Effective Vertical Diffusion by Atmospheric Gravity Waves

Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current parameterization schemes suffer from oversimplification and often underestimate the transport rate. In this study, a new approach is explored to quantify...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 48; no. 1
Main Author Liu, Han‐Li
Format Journal Article
LanguageEnglish
Published 16.01.2021
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2020GL091474

Cover

Abstract Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current parameterization schemes suffer from oversimplification and often underestimate the transport rate. In this study, a new approach is explored to quantify the effective vertical eddy diffusion by using a high‐resolution Whole Atmosphere Community Climate Model (WACCM) simulation based on scale invariance. The WACCM simulation can partially resolve the mesoscale GW spectrum down to 250 km horizontal wavelength, and the heat flux and the effective vertical eddy diffusion by these waves are calculated directly. The effective vertical diffusion by the smaller‐scale, unresolved waves, is then deduced based on scale invariance, following the method outlined by H.‐L. Liu (2019) in quantifying GW momentum flux and forcing. The effective vertical diffusion obtained is generally larger than that obtained from parameterizations, and is comparable with that derived from observations in the mesosphere and lower thermosphere region. Plain Language Summary Atmospheric gravity waves (GWs) may transport heat and chemical species in the vertical direction. Such transport, often measured in terms of an effective diffusion over the large‐scale background atmosphere, can be important in controlling the exchange of energy and mass between the lower and upper atmosphere, but quantification of the transport process is challenging because GWs are not well resolved or not resolved at all in global models. Previous formulation to approximate the transport tends to oversimplify the process, and can lead to model biases. In high‐resolution models, the larger scale part of the GWs are resolved and the transport by these waves can be directly calculated from simulation results. This study shows that the transport flux of heat follows scale invariance—a statistical similarity over scales—within the resolved mesoscale range. This scale invariance is used to derive the transport flux by the unresolved waves. It is shown that the transport by the unresolved waves can contribute significantly to the total wave transport. The effective diffusion coefficient derived from this study is comparable to values obtained from observations. Key points Vertical heat flux follows scale invariance with a shallow spectrum Effective vertical diffusion by resolved and unresolved waves are calculated using scale invariance The diffusion coefficient is comparable with values obtained from observations
AbstractList Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current parameterization schemes suffer from oversimplification and often underestimate the transport rate. In this study, a new approach is explored to quantify the effective vertical eddy diffusion by using a high‐resolution Whole Atmosphere Community Climate Model (WACCM) simulation based on scale invariance. The WACCM simulation can partially resolve the mesoscale GW spectrum down to 250 km horizontal wavelength, and the heat flux and the effective vertical eddy diffusion by these waves are calculated directly. The effective vertical diffusion by the smaller‐scale, unresolved waves, is then deduced based on scale invariance, following the method outlined by H.‐L. Liu (2019) in quantifying GW momentum flux and forcing. The effective vertical diffusion obtained is generally larger than that obtained from parameterizations, and is comparable with that derived from observations in the mesosphere and lower thermosphere region. Atmospheric gravity waves (GWs) may transport heat and chemical species in the vertical direction. Such transport, often measured in terms of an effective diffusion over the large‐scale background atmosphere, can be important in controlling the exchange of energy and mass between the lower and upper atmosphere, but quantification of the transport process is challenging because GWs are not well resolved or not resolved at all in global models. Previous formulation to approximate the transport tends to oversimplify the process, and can lead to model biases. In high‐resolution models, the larger scale part of the GWs are resolved and the transport by these waves can be directly calculated from simulation results. This study shows that the transport flux of heat follows scale invariance—a statistical similarity over scales—within the resolved mesoscale range. This scale invariance is used to derive the transport flux by the unresolved waves. It is shown that the transport by the unresolved waves can contribute significantly to the total wave transport. The effective diffusion coefficient derived from this study is comparable to values obtained from observations. Vertical heat flux follows scale invariance with a shallow spectrum Effective vertical diffusion by resolved and unresolved waves are calculated using scale invariance The diffusion coefficient is comparable with values obtained from observations
Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current parameterization schemes suffer from oversimplification and often underestimate the transport rate. In this study, a new approach is explored to quantify the effective vertical eddy diffusion by using a high‐resolution Whole Atmosphere Community Climate Model (WACCM) simulation based on scale invariance. The WACCM simulation can partially resolve the mesoscale GW spectrum down to 250 km horizontal wavelength, and the heat flux and the effective vertical eddy diffusion by these waves are calculated directly. The effective vertical diffusion by the smaller‐scale, unresolved waves, is then deduced based on scale invariance, following the method outlined by H.‐L. Liu (2019) in quantifying GW momentum flux and forcing. The effective vertical diffusion obtained is generally larger than that obtained from parameterizations, and is comparable with that derived from observations in the mesosphere and lower thermosphere region. Plain Language Summary Atmospheric gravity waves (GWs) may transport heat and chemical species in the vertical direction. Such transport, often measured in terms of an effective diffusion over the large‐scale background atmosphere, can be important in controlling the exchange of energy and mass between the lower and upper atmosphere, but quantification of the transport process is challenging because GWs are not well resolved or not resolved at all in global models. Previous formulation to approximate the transport tends to oversimplify the process, and can lead to model biases. In high‐resolution models, the larger scale part of the GWs are resolved and the transport by these waves can be directly calculated from simulation results. This study shows that the transport flux of heat follows scale invariance—a statistical similarity over scales—within the resolved mesoscale range. This scale invariance is used to derive the transport flux by the unresolved waves. It is shown that the transport by the unresolved waves can contribute significantly to the total wave transport. The effective diffusion coefficient derived from this study is comparable to values obtained from observations. Key points Vertical heat flux follows scale invariance with a shallow spectrum Effective vertical diffusion by resolved and unresolved waves are calculated using scale invariance The diffusion coefficient is comparable with values obtained from observations
Author Liu, Han‐Li
Author_xml – sequence: 1
  givenname: Han‐Li
  orcidid: 0000-0002-6370-0704
  surname: Liu
  fullname: Liu, Han‐Li
  email: liuh@ucar.edu
  organization: National Center for Atmospheric Research
BookMark eNqFj81KxDAUhYOMYGd05wP0AazepG3SLIdxrEJBEH-W5TZNMNJphyRW-vZT0YW40NU5cM65l29JFv3Qa0LOKVxSYPKKAYOyAkkzkR2RiMosSwoAsSARgJw9E_yELL1_A4AUUhoRuTVGq2BHHT9rF6zCLr62xrx7O_RxM8XrsBv8_lU7q-LS4WjDFL_gqP0pOTbYeX32rSvydLN93Nwm1X15t1lXiWKigEQYjrnUtNGFYi0KIVGiAaMUygZylak5S3lOW2MKKRBb4JmGpgVKc8HTdEUuvu4qN3jvtKn3zu7QTTWF-hO7_ok919mvurIBw0wTHNrun9GH7fT054O6fKg4FQzSA6Ytauk
CitedBy_id crossref_primary_10_1029_2021JD035834
crossref_primary_10_1029_2023JD040436
crossref_primary_10_3847_1538_4357_ad276f
crossref_primary_10_3390_atmos14121770
crossref_primary_10_1029_2023JD039249
crossref_primary_10_3389_fspas_2022_1041426
crossref_primary_10_1029_2021JD036387
crossref_primary_10_1029_2023JA031684
crossref_primary_10_1029_2021JD035728
Cites_doi 10.1029/2010JD014140
10.1002/qj.2894
10.1175/1520-0469(1997)054<1925:TROEWF>2.0.CO;2
10.1002/qj.637
10.1017/CBO9780511635342
10.1002/2014GL062468
10.1016/j.jastp.2017.01.006
10.1007/s11214-011-9857-x
10.1002/2016GL071741
10.1029/2008JD011039
10.1002/2015JA021196
10.1029/GL008i012p01235
10.1175/1520-0469(2001)058<3685:ANLAED>2.0.CO;2
10.1002/jgrd.50708
10.1002/2016JA023161
10.1175/1520-0469(1991)048<2213:SDBAIG>2.0.CO;2
10.1029/JD093iD09p11075
10.1175/2009JAS3112.1
10.1175/JAS3513.1
10.1175/JAS3580.1
10.1029/2006JD007485
10.1016/j.jastp.2018.05.014
10.1175/2007JAS2601.1
10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
10.5194/essd-10-857-2018
10.1029/95JD03835
10.1002/2017JD026748
10.1029/2018JA025418
10.1029/2019JD031329
10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2
10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2
10.1002/2017JD027460
10.1175/1520-0469(1982)039<2681:TOTMSO>2.0.CO;2
10.1002/2013JD021208
10.1029/1999RG000073
10.1029/JC086iC10p09707
10.1029/2009GL040218
10.1038/s41467-019-10527-z
ContentType Journal Article
Copyright 2020. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2020. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
DOI 10.1029/2020GL091474
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2020GL091474
GRL61720
Genre letter
GrantInformation_xml – fundername: National Aeronautics and Space Administration (NASA)
  funderid: 80NSSC20K1323; 80NSSC20K0601; 80NSSC20K0633; 80NSSC17K0007
– fundername: National Science Foundation (NSF)
  funderid: OPP 1443726
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
ID FETCH-LOGICAL-c2780-7f6a59e1be8c2da779a9af0fcca9b05c4ce1b3651dff897aad064e0bd01157633
ISSN 0094-8276
IngestDate Tue Jul 01 01:41:13 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Wed Jan 22 16:30:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2780-7f6a59e1be8c2da779a9af0fcca9b05c4ce1b3651dff897aad064e0bd01157633
ORCID 0000-0002-6370-0704
PageCount 10
ParticipantIDs crossref_primary_10_1029_2020GL091474
crossref_citationtrail_10_1029_2020GL091474
wiley_primary_10_1029_2020GL091474_GRL61720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 January 2021
2021-01-16
PublicationDateYYYYMMDD 2021-01-16
PublicationDate_xml – month: 01
  year: 2021
  text: 16 January 2021
  day: 16
PublicationDecade 2020
PublicationTitle Geophysical research letters
PublicationYear 2021
References 2014; 119
1982; 39
2012; 168
2019; 10
2017; 44
2018; 123
2015; 120
2005; 62
2009
2019; 124
2016; 121
1981; 8
2014; 41
2017; 155
1985; 42
1996; 101
1988; 93
2009; 114
2016; 142
1981; 86
2010; 67
2007; 112
2009; 36
1991; 48
1997; 54
2010; 136
2010; 115
2018; 178
2013; 118
1987
1983; 40
2008; 65
2001; 39
2017; 122
2018; 10
2001; 58
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Schunk R. W. (e_1_2_8_34_1) 2009
Andrews D. G. (e_1_2_8_3_1) 1987
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 62
  start-page: 3408
  year: 2005
  end-page: 3419
  article-title: Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection
  publication-title: Journal of the Atmospheric Sciences
– volume: 123
  start-page: 5232
  year: 2018
  end-page: 5245
  article-title: Nitric oxide response to the April 2010 electron precipitation event: Using WACCM and WACCM‐D with and without medium‐energy electrons
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 39
  start-page: 179
  year: 2001
  end-page: 229
  article-title: The quasi‐biennial oscillation
  publication-title: Reviews of Geophysics
– volume: 155
  start-page: 50
  year: 2017
  end-page: 61
  article-title: Modeling the descent of nitric oxide during the elevated stratopause event of January 2013
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 44
  start-page: 12
  year: 2017
  end-page: 21
  article-title: Middle atmosphere dynamical sources of the semiannual oscillation in the thermosphere and ionosphere
  publication-title: Geophysical Research Letters
– volume: 121
  start-page: 12080
  year: 2016
  end-page: 12092
  article-title: Impacts of SABER CO ‐based eddy diffusion coefficients in the lower thermosphere on the ionosphere/thermosphere
  publication-title: Journal of Geophysical Research: Space Physics
– start-page: 1
  year: 1987
  end-page: 489
– volume: 62
  start-page: 3933
  year: 2005
  end-page: 3954
  article-title: Stirring and mixing in two‐dimensional divergent flow
  publication-title: Journal of the Atmospheric Sciences
– volume: 118
  start-page: 9456
  year: 2013
  end-page: 9474
  article-title: A global atmospheric model of meteoric iron
  publication-title: Journal of Geophysical Research
– volume: 67
  start-page: 136
  year: 2010
  end-page: 156
  article-title: Toward a physically based gravity wave source parameterization in a general circulation model
  publication-title: Journal of the Atmospheric Sciences
– volume: 58
  start-page: 3685
  year: 2001
  end-page: 3701
  article-title: A new look at eddy diffusivity as a mixing diagnostic
  publication-title: Journal of the Atmospheric Sciences
– volume: 54
  start-page: 1925
  issue: 15
  year: 1997
  end-page: 1942
  article-title: The role of equatorial waves forced by convection in the tropical semiannual oscillation
  publication-title: Journal of the Atmospheric Sciences
– start-page: 1
  year: 2009
  end-page: 628
– volume: 178
  start-page: 47
  year: 2018
  end-page: 57
  article-title: Vertical diffusion transport of atomic oxygen in the mesopause region consistent with chemical losses and continuity: Global mean and inter‐annual variability
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 10
  start-page: 857
  year: 2018
  end-page: 892
  article-title: Gracile: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings
  publication-title: Earth System Science Data
– volume: 93
  start-page: 11075
  year: 1988
  end-page: 11082
  article-title: The role of gravity wave generated advection and diffusion in transport of tracers in the mesosphere
  publication-title: Journal of Geophysical Research
– volume: 36
  start-page: 1
  year: 2009
  end-page: 5
  article-title: Estimate eddy diffusion coefficients from gravity wave vertical momentum and heat fluxes
  publication-title: Geophysical Research Letters
– volume: 122
  start-page: 9579
  year: 2017
  end-page: 9590
  article-title: Large wind shears and their implications for diffusion in regions with enhanced static stability: The mesopause and the tropopause
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 119
  start-page: 5700
  year: 2014
  end-page: 5718
  article-title: On the distribution of CO and CO in the mesosphere and lower thermosphere
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 168
  start-page: 333
  year: 2012
  end-page: 362
  article-title: Gravity wave mixing and effective diffusivity for minor chemical constituents in the mesosphere/lower thermosphere
  publication-title: Space Science Reviews
– volume: 65
  start-page: 2598
  year: 2008
  end-page: 2614
  article-title: Stratospheric gravity waves generated by multiscale tropical convection
  publication-title: Journal of the Atmospheric Sciences
– volume: 124
  start-page: 13519
  issue: 23
  year: 2019
  end-page: 13533
  article-title: Determination of global mean eddy diffusive transport in the mesosphere and lower thermosphere from atomic oxygen and carbon dioxide climatologies
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 136
  start-page: 1103
  year: 2010
  end-page: 1124
  article-title: Recent developments in gravity‐wave effects in climate models and the global distribution of gravity‐wave momentum flux from observations and models
  publication-title: Quarterly Journal of Royal Meteorological Society
– volume: 86
  start-page: 9707
  year: 1981
  end-page: 9714
  article-title: Turbulence and stress owing to gravity wave and tidal breakdown
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 2605
  year: 2018
  end-page: 2627
  article-title: Secondary gravity waves in the winter mesosphere: Results from a high‐resolution global circulation model
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 112
  start-page: 1
  year: 2007
  end-page: 23
  article-title: Simulation of secular trends in the middle atmosphere, 1950‐2003
  publication-title: Journal of Geophysical Research
– volume: 39
  start-page: 791
  year: 1982
  end-page: 799
  article-title: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere
  publication-title: Journal of the Atmospheric Sciences
– volume: 101
  start-page: 9441
  year: 1996
  end-page: 9470
  article-title: Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high‐altitude aircraft
  publication-title: Journal of Geophysical Research
– volume: 41
  start-page: 9106
  year: 2014
  end-page: 9112
  article-title: Gravity waves simulated by high‐resolution Whole Atmosphere Community Climate Model
  publication-title: Geophysical Research Letters
– volume: 42
  start-page: 950
  year: 1985
  end-page: 960
  article-title: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft
  publication-title: Journal of the Atmospheric Sciences
– volume: 114
  start-page: 1
  year: 2009
  end-page: 15
  article-title: Seasonal variation of thermospheric density and composition
  publication-title: Journal of Geophysical Research
– volume: 142
  start-page: 3128
  year: 2016
  end-page: 3137
  article-title: Orographic drag on islands in the NWP mountain grey zone
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 8
  start-page: 1235
  year: 1981
  end-page: 1238
  article-title: Dynamical cooling induced by dissipating internal gravity‐waves
  publication-title: Geophysical Research Letters
– volume: 48
  start-page: 2213
  year: 1991
  end-page: 2230
  article-title: Stokes diffusion by atmospheric internal gravity waves
  publication-title: Journal of the Atmospheric Sciences
– volume: 40
  start-page: 2497
  year: 1983
  end-page: 2507
  article-title: The influence of gravity wave breaking on the general circulation of the middle atmosphere
  publication-title: Journal of the Atmospheric Sciences
– volume: 39
  start-page: 2681
  year: 1982
  end-page: 2690
  article-title: Theory of the mesopause semiannual oscillation
  publication-title: Journal of the Atmospheric Sciences
– volume: 120
  start-page: 5035
  year: 2015
  end-page: 5048
  article-title: Simulation of energetic particle precipitation effects during the 2003–2004 Arctic winter
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 115
  start-page: 1
  year: 2010
  end-page: 14
  article-title: Wave‐induced transport of atmospheric constituents and its effect on the mesospheric Na layer
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 10
  start-page: 2605
  year: 2019
  article-title: Quantifying gravity wave forcing using scale invariance
  publication-title: Nature Communications
– ident: e_1_2_8_12_1
  doi: 10.1029/2010JD014140
– ident: e_1_2_8_38_1
  doi: 10.1002/qj.2894
– ident: e_1_2_8_33_1
  doi: 10.1175/1520-0469(1997)054<1925:TROEWF>2.0.CO;2
– ident: e_1_2_8_2_1
  doi: 10.1002/qj.637
– start-page: 1
  volume-title: Ionospheres, physics, plasma physics, and chemistry
  year: 2009
  ident: e_1_2_8_34_1
  doi: 10.1017/CBO9780511635342
– ident: e_1_2_8_24_1
  doi: 10.1002/2014GL062468
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jastp.2017.01.006
– ident: e_1_2_8_13_1
  doi: 10.1007/s11214-011-9857-x
– ident: e_1_2_8_17_1
  doi: 10.1002/2016GL071741
– ident: e_1_2_8_29_1
  doi: 10.1029/2008JD011039
– ident: e_1_2_8_30_1
  doi: 10.1002/2015JA021196
– ident: e_1_2_8_39_1
  doi: 10.1029/GL008i012p01235
– ident: e_1_2_8_26_1
  doi: 10.1175/1520-0469(2001)058<3685:ANLAED>2.0.CO;2
– ident: e_1_2_8_9_1
  doi: 10.1002/jgrd.50708
– ident: e_1_2_8_32_1
  doi: 10.1002/2016JA023161
– ident: e_1_2_8_40_1
  doi: 10.1175/1520-0469(1991)048<2213:SDBAIG>2.0.CO;2
– ident: e_1_2_8_16_1
  doi: 10.1029/JD093iD09p11075
– ident: e_1_2_8_31_1
  doi: 10.1175/2009JAS3112.1
– ident: e_1_2_8_18_1
  doi: 10.1175/JAS3513.1
– ident: e_1_2_8_25_1
  doi: 10.1175/JAS3580.1
– ident: e_1_2_8_11_1
  doi: 10.1029/2006JD007485
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jastp.2018.05.014
– ident: e_1_2_8_19_1
  doi: 10.1175/2007JAS2601.1
– ident: e_1_2_8_27_1
  doi: 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
– ident: e_1_2_8_8_1
  doi: 10.5194/essd-10-857-2018
– ident: e_1_2_8_4_1
  doi: 10.1029/95JD03835
– ident: e_1_2_8_22_1
  doi: 10.1002/2017JD026748
– ident: e_1_2_8_35_1
  doi: 10.1029/2018JA025418
– ident: e_1_2_8_36_1
  doi: 10.1029/2019JD031329
– ident: e_1_2_8_15_1
  doi: 10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2
– ident: e_1_2_8_14_1
  doi: 10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2
– ident: e_1_2_8_6_1
  doi: 10.1002/2017JD027460
– ident: e_1_2_8_7_1
  doi: 10.1175/1520-0469(1982)039<2681:TOTMSO>2.0.CO;2
– start-page: 1
  volume-title: Middle atmosphere dynamics
  year: 1987
  ident: e_1_2_8_3_1
– ident: e_1_2_8_10_1
  doi: 10.1002/2013JD021208
– ident: e_1_2_8_5_1
  doi: 10.1029/1999RG000073
– ident: e_1_2_8_20_1
  doi: 10.1029/JC086iC10p09707
– ident: e_1_2_8_21_1
  doi: 10.1029/2009GL040218
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-019-10527-z
SSID ssj0003031
Score 2.4300218
Snippet Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms eddy diffusion
gravity wave
parameterization
scale‐invariance
Title Effective Vertical Diffusion by Atmospheric Gravity Waves
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL091474
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eEHwRr3inD_o0olnXps3jEK3I9EGcii8jSRMc6Ca6CfrrPbk0VrygvpSSHbIuX3a-r-FcENpJNROpUhqrvEww8G0Ti1hyDEqhJTMulbD5Fadn9LibnFyn1-8t_Wx2yUjsydcv80r-gyqMAa4mS_YPyIZJYQDuAV-4AsJw_RXGrvSwif25tOHR1oVpPTYnYEZXtkf3wydTN6AvG8Ujt20irvizDxv0krRQw4cKLF_657ZxZ7N8gt7u9MeWo_ggBEd0-vUDg9icFmCXz1g5QZbgPM58BWrn91gCY8Q1oK0cY5J_2gCOIgOBfPK_JDblS-FbSdEBJZK4Djwfy1wHu_QnS0uxxXnHKCwyiabheSn4sen2ZfemG7gWCNj1RPQ_yac2wPT79ak_iI76S4hVERfzaM7L_6jtsFxAE2qwiGYK2175Be5sQK58WkIsYBtV2EYB20i8RDVsI49tZLFdRt2jw4uDY-zbXGAZZznBmaY8ZaopVC7jkmcZ44xrouG_xQRJZSLhsxZNm6XWOcs4L0FGKiJKo-aBHloraGowHKhVFLUoEyWluSn4kEghc5EKeEPmlADn0bK5hhrVOvSkrwFvWpHc9WwsQsx69VVbQ7vB-sHVPvnGrmGX9EejXoXl-p-sN9Ds-x7eRFOjx7HaAhk4Ett-L7wB6n5Tig
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgFYILYhVlzQFOlYWzOfGxYkmBtAfUlIpLZDu2VAla1AWpf8_YCVU5gMQtUsY-TOyZ58n4PYQuQ81EqJTGKi4CDPnWxcKTHANS8GXEpRL2fkWnS9tZ8DgIB5XOqbkLU_JDLAtuZmfYeG02uClIV2wDhiQTju0kSSHfBVGwjuohJFNY4vVWP3vNlsEYInQpmscCHHsRrXrfYYbr1fE_stIqSrVp5n4HbVf40GmVH3QXranRHtpIrP7uAp5sx6ac7iNW8g5DsHL6tjcaRt0OtZ6b8pcjFk5r9j6eGtKAoXSSCTcaEc4L_1TTA5Td3_Vu2rjSQcDSi2KCI015yJQrVCy9gkcR44xrosH5TJBQBhLe-TR0C61jFnFeAM5QRBQG7kH88A9RbTQeqSPk-JSJgtLYMAIEUshYhAKOUJwSCIq0cBuo-e2HXFYk4Uar4i23P6s9lq96rYGultYfJTnGL3ZN69I_jfLkOTVwihz_y_oCbbZ7nTRPH7pPJ2jLMy0nxGhfn6LabDJXZ4AZZuK8Whdf6D-24Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RfEiPrE-c9BTCW6SzSZ7LNamai0iphYvYZ9Q0Lb0IfTfO5vEUg8K3gKZzWGSnflmMvt9CF2GholQa-PqWBEX8q3nCl9yF5BCICMutcjPVzx2aTsl9_2wXzbc7FmYgh9i2XCzOyOP13aDj5UpyQYsRyZU7TjpQLojEVlHVcjkBIqvaqOXvqXLWAwButDMY8SN_YiWo-_whOvV9T-S0ipIzbNMawdtl_DQaRTvcxet6eEe2khy-d0FXOUDm3K6j1hBOwyxyunlo9GwqjkwZm67X45YOI3Zx2hqOQMG0kkm3EpEOK_8U08PUNq6fblpu6UMgiv9KMZuZCgPmfaEjqWveBQxzrjBBnzPBA4lkXAvoKGnjIlZxLkCmKGxUBbtQfgIDlFlOBrqI-QElAlFaWwJAYgUMhahgAqKUwwxkSqvhurffshkyRFupSres_xftc-yVa_V0NXSelxwY_xiV89d-qdRljx3LJrCx_-yvkCbT81W1rnrPpygLd8OnGCrfH2KKrPJXJ8BYpiJ8_Kz-AL7VLYK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Vertical+Diffusion+by+Atmospheric+Gravity+Waves&rft.jtitle=Geophysical+research+letters&rft.au=Liu%2C+Han%E2%80%90Li&rft.date=2021-01-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=48&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020GL091474&rft.externalDBID=10.1029%252F2020GL091474&rft.externalDocID=GRL61720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon