Sliding mode control of a DC/DC PWM converter with PFC implemented by neural networks

An experimental neural controller implementing a variable structure control (VSC) algorithm is proposed for a power factor preregulator. VSC control laws yield fast response and a robust behavior against large parameters variations. A multilayer perceptron learns through backpropagation to approxima...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. 1, Fundamental theory and applications Vol. 44; no. 8; pp. 743 - 749
Main Authors Carrasco, J.M., Quero, J.M., Ridao, F.P., Perales, M.A., Franquelo, L.G.
Format Journal Article
LanguageEnglish
Published IEEE 01.08.1997
Subjects
Online AccessGet full text
ISSN1057-7122
DOI10.1109/81.611271

Cover

Abstract An experimental neural controller implementing a variable structure control (VSC) algorithm is proposed for a power factor preregulator. VSC control laws yield fast response and a robust behavior against large parameters variations. A multilayer perceptron learns through backpropagation to approximate the desired adaptive control functions. The main advantage of the neural network implementation in comparison to the numerical implementation is that decreases complexity and cost of the controller, and increases the switching frequency. A simple analog electronic realization of this neural network using discrete operational amplifiers is proposed. This implementation possesses all good properties of sliding mode while avoiding the unnecessary discontinuities of the control input signals and thus eliminating chattering. Experimental results are summarized confirming the validity of the neural network approach.
AbstractList An experimental neural controller implementing a variable structure control (VSC) algorithm is proposed for a power factor preregulator. VSC control laws yield fast response and a robust behavior against large parameters variations. A multilayer perceptron learns through backpropagation to approximate the desired adaptive control functions. The main advantage of the neural network implementation in comparison to the numerical implementation is that decreases complexity and cost of the controller, and increases the switching frequency. A simple analog electronic realization of this neural network using discrete operational amplifiers is proposed. This implementation possesses all good properties of sliding mode while avoiding the unnecessary discontinuities of the control input signals and thus eliminating chattering. Experimental results are summarized confirming the validity of the neural network approach.
Author Perales, M.A.
Carrasco, J.M.
Quero, J.M.
Franquelo, L.G.
Ridao, F.P.
Author_xml – sequence: 1
  givenname: J.M.
  surname: Carrasco
  fullname: Carrasco, J.M.
  organization: Dept. of Electron. Eng., Seville Univ., Spain
– sequence: 2
  givenname: J.M.
  surname: Quero
  fullname: Quero, J.M.
– sequence: 3
  givenname: F.P.
  surname: Ridao
  fullname: Ridao, F.P.
– sequence: 4
  givenname: M.A.
  surname: Perales
  fullname: Perales, M.A.
– sequence: 5
  givenname: L.G.
  surname: Franquelo
  fullname: Franquelo, L.G.
BookMark eNptkDFPwzAQhT0UibYwsDJ5QmJo64vjOh1RSgGpiEpQMUaOcwFDEhfbpeq_J1UqBsT0pLvvne69Aek1tkFCLoCNAdhsksB4ChBJ6JE-MCFHEqLolAy8_2AM4iRO-mT9XJnCNG-0tgVSbZvgbEVtSRWdp5N5Slevj4fxN7qAju5MeKerRUpNvamwxiZgQfM9bXDrVNVK2Fn36c_ISakqj-dHHZL14vYlvR8tn-4e0pvlSEdShlHBea6ZFImKueKRKgrgCLkUgumiEKx9seQgIJqCxkRpFZclCplAVOZyKgQfkqvu7sbZry36kNXGa6wq1aDd-iySnLcxZy046UDtrPcOy0yboII55FWmyoBlh8qyBLKustZx_cexcaZWbv8ve9mxBhF_uePyB716dno
