Effective Vertical Diffusion by Atmospheric Gravity Waves
Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current parameterization schemes suffer from oversimplification and often underestimate the transport rate. In this study, a new approach is explored to quantify...
Saved in:
Published in | Geophysical research letters Vol. 48; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
16.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-8276 1944-8007 |
DOI | 10.1029/2020GL091474 |
Cover
Abstract | Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current parameterization schemes suffer from oversimplification and often underestimate the transport rate. In this study, a new approach is explored to quantify the effective vertical eddy diffusion by using a high‐resolution Whole Atmosphere Community Climate Model (WACCM) simulation based on scale invariance. The WACCM simulation can partially resolve the mesoscale GW spectrum down to 250 km horizontal wavelength, and the heat flux and the effective vertical eddy diffusion by these waves are calculated directly. The effective vertical diffusion by the smaller‐scale, unresolved waves, is then deduced based on scale invariance, following the method outlined by H.‐L. Liu (2019) in quantifying GW momentum flux and forcing. The effective vertical diffusion obtained is generally larger than that obtained from parameterizations, and is comparable with that derived from observations in the mesosphere and lower thermosphere region.
Plain Language Summary
Atmospheric gravity waves (GWs) may transport heat and chemical species in the vertical direction. Such transport, often measured in terms of an effective diffusion over the large‐scale background atmosphere, can be important in controlling the exchange of energy and mass between the lower and upper atmosphere, but quantification of the transport process is challenging because GWs are not well resolved or not resolved at all in global models. Previous formulation to approximate the transport tends to oversimplify the process, and can lead to model biases. In high‐resolution models, the larger scale part of the GWs are resolved and the transport by these waves can be directly calculated from simulation results. This study shows that the transport flux of heat follows scale invariance—a statistical similarity over scales—within the resolved mesoscale range. This scale invariance is used to derive the transport flux by the unresolved waves. It is shown that the transport by the unresolved waves can contribute significantly to the total wave transport. The effective diffusion coefficient derived from this study is comparable to values obtained from observations.
Key points
Vertical heat flux follows scale invariance with a shallow spectrum
Effective vertical diffusion by resolved and unresolved waves are calculated using scale invariance
The diffusion coefficient is comparable with values obtained from observations |
---|---|
AbstractList | Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current parameterization schemes suffer from oversimplification and often underestimate the transport rate. In this study, a new approach is explored to quantify the effective vertical eddy diffusion by using a high‐resolution Whole Atmosphere Community Climate Model (WACCM) simulation based on scale invariance. The WACCM simulation can partially resolve the mesoscale GW spectrum down to 250 km horizontal wavelength, and the heat flux and the effective vertical eddy diffusion by these waves are calculated directly. The effective vertical diffusion by the smaller‐scale, unresolved waves, is then deduced based on scale invariance, following the method outlined by H.‐L. Liu (2019) in quantifying GW momentum flux and forcing. The effective vertical diffusion obtained is generally larger than that obtained from parameterizations, and is comparable with that derived from observations in the mesosphere and lower thermosphere region.
Atmospheric gravity waves (GWs) may transport heat and chemical species in the vertical direction. Such transport, often measured in terms of an effective diffusion over the large‐scale background atmosphere, can be important in controlling the exchange of energy and mass between the lower and upper atmosphere, but quantification of the transport process is challenging because GWs are not well resolved or not resolved at all in global models. Previous formulation to approximate the transport tends to oversimplify the process, and can lead to model biases. In high‐resolution models, the larger scale part of the GWs are resolved and the transport by these waves can be directly calculated from simulation results. This study shows that the transport flux of heat follows scale invariance—a statistical similarity over scales—within the resolved mesoscale range. This scale invariance is used to derive the transport flux by the unresolved waves. It is shown that the transport by the unresolved waves can contribute significantly to the total wave transport. The effective diffusion coefficient derived from this study is comparable to values obtained from observations.
