
Score 2.4338615
SecondaryResourceType review_article
Snippet Data availability and accessibility have brought in unseen changes in the finance systems and new theoretical and computational challenges. For example, in...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 100094
SubjectTerms Big data
Deep reinforcement learning
Financial applications
Markov decision process
Online learning
Reinforcement learning
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxtBDBapcyg9NH1Sl7To0EMLXbM7O_s6uqXBFBJ6qCE9LfPQOOvYa-MHoTnlP_TWn5dfkpndWZMUStPjDiNmQNJIWkmfAN4Z7hzbwgQR12HABRdBLiMWEE8MU1mshHANzscn6WjMv54mp3vwseuFuZO_b-qwptNqTpWN5BhzKX0bjjyA_TSxnncP9scn34Y_3Py41Oq79cbzrjvuL6R3rE8D0v8IHm7rpfh5IWazW5bl6ACOuzu1BSXng-1GDtTlH3CN9730E3jsXUwctjLxFPaofgb9tg8XvS6v8b0HnP7wHH6PFhcoVoQranBUVfPLEP1AiQmKWqMmWt5amU0Wq2pzNl_jdk0aLRHKaoKu3hSdYXQE7fAenDfzrrCq0XToHvajHRhC6-urX0Ns-2eaczz40Bnad67W4gWMj758_zwK_MyGQLkUZmBsvMUpK3ScE-eJNCqzLqeOYxknmnEjjbQhIEtMkqkwFYlURSF1qiNjXRNRiPgl9OpFTa8ADdc2mnPNsLrghjMpjMjjUGZZKF2ytw9xx8tSeUBzN1djVnaVa9Oy5UPp-FC2fOhDsKNatoAe_9j_yYnJbq-D424WLMNLr91lJARLjbPtYc6JZKFEWJB9K40mFlHah8FOyO516uv_JTiE3ma1pTfWQ9rIt14xbgBJXhE-
  priority: 102
  providerName: Unpaywall
Title How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda
URI https://doi.org/10.1016/j.jjimei.2022.100094
https://doaj.org/article/1aa26f0429084eeb9ca09e322fde21e6
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2667-0968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002811261
  issn: 2667-0968
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2667-0968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002811261
  issn: 2667-0968
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2667-0968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002811261
  issn: 2667-0968
  databaseCode: AKRWK
  dateStart: 20210401
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29btswECaKZGg7FOkf6qYNbujQDmwlirLE0SkSGAUSdKiBdBJI8ejIsGXDPwi6FHmHbn28Pkl4pGy4Uzp0ESCCFAXeSXdH3n0fY--cJMdWOZ5Km3CppealSQVHmTtRF1mtNRU4X1z2hyP55Sq_2qP6opywCA8cF-5TqrXoO_ptJqVENKrWiUKvhs6iSDGAbSel2gumJmHLiEpjKNryBqjg3k8vt3VzIblrMmlm2PjwUAjKE0iU_MsuBfj-x-zhpl3oHzd6Ot2zOedH7EnnLMIgvuRT9gDbZ6wXK2qh-ypX8L6Djv7wnP0ezm9ALxGWGBBR67D5Bx01xBh0a8EiLvZapuP5sllfz1awWaEFPwhMMwbKHAUycTQg0vDALDBXQdOC2-J0-JtI_YGrP7e_BhArYcI8HYzQNfg_lo_7X7DR-dm3z0PesS_wmg4jufORk8RC2axEKXPj6sI7jzbLTJZbIZ1xxgdzInd5USd9nZtaKWP7NnXeydBKZy_ZQTtv8RUDJ62Py6is1SrppDDa6TJLTFEkho5teyzbrn1Vd9DkxJAxrbY5aJMqSqwiiVVRYj3Gd6MWEZrjnv6nJNZdXwLWDg1e3apO3ar71K3HPu6U4p9mff0_Zj1mj-iRsQbyDTtYLzf41jtDa3MS9N5fL36enbDD0eXXwfc70I8LhA
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxtBDBapcyg9NH1Sl7To0EMLXbM7O_s6uqXBFBJ6qCE9LfPQOOvYa-MHoTnlP_TWn5dfkpndWZMUStPjDiNmQNJIWkmfAN4Z7hzbwgQR12HABRdBLiMWEE8MU1mshHANzscn6WjMv54mp3vwseuFuZO_b-qwptNqTpWN5BhzKX0bjjyA_TSxnncP9scn34Y_3Py41Oq79cbzrjvuL6R3rE8D0v8IHm7rpfh5IWazW5bl6ACOuzu1BSXng-1GDtTlH3CN9730E3jsXUwctjLxFPaofgb9tg8XvS6v8b0HnP7wHH6PFhcoVoQranBUVfPLEP1AiQmKWqMmWt5amU0Wq2pzNl_jdk0aLRHKaoKu3hSdYXQE7fAenDfzrrCq0XToHvajHRhC6-urX0Ns-2eaczz40Bnad67W4gWMj758_zwK_MyGQLkUZmBsvMUpK3ScE-eJNCqzLqeOYxknmnEjjbQhIEtMkqkwFYlURSF1qiNjXRNRiPgl9OpFTa8ADdc2mnPNsLrghjMpjMjjUGZZKF2ytw9xx8tSeUBzN1djVnaVa9Oy5UPp-FC2fOhDsKNatoAe_9j_yYnJbq-D424WLMNLr91lJARLjbPtYc6JZKFEWJB9K40mFlHah8FOyO516uv_JTiE3ma1pTfWQ9rIt14xbgBJXhE-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+are+reinforcement+learning+and+deep+learning+algorithms+used+for+big+data+based+decision+making+in+financial+industries%E2%80%93A+review+and+research+agenda&rft.jtitle=International+journal+of+information+management+data+insights&rft.au=Vinay+Singh&rft.au=Shiuann-Shuoh+Chen&rft.au=Minal+Singhania&rft.au=Brijesh+Nanavati&rft.date=2022-11-01&rft.pub=Elsevier&rft.issn=2667-0968&rft.eissn=2667-0968&rft.volume=2&rft.issue=2&rft.spage=100094&rft_id=info:doi/10.1016%2Fj.jjimei.2022.100094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1aa26f0429084eeb9ca09e322fde21e6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-0968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-0968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-0968&client=summon