CODEN ITCAEX
CitedBy_id crossref_primary_10_1109_TIE_2007_909058
crossref_primary_10_1109_TIE_2002_1005390
crossref_primary_10_1109_41_904539
crossref_primary_10_1016_j_conengprac_2010_08_007
crossref_primary_10_1016_S0378_7753_03_00309_4
crossref_primary_10_1109_TMECH_2004_842227
crossref_primary_10_1080_00207210110041489
crossref_primary_10_1016_j_neucom_2021_11_036
Cites_doi 10.1016/0893-6080(89)90020-8
10.1109/81.244915
10.1109/63.318898
10.1109/TAC.1977.1101446
10.1109/IAS.1989.96777
10.1080/00207178808906099
10.1109/PESC.1996.548778
10.1109/PESC.1995.474989
10.1109/72.80202
ContentType Journal Article
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/81.611271
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 749
ExternalDocumentID 10_1109_81_611271
611271
GroupedDBID -~X
0R~
29I
3EH
6IK
85S
AAJGR
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACKIV
AGQYO
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c277t-d33bc0758a43a32add13e1b7550cdd50484f3151261ce8aca4ffe57812fb76553
IEDL.DBID RIE
ISSN 1057-7122
IngestDate Thu Sep 04 22:44:06 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Oct 01 00:54:22 EDT 2025
Wed Aug 27 02:53:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-d33bc0758a43a32add13e1b7550cdd50484f3151261ce8aca4ffe57812fb76553
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27338489
PQPubID 23500
PageCount 7
ParticipantIDs ieee_primary_611271
crossref_citationtrail_10_1109_81_611271
proquest_miscellaneous_27338489
crossref_primary_10_1109_81_611271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-08-01
PublicationDateYYYYMMDD 1997-08-01
PublicationDate_xml – month: 08
  year: 1997
  text: 1997-08-01
  day: 01
PublicationDecade 1990
PublicationTitle IEEE transactions on circuits and systems. 1, Fundamental theory and applications
PublicationTitleAbbrev T-CAS1
PublicationYear 1997
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref11
ref10
van der groef (ref14) 1991; 1
lin (ref4) 0; 2
karayiannis (ref16) 1993
ref1
ref17
quero (ref3) 0; 2
ref8
carrasco (ref6) 0; 1
carrasco (ref7) 0; 1
quero (ref2) 0; 4
ref5
jammes (ref9) 1995
References_xml – ident: ref17
  doi: 10.1016/0893-6080(89)90020-8
– volume: 2
  start-page: 900
  year: 0
  ident: ref4
  article-title: power electronic converter control based on neural network to power converter control
  publication-title: IEEE Power Electron Specialist Conf (PESC 93)
– ident: ref15
  doi: 10.1109/81.244915
– year: 1993
  ident: ref16
  publication-title: Artificial neural networks Learning algorithms performance evaluation and applications
– volume: 1
  start-page: 1385
  year: 0
  ident: ref6
  article-title: an analog neural network controller for an active power filter based on the instantaneous reactive power theory
  publication-title: 6th Euro Conf Power Electron (EPE 95)
– ident: ref5
  doi: 10.1109/63.318898
– ident: ref12
  doi: 10.1109/TAC.1977.1101446
– ident: ref1
  doi: 10.1109/IAS.1989.96777
– start-page: 53
  year: 1995
  ident: ref9
  publication-title: Reseaux de neurones appliques a la commande des convertisseurs
– ident: ref13
  doi: 10.1080/00207178808906099
– volume: 2
  start-page: 800
  year: 0
  ident: ref3
  article-title: adaptive energy feed-back control for resonant converter using neural networks
  publication-title: IEEE Power Electron Specialist Conf (PESC 92)
– ident: ref10
  doi: 10.1109/PESC.1996.548778
– ident: ref8
  doi: 10.1109/PESC.1995.474989
– volume: 1
  start-page: 1
  year: 1991
  ident: ref14
  article-title: multi-input variable structure controllers for electronics converters
  publication-title: 4th Euro Conf Power Electron Applicat
– volume: 1
  start-page: 1344
  year: 0
  ident: ref7
  article-title: a neural network controller for power converters based on a computational optimal control surface
  publication-title: 6th Europ Conf Power Electron (EPE 95)
– volume: 4
  start-page: 207
  year: 0
  ident: ref2
  article-title: a neural controller for quasi-resonant converters
  publication-title: 4th Euro Conf Power Electron Applicat (EPE 91)
– ident: ref11
  doi: 10.1109/72.80202
SSID ssj0014848
Score 1.6571069
Snippet An experimental neural controller implementing a variable structure control (VSC) algorithm is proposed for a power factor preregulator. VSC control laws yield...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 743
SubjectTerms Adaptive control
Backpropagation algorithms
Costs
Multilayer perceptrons
Neural networks
Power conversion
Pulse width modulation converters
Reactive power
Robust control
Sliding mode control
Title Sliding mode control of a DC/DC PWM converter with PFC implemented by neural networks
URI https://ieeexplore.ieee.org/document/611271
https://www.proquest.com/docview/27338489
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1057-7122
  databaseCode: RIE
  dateStart: 19920101
  customDbUrl:
  isFulltext: true
  dateEnd: 20031231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014848
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJziwFBBltRAHLmnrLU6OKKWqkIoqQUVvke04UkVJEE0P8PV4SSuWHrhF0ViJbI_n2X7zBoBrFsaCY-OAgiEdUIOwg4iFKpCcUINfmRJOUmj4EA7G9H7CJrXOtsuF0Vo78plu20d3l5-VamGPyjqhAQc2X3yTR6FP1VpdGNCI-qw3xgOOMK5FhFA37kSo7Rv-CD2ulsqfBdhFlf6uT9eeOzFCSyZ5aS8q2Vafv6Qa__nDe2CnRpfw1k-HfbChiybY_qY5eADGj7OpjVfQ1sCBNVMdljkUsJd0egkcPQ-h46Jbsie057Rw1E_g9LVmmusMyg9odTDNlwrPIp8fgnH_7ikZBHVthUBhzqsgI0QqAxciQYkg2KxyiGgkudmwqCxjxq9pTiwaCJHSkVCC5rk23o1wLnnIGDkCjaIs9DGAijDNcIwxzzgVMpTKViJVlBOcd3PabYGbZbenqhYet_UvZqnbgHTjNEKp76kWuFqZvnm1jXVGTdvTK4Pl28vlUKbGQ-y1hyh0uZinBqARMzvik7XtTsGWV6S1nL4z0KjeF_rc4IxKXrgZ9gXsZM46
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHIADSwFRtlqIA5e09RYnR9RSFWirSlDBLbIdR6ooKaLpAb4eL2nFduAWRWMlsj2eZ_vNGwAuWBgLjo0DCoZ0QA3CDiIWqkByQg1-ZUo4SaH-IOyO6O0Teyp1tl0ujNbakc903T66u_x0qub2qKwRGnBg88XXGKWU-WSt5ZUBjajPe2M84AjjUkYINeNGhOq-6bfg46qp_FqCXVzpbPuE7ZmTI7R0kuf6vJB19fFDrPGfv7wDtkp8Ca_8hNgFKzqvgM0vqoN7YHQ_GduIBW0VHFhy1eE0gwK2W412Cw4f-9Cx0S3dE9qTWjjstOD4peSa6xTKd2iVMM2Xcs8jn-2DUef6odUNyuoKgcKcF0FKiFQGMESCEkGwWecQ0Uhys2VRacqMZ9OMWDwQIqUjoQTNMm38G-FM8pAxcgBW82muDwFUhGmGY4x5yqmQoVS2FqminOCsmdFmFVwuuj1RpfS4rYAxSdwWpBknEUp8T1XB-dL01ett_GVUsT29NFi8rS2GMjE-Yi8-RK6n81liIBoxsyM--rNdDax3H_q9pHczuDsGG16f1jL8TsBq8TbXpwZ1FPLMzbZP4ibRhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding+mode+control+of+a+DC%2FDC+PWM+converter+with+PFC+implemented+by+neural+networks&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+1%2C+Fundamental+theory+and+applications&rft.au=Carrasco%2C+J.M.&rft.au=Quero%2C+J.M.&rft.au=Ridao%2C+F.P.&rft.au=Perales%2C+M.A.&rft.date=1997-08-01&rft.pub=IEEE&rft.issn=1057-7122&rft.volume=44&rft.issue=8&rft.spage=743&rft.epage=749&rft_id=info:doi/10.1109%2F81.611271&rft.externalDocID=611271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7122&client=summon