Vertical heat flux follows scale invariance with a shallow spectrum
Effective vertical diffusion by resolved and unresolved waves are calculated using scale invariance
The diffusion coefficient is comparable with values obtained from observations Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current parameterization schemes suffer from oversimplification and often underestimate the transport rate. In this study, a new approach is explored to quantify the effective vertical eddy diffusion by using a high‐resolution Whole Atmosphere Community Climate Model (WACCM) simulation based on scale invariance. The WACCM simulation can partially resolve the mesoscale GW spectrum down to 250 km horizontal wavelength, and the heat flux and the effective vertical eddy diffusion by these waves are calculated directly. The effective vertical diffusion by the smaller‐scale, unresolved waves, is then deduced based on scale invariance, following the method outlined by H.‐L. Liu (2019) in quantifying GW momentum flux and forcing. The effective vertical diffusion obtained is generally larger than that obtained from parameterizations, and is comparable with that derived from observations in the mesosphere and lower thermosphere region. Plain Language Summary Atmospheric gravity waves (GWs) may transport heat and chemical species in the vertical direction. Such transport, often measured in terms of an effective diffusion over the large‐scale background atmosphere, can be important in controlling the exchange of energy and mass between the lower and upper atmosphere, but quantification of the transport process is challenging because GWs are not well resolved or not resolved at all in global models. Previous formulation to approximate the transport tends to oversimplify the process, and can lead to model biases. In high‐resolution models, the larger scale part of the GWs are resolved and the transport by these waves can be directly calculated from simulation results. This study shows that the transport flux of heat follows scale invariance—a statistical similarity over scales—within the resolved mesoscale range. This scale invariance is used to derive the transport flux by the unresolved waves. It is shown that the transport by the unresolved waves can contribute significantly to the total wave transport. The effective diffusion coefficient derived from this study is comparable to values obtained from observations. Key points Vertical heat flux follows scale invariance with a shallow spectrum Effective vertical diffusion by resolved and unresolved waves are calculated using scale invariance The diffusion coefficient is comparable with values obtained from observations |
Author | Liu, Han‐Li |
Author_xml | – sequence: 1 givenname: Han‐Li orcidid: 0000-0002-6370-0704 surname: Liu fullname: Liu, Han‐Li email: liuh@ucar.edu organization: National Center for Atmospheric Research |
BookMark | eNqFj81KxDAUhYOMYGd05wP0AazepG3SLIdxrEJBEH-W5TZNMNJphyRW-vZT0YW40NU5cM65l29JFv3Qa0LOKVxSYPKKAYOyAkkzkR2RiMosSwoAsSARgJw9E_yELL1_A4AUUhoRuTVGq2BHHT9rF6zCLr62xrx7O_RxM8XrsBv8_lU7q-LS4WjDFL_gqP0pOTbYeX32rSvydLN93Nwm1X15t1lXiWKigEQYjrnUtNGFYi0KIVGiAaMUygZylak5S3lOW2MKKRBb4JmGpgVKc8HTdEUuvu4qN3jvtKn3zu7QTTWF-hO7_ok919mvurIBw0wTHNrun9GH7fT054O6fKg4FQzSA6Ytauk |
CitedBy_id | crossref_primary_10_1029_2021JD035834 crossref_primary_10_1029_2023JD040436 crossref_primary_10_3847_1538_4357_ad276f crossref_primary_10_3390_atmos14121770 crossref_primary_10_1029_2023JD039249 crossref_primary_10_3389_fspas_2022_1041426 crossref_primary_10_1029_2021JD036387 crossref_primary_10_1029_2023JA031684 crossref_primary_10_1029_2021JD035728 |
Cites_doi | 10.1029/2010JD014140 10.1002/qj.2894 10.1175/1520-0469(1997)054<1925:TROEWF>2.0.CO;2 10.1002/qj.637 10.1017/CBO9780511635342 10.1002/2014GL062468 10.1016/j.jastp.2017.01.006 10.1007/s11214-011-9857-x 10.1002/2016GL071741 10.1029/2008JD011039 10.1002/2015JA021196 10.1029/GL008i012p01235 10.1175/1520-0469(2001)058<3685:ANLAED>2.0.CO;2 10.1002/jgrd.50708 10.1002/2016JA023161 10.1175/1520-0469(1991)048<2213:SDBAIG>2.0.CO;2 10.1029/JD093iD09p11075 10.1175/2009JAS3112.1 10.1175/JAS3513.1 10.1175/JAS3580.1 10.1029/2006JD007485 10.1016/j.jastp.2018.05.014 10.1175/2007JAS2601.1 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2 10.5194/essd-10-857-2018 10.1029/95JD03835 10.1002/2017JD026748 10.1029/2018JA025418 10.1029/2019JD031329 10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2 10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2 10.1002/2017JD027460 10.1175/1520-0469(1982)039<2681:TOTMSO>2.0.CO;2 10.1002/2013JD021208 10.1029/1999RG000073 10.1029/JC086iC10p09707 10.1029/2009GL040218 10.1038/s41467-019-10527-z |
ContentType | Journal Article |
Copyright | 2020. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2020. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION |
DOI | 10.1029/2020GL091474 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2020GL091474 GRL61720 |
Genre | letter |
GrantInformation_xml | – fundername: National Aeronautics and Space Administration (NASA) funderid: 80NSSC20K1323; 80NSSC20K0601; 80NSSC20K0633; 80NSSC17K0007 – fundername: National Science Foundation (NSF) funderid: OPP 1443726 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION |
ID | FETCH-LOGICAL-c2780-7f6a59e1be8c2da779a9af0fcca9b05c4ce1b3651dff897aad064e0bd01157633 |
ISSN | 0094-8276 |
IngestDate | Tue Jul 01 01:41:13 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 Wed Jan 22 16:30:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2780-7f6a59e1be8c2da779a9af0fcca9b05c4ce1b3651dff897aad064e0bd01157633 |
ORCID | 0000-0002-6370-0704 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1029_2020GL091474 crossref_citationtrail_10_1029_2020GL091474 wiley_primary_10_1029_2020GL091474_GRL61720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 January 2021 2021-01-16 |
PublicationDateYYYYMMDD | 2021-01-16 |
PublicationDate_xml | – month: 01 year: 2021 text: 16 January 2021 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Geophysical research letters |
PublicationYear | 2021 |
References | 2014; 119 1982; 39 2012; 168 2019; 10 2017; 44 2018; 123 2015; 120 2005; 62 2009 2019; 124 2016; 121 1981; 8 2014; 41 2017; 155 1985; 42 1996; 101 1988; 93 2009; 114 2016; 142 1981; 86 2010; 67 2007; 112 2009; 36 1991; 48 1997; 54 2010; 136 2010; 115 2018; 178 2013; 118 1987 1983; 40 2008; 65 2001; 39 2017; 122 2018; 10 2001; 58 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Schunk R. W. (e_1_2_8_34_1) 2009 Andrews D. G. (e_1_2_8_3_1) 1987 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 62 start-page: 3408 year: 2005 end-page: 3419 article-title: Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection publication-title: Journal of the Atmospheric Sciences – volume: 123 start-page: 5232 year: 2018 end-page: 5245 article-title: Nitric oxide response to the April 2010 electron precipitation event: Using WACCM and WACCM‐D with and without medium‐energy electrons publication-title: Journal of Geophysical Research: Space Physics – volume: 39 start-page: 179 year: 2001 end-page: 229 article-title: The quasi‐biennial oscillation publication-title: Reviews of Geophysics – volume: 155 start-page: 50 year: 2017 end-page: 61 article-title: Modeling the descent of nitric oxide during the elevated stratopause event of January 2013 publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics – volume: 44 start-page: 12 year: 2017 end-page: 21 article-title: Middle atmosphere dynamical sources of the semiannual oscillation in the thermosphere and ionosphere publication-title: Geophysical Research Letters – volume: 121 start-page: 12080 year: 2016 end-page: 12092 article-title: Impacts of SABER CO ‐based eddy diffusion coefficients in the lower thermosphere on the ionosphere/thermosphere publication-title: Journal of Geophysical Research: Space Physics – start-page: 1 year: 1987 end-page: 489 – volume: 62 start-page: 3933 year: 2005 end-page: 3954 article-title: Stirring and mixing in two‐dimensional divergent flow publication-title: Journal of the Atmospheric Sciences – volume: 118 start-page: 9456 year: 2013 end-page: 9474 article-title: A global atmospheric model of meteoric iron publication-title: Journal of Geophysical Research – volume: 67 start-page: 136 year: 2010 end-page: 156 article-title: Toward a physically based gravity wave source parameterization in a general circulation model publication-title: Journal of the Atmospheric Sciences – volume: 58 start-page: 3685 year: 2001 end-page: 3701 article-title: A new look at eddy diffusivity as a mixing diagnostic publication-title: Journal of the Atmospheric Sciences – volume: 54 start-page: 1925 issue: 15 year: 1997 end-page: 1942 article-title: The role of equatorial waves forced by convection in the tropical semiannual oscillation publication-title: Journal of the Atmospheric Sciences – start-page: 1 year: 2009 end-page: 628 – volume: 178 start-page: 47 year: 2018 end-page: 57 article-title: Vertical diffusion transport of atomic oxygen in the mesopause region consistent with chemical losses and continuity: Global mean and inter‐annual variability publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics – volume: 10 start-page: 857 year: 2018 end-page: 892 article-title: Gracile: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings publication-title: Earth System Science Data – volume: 93 start-page: 11075 year: 1988 end-page: 11082 article-title: The role of gravity wave generated advection and diffusion in transport of tracers in the mesosphere publication-title: Journal of Geophysical Research – volume: 36 start-page: 1 year: 2009 end-page: 5 article-title: Estimate eddy diffusion coefficients from gravity wave vertical momentum and heat fluxes publication-title: Geophysical Research Letters – volume: 122 start-page: 9579 year: 2017 end-page: 9590 article-title: Large wind shears and their implications for diffusion in regions with enhanced static stability: The mesopause and the tropopause publication-title: Journal of Geophysical Research: Atmospheres – volume: 119 start-page: 5700 year: 2014 end-page: 5718 article-title: On the distribution of CO and CO in the mesosphere and lower thermosphere publication-title: Journal of Geophysical Research: Atmospheres – volume: 168 start-page: 333 year: 2012 end-page: 362 article-title: Gravity wave mixing and effective diffusivity for minor chemical constituents in the mesosphere/lower thermosphere publication-title: Space Science Reviews – volume: 65 start-page: 2598 year: 2008 end-page: 2614 article-title: Stratospheric gravity waves generated by multiscale tropical convection publication-title: Journal of the Atmospheric Sciences – volume: 124 start-page: 13519 issue: 23 year: 2019 end-page: 13533 article-title: Determination of global mean eddy diffusive transport in the mesosphere and lower thermosphere from atomic oxygen and carbon dioxide climatologies publication-title: Journal of Geophysical Research: Atmospheres – volume: 136 start-page: 1103 year: 2010 end-page: 1124 article-title: Recent developments in gravity‐wave effects in climate models and the global distribution of gravity‐wave momentum flux from observations and models publication-title: Quarterly Journal of Royal Meteorological Society – volume: 86 start-page: 9707 year: 1981 end-page: 9714 article-title: Turbulence and stress owing to gravity wave and tidal breakdown publication-title: Journal of Geophysical Research – volume: 123 start-page: 2605 year: 2018 end-page: 2627 article-title: Secondary gravity waves in the winter mesosphere: Results from a high‐resolution global circulation model publication-title: Journal of Geophysical Research: Atmospheres – volume: 112 start-page: 1 year: 2007 end-page: 23 article-title: Simulation of secular trends in the middle atmosphere, 1950‐2003 publication-title: Journal of Geophysical Research – volume: 39 start-page: 791 year: 1982 end-page: 799 article-title: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere publication-title: Journal of the Atmospheric Sciences – volume: 101 start-page: 9441 year: 1996 end-page: 9470 article-title: Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high‐altitude aircraft publication-title: Journal of Geophysical Research – volume: 41 start-page: 9106 year: 2014 end-page: 9112 article-title: Gravity waves simulated by high‐resolution Whole Atmosphere Community Climate Model publication-title: Geophysical Research Letters – volume: 42 start-page: 950 year: 1985 end-page: 960 article-title: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft publication-title: Journal of the Atmospheric Sciences – volume: 114 start-page: 1 year: 2009 end-page: 15 article-title: Seasonal variation of thermospheric density and composition publication-title: Journal of Geophysical Research – volume: 142 start-page: 3128 year: 2016 end-page: 3137 article-title: Orographic drag on islands in the NWP mountain grey zone publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 8 start-page: 1235 year: 1981 end-page: 1238 article-title: Dynamical cooling induced by dissipating internal gravity‐waves publication-title: Geophysical Research Letters – volume: 48 start-page: 2213 year: 1991 end-page: 2230 article-title: Stokes diffusion by atmospheric internal gravity waves publication-title: Journal of the Atmospheric Sciences – volume: 40 start-page: 2497 year: 1983 end-page: 2507 article-title: The influence of gravity wave breaking on the general circulation of the middle atmosphere publication-title: Journal of the Atmospheric Sciences – volume: 39 start-page: 2681 year: 1982 end-page: 2690 article-title: Theory of the mesopause semiannual oscillation publication-title: Journal of the Atmospheric Sciences – volume: 120 start-page: 5035 year: 2015 end-page: 5048 article-title: Simulation of energetic particle precipitation effects during the 2003–2004 Arctic winter publication-title: Journal of Geophysical Research: Space Physics – volume: 115 start-page: 1 year: 2010 end-page: 14 article-title: Wave‐induced transport of atmospheric constituents and its effect on the mesospheric Na layer publication-title: Journal of Geophysical Research: Atmospheres – volume: 10 start-page: 2605 year: 2019 article-title: Quantifying gravity wave forcing using scale invariance publication-title: Nature Communications – ident: e_1_2_8_12_1 doi: 10.1029/2010JD014140 – ident: e_1_2_8_38_1 doi: 10.1002/qj.2894 – ident: e_1_2_8_33_1 doi: 10.1175/1520-0469(1997)054<1925:TROEWF>2.0.CO;2 – ident: e_1_2_8_2_1 doi: 10.1002/qj.637 – start-page: 1 volume-title: Ionospheres, physics, plasma physics, and chemistry year: 2009 ident: e_1_2_8_34_1 doi: 10.1017/CBO9780511635342 – ident: e_1_2_8_24_1 doi: 10.1002/2014GL062468 – ident: e_1_2_8_28_1 doi: 10.1016/j.jastp.2017.01.006 – ident: e_1_2_8_13_1 doi: 10.1007/s11214-011-9857-x – ident: e_1_2_8_17_1 doi: 10.1002/2016GL071741 – ident: e_1_2_8_29_1 doi: 10.1029/2008JD011039 – ident: e_1_2_8_30_1 doi: 10.1002/2015JA021196 – ident: e_1_2_8_39_1 doi: 10.1029/GL008i012p01235 – ident: e_1_2_8_26_1 doi: 10.1175/1520-0469(2001)058<3685:ANLAED>2.0.CO;2 – ident: e_1_2_8_9_1 doi: 10.1002/jgrd.50708 – ident: e_1_2_8_32_1 doi: 10.1002/2016JA023161 – ident: e_1_2_8_40_1 doi: 10.1175/1520-0469(1991)048<2213:SDBAIG>2.0.CO;2 – ident: e_1_2_8_16_1 doi: 10.1029/JD093iD09p11075 – ident: e_1_2_8_31_1 doi: 10.1175/2009JAS3112.1 – ident: e_1_2_8_18_1 doi: 10.1175/JAS3513.1 – ident: e_1_2_8_25_1 doi: 10.1175/JAS3580.1 – ident: e_1_2_8_11_1 doi: 10.1029/2006JD007485 – ident: e_1_2_8_37_1 doi: 10.1016/j.jastp.2018.05.014 – ident: e_1_2_8_19_1 doi: 10.1175/2007JAS2601.1 – ident: e_1_2_8_27_1 doi: 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2 – ident: e_1_2_8_8_1 doi: 10.5194/essd-10-857-2018 – ident: e_1_2_8_4_1 doi: 10.1029/95JD03835 – ident: e_1_2_8_22_1 doi: 10.1002/2017JD026748 – ident: e_1_2_8_35_1 doi: 10.1029/2018JA025418 – ident: e_1_2_8_36_1 doi: 10.1029/2019JD031329 – ident: e_1_2_8_15_1 doi: 10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2 – ident: e_1_2_8_14_1 doi: 10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2 – ident: e_1_2_8_6_1 doi: 10.1002/2017JD027460 – ident: e_1_2_8_7_1 doi: 10.1175/1520-0469(1982)039<2681:TOTMSO>2.0.CO;2 – start-page: 1 volume-title: Middle atmosphere dynamics year: 1987 ident: e_1_2_8_3_1 – ident: e_1_2_8_10_1 doi: 10.1002/2013JD021208 – ident: e_1_2_8_5_1 doi: 10.1029/1999RG000073 – ident: e_1_2_8_20_1 doi: 10.1029/JC086iC10p09707 – ident: e_1_2_8_21_1 doi: 10.1029/2009GL040218 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-019-10527-z |
SSID | ssj0003031 |
Score | 2.4300218 |
Snippet | Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | eddy diffusion gravity wave parameterization scale‐invariance |
Title | Effective Vertical Diffusion by Atmospheric Gravity Waves |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL091474 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eEHwRr3inD_o0olnXps3jEK3I9EGcii8jSRMc6Ca6CfrrPbk0VrygvpSSHbIuX3a-r-FcENpJNROpUhqrvEww8G0Ti1hyDEqhJTMulbD5Fadn9LibnFyn1-8t_Wx2yUjsydcv80r-gyqMAa4mS_YPyIZJYQDuAV-4AsJw_RXGrvSwif25tOHR1oVpPTYnYEZXtkf3wydTN6AvG8Ujt20irvizDxv0krRQw4cKLF_657ZxZ7N8gt7u9MeWo_ggBEd0-vUDg9icFmCXz1g5QZbgPM58BWrn91gCY8Q1oK0cY5J_2gCOIgOBfPK_JDblS-FbSdEBJZK4Djwfy1wHu_QnS0uxxXnHKCwyiabheSn4sen2ZfemG7gWCNj1RPQ_yac2wPT79ak_iI76S4hVERfzaM7L_6jtsFxAE2qwiGYK2175Be5sQK58WkIsYBtV2EYB20i8RDVsI49tZLFdRt2jw4uDY-zbXGAZZznBmaY8ZaopVC7jkmcZ44xrouG_xQRJZSLhsxZNm6XWOcs4L0FGKiJKo-aBHloraGowHKhVFLUoEyWluSn4kEghc5EKeEPmlADn0bK5hhrVOvSkrwFvWpHc9WwsQsx69VVbQ7vB-sHVPvnGrmGX9EejXoXl-p-sN9Ds-x7eRFOjx7HaAhk4Ett-L7wB6n5Tig |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgFYILYhVlzQFOlYWzOfGxYkmBtAfUlIpLZDu2VAla1AWpf8_YCVU5gMQtUsY-TOyZ58n4PYQuQ81EqJTGKi4CDPnWxcKTHANS8GXEpRL2fkWnS9tZ8DgIB5XOqbkLU_JDLAtuZmfYeG02uClIV2wDhiQTju0kSSHfBVGwjuohJFNY4vVWP3vNlsEYInQpmscCHHsRrXrfYYbr1fE_stIqSrVp5n4HbVf40GmVH3QXranRHtpIrP7uAp5sx6ac7iNW8g5DsHL6tjcaRt0OtZ6b8pcjFk5r9j6eGtKAoXSSCTcaEc4L_1TTA5Td3_Vu2rjSQcDSi2KCI015yJQrVCy9gkcR44xrosH5TJBQBhLe-TR0C61jFnFeAM5QRBQG7kH88A9RbTQeqSPk-JSJgtLYMAIEUshYhAKOUJwSCIq0cBuo-e2HXFYk4Uar4i23P6s9lq96rYGultYfJTnGL3ZN69I_jfLkOTVwihz_y_oCbbZ7nTRPH7pPJ2jLMy0nxGhfn6LabDJXZ4AZZuK8Whdf6D-24Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RfEiPrE-c9BTCW6SzSZ7LNamai0iphYvYZ9Q0Lb0IfTfO5vEUg8K3gKZzWGSnflmMvt9CF2GholQa-PqWBEX8q3nCl9yF5BCICMutcjPVzx2aTsl9_2wXzbc7FmYgh9i2XCzOyOP13aDj5UpyQYsRyZU7TjpQLojEVlHVcjkBIqvaqOXvqXLWAwButDMY8SN_YiWo-_whOvV9T-S0ipIzbNMawdtl_DQaRTvcxet6eEe2khy-d0FXOUDm3K6j1hBOwyxyunlo9GwqjkwZm67X45YOI3Zx2hqOQMG0kkm3EpEOK_8U08PUNq6fblpu6UMgiv9KMZuZCgPmfaEjqWveBQxzrjBBnzPBA4lkXAvoKGnjIlZxLkCmKGxUBbtQfgIDlFlOBrqI-QElAlFaWwJAYgUMhahgAqKUwwxkSqvhurffshkyRFupSres_xftc-yVa_V0NXSelxwY_xiV89d-qdRljx3LJrCx_-yvkCbT81W1rnrPpygLd8OnGCrfH2KKrPJXJ8BYpiJ8_Kz-AL7VLYK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Vertical+Diffusion+by+Atmospheric+Gravity+Waves&rft.jtitle=Geophysical+research+letters&rft.au=Liu%2C+Han%E2%80%90Li&rft.date=2021-01-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=48&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020GL091474&rft.externalDBID=10.1029%252F2020GL091474&rft.externalDocID=GRL61720 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |