Chronic neural recording with probes of subcellular cross-section using 0.06 mm² dissolving microneedles as insertion device

[Display omitted] •Neural electrode arrays of subcellular cross section fabricated lithographically.•Novel biodegradable microneedle for insertion in brain tissue designed and tested.•Assembly tested in vitro and then in vivo for 4 months.•Very limited remaining scar and no neural cell loss beyond s...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 284; pp. 369 - 376
Main Authors Ceyssens, Frederik, Bovet Carmona, Marta, Kil, Dries, Deprez, Marjolijn, Tooten, Ester, Nuttin, Bart, Takeoka, Aya, Balschun, Detlef, Kraft, Michael, Puers, Robert
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.04.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0925-4005
1873-3077
DOI10.1016/j.snb.2018.12.030

Cover

Abstract [Display omitted] •Neural electrode arrays of subcellular cross section fabricated lithographically.•Novel biodegradable microneedle for insertion in brain tissue designed and tested.•Assembly tested in vitro and then in vivo for 4 months.•Very limited remaining scar and no neural cell loss beyond scar after 4 months.•Action potentials and evoked local field potentials recorded at all time points. Ultra-flexible electrode arrays with a cross-sectional area of only a few μm² show great promise for long-term, high resolution neural interfacing without detrimental scar tissue formation. However, due to their low stiffness, insertion is a challenge. In this work, we investigate microneedles consisting of quickly biodegradable, short-chained, acid terminated PLGA (50:50 lactide:glycolide ratio) as insertion device for a polyimide-based neural electrode array of 1 μm thickness. An upscalable, wafer-level fabrication process is presented. Both separate PLGA microneedles as well as complete, assembled neural probes were tested in vivo for up to 4 months. The arrays allowed to record spontaneous spike activity and evoked local field potentials in the somatosensory cortex of rats on all measured timepoints. Very limited lesion formation, measuring about 20% of the cross sectional area of the original microneedle, was observed. Neurons can be seen to infiltrate the area originally taken up by the dissolving PLGA microneedle. The results indicate that the presented electrode arrays and insertion method are well suitable for application in long-term, high resolution neural recording.
AbstractList Ultra-flexible electrode arrays with a cross-sectional area of only a few μm² show great promise for long-term, high resolution neural interfacing without detrimental scar tissue formation. However, due to their low stiffness, insertion is a challenge. In this work, we investigate microneedles consisting of quickly biodegradable, short-chained, acid terminated PLGA (50:50 lactide:glycolide ratio) as insertion device for a polyimide-based neural electrode array of 1 μm thickness. An upscalable, wafer-level fabrication process is presented. Both separate PLGA microneedles as well as complete, assembled neural probes were tested in vivo for up to 4 months. The arrays allowed to record spontaneous spike activity and evoked local field potentials in the somatosensory cortex of rats on all measured timepoints. Very limited lesion formation, measuring about 20% of the cross sectional area of the original microneedle, was observed. Neurons can be seen to infiltrate the area originally taken up by the dissolving PLGA microneedle. The results indicate that the presented electrode arrays and insertion method are well suitable for application in long-term, high resolution neural recording.
[Display omitted] •Neural electrode arrays of subcellular cross section fabricated lithographically.•Novel biodegradable microneedle for insertion in brain tissue designed and tested.•Assembly tested in vitro and then in vivo for 4 months.•Very limited remaining scar and no neural cell loss beyond scar after 4 months.•Action potentials and evoked local field potentials recorded at all time points. Ultra-flexible electrode arrays with a cross-sectional area of only a few μm² show great promise for long-term, high resolution neural interfacing without detrimental scar tissue formation. However, due to their low stiffness, insertion is a challenge. In this work, we investigate microneedles consisting of quickly biodegradable, short-chained, acid terminated PLGA (50:50 lactide:glycolide ratio) as insertion device for a polyimide-based neural electrode array of 1 μm thickness. An upscalable, wafer-level fabrication process is presented. Both separate PLGA microneedles as well as complete, assembled neural probes were tested in vivo for up to 4 months. The arrays allowed to record spontaneous spike activity and evoked local field potentials in the somatosensory cortex of rats on all measured timepoints. Very limited lesion formation, measuring about 20% of the cross sectional area of the original microneedle, was observed. Neurons can be seen to infiltrate the area originally taken up by the dissolving PLGA microneedle. The results indicate that the presented electrode arrays and insertion method are well suitable for application in long-term, high resolution neural recording.
Author Tooten, Ester
Nuttin, Bart
Kil, Dries
Takeoka, Aya
Puers, Robert
Kraft, Michael
Ceyssens, Frederik
Deprez, Marjolijn
Balschun, Detlef
Bovet Carmona, Marta
Author_xml – sequence: 1
  givenname: Frederik
  orcidid: 0000-0002-9381-3398
  surname: Ceyssens
  fullname: Ceyssens, Frederik
  email: fceyssen@esat.kuleuven.be
  organization: ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
– sequence: 2
  givenname: Marta
  surname: Bovet Carmona
  fullname: Bovet Carmona, Marta
  email: marta.bovetcarmona@kuleuven.be
  organization: Laboratory for Biological Psychology, Brain & Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium
– sequence: 3
  givenname: Dries
  surname: Kil
  fullname: Kil, Dries
  email: dkil@esat.kuleuven.be
  organization: ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
– sequence: 4
  givenname: Marjolijn
  surname: Deprez
  fullname: Deprez, Marjolijn
  email: marjolijn.deprez@kuleuven.be
  organization: Experimental Neurosurgery and Neuroanatomy, UZ Herestraat 49 box 7003, 3000 Leuven, Belgium
– sequence: 5
  givenname: Ester
  surname: Tooten
  fullname: Tooten, Ester
  email: ester.tooten@uclouvain.be
  organization: Université Catholique de Louvain, WinFab, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium
– sequence: 6
  givenname: Bart
  surname: Nuttin
  fullname: Nuttin, Bart
  email: bart.nuttin@kuleuven.be
  organization: Experimental Neurosurgery and Neuroanatomy, UZ Herestraat 49 box 7003, 3000 Leuven, Belgium
– sequence: 7
  givenname: Aya
  surname: Takeoka
  fullname: Takeoka, Aya
  email: Aya.Takeoka@nerf.be
  organization: Neuro-Electronics Research Flanders (NERF), Kapeldreef 75, 3001 Leuven, Belgium
– sequence: 8
  givenname: Detlef
  surname: Balschun
  fullname: Balschun, Detlef
  email: detlef.balschun@kuleuven.be
  organization: Laboratory for Biological Psychology, Brain & Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium
– sequence: 9
  givenname: Michael
  surname: Kraft
  fullname: Kraft, Michael
  email: Michael.kraft@esat.kuleuven.be
  organization: ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
– sequence: 10
  givenname: Robert
  surname: Puers
  fullname: Puers, Robert
  email: robert.puers@esat.kuleuven.be
  organization: ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
BookMark eNp9kU1u3DAMhYUgBTL5OUB3Arq2Q0m25UFXxaA_AQJ0064FmaIbDTxSKtlTdNFL5Qg9WeRMV11kRYB4H8n3eMnOQwzE2FsBtQDR3e7rHIZaguhrIWtQcMY2oteqUqD1OdvAVrZVA9BesMuc9wDQqA427M_uIcXgkQdakp14IozJ-fCD__LzA39McaDM48jzMiBN0zLZxDHFnKtMOPsY-JJXOdTQ8cPh7xN3Puc4HdfmwRdpIHJTGWIz9yFTeoEcHT3SNXsz2inTzb96xb5_-vht96W6__r5bvfhvkKp9VzZQfRD0-leb52Ath9RoRJj36G2aKVyFsau2w79VikipUZ0TnbQYisaROzVFXt3mlv8_Fwoz2YflxTKSiOlUKLRTSOKSp9UL_4SjQb9bNdz52T9ZASYNWuzNyVrs2ZthDQl60KK_8jH5A82_X6VeX9iqBg_ekomo6eA5Hx5wmxc9K_Qz9Y3nB4
CitedBy_id crossref_primary_10_1016_j_bioactmat_2021_09_025
crossref_primary_10_1016_j_bios_2019_111489
crossref_primary_10_1088_1361_6439_ac0513
crossref_primary_10_1038_s41551_023_01021_5
crossref_primary_10_1115_1_4047858
crossref_primary_10_1038_s42003_022_04390_w
crossref_primary_10_1088_1741_2552_ab5e19
crossref_primary_10_1088_1741_2552_ac98e2
crossref_primary_10_1016_j_sbsr_2022_100483
crossref_primary_10_3389_fbioe_2024_1408088
crossref_primary_10_1016_j_bprint_2024_e00333
crossref_primary_10_1016_j_jneumeth_2021_109388
crossref_primary_10_1016_j_bioactmat_2025_02_006
crossref_primary_10_1088_1741_2552_abf6f2
crossref_primary_10_1115_1_4054979
crossref_primary_10_1088_2516_1091_ad0b19
crossref_primary_10_1016_j_sna_2023_114759
crossref_primary_10_1109_JSEN_2024_3429130
crossref_primary_10_1116_6_0001269
crossref_primary_10_1115_1_4053398
crossref_primary_10_3390_mi12080972
Cites_doi 10.1109/TBME.2006.886617
10.1088/1741-2560/12/5/054001
10.1088/1741-2560/10/4/046016
10.1088/0960-1317/16/6/S21
10.1016/j.tins.2013.03.008
10.1088/1741-2560/5/1/P01
10.1016/0142-9612(93)90183-3
10.1089/089771503770802853
10.1073/pnas.1705509114
10.1088/0960-1317/24/6/065015
10.1088/1741-2560/3/3/001
10.1088/1741-2560/11/5/056014
10.1002/jbm.a.31034
10.1016/j.actbio.2011.02.027
10.3389/fmats.2015.00047
10.1038/nrn3241
10.1088/1741-2552/aa8b4f
10.1016/j.sna.2007.07.027
10.1126/sciadv.1601966
10.1021/acs.nanolett.7b02851
10.1007/s10853-009-3770-7
10.1007/s10544-016-0125-4
10.3389/fnins.2015.00331
10.3171/jns.2004.101.2.0314
10.1016/S0142-9612(01)00185-5
10.1016/j.snb.2017.05.057
10.1016/j.msec.2003.09.019
10.1038/nature24636
10.1006/exnr.1998.6983
10.1016/j.neuron.2006.09.019
10.1016/j.actbio.2017.02.010
10.1016/j.biomaterials.2007.03.024
10.1152/jn.00785.2013
10.1016/j.jneumeth.2005.08.015
10.1038/nmat4427
10.1088/1741-2560/2/4/006
10.1088/1741-2560/6/2/024002
10.1016/j.biomaterials.2014.07.039
10.1088/0960-1317/25/12/125003
ContentType Journal Article
Copyright 2018
Copyright Elsevier Science Ltd. Apr 1, 2019
Copyright_xml – notice: 2018
– notice: Copyright Elsevier Science Ltd. Apr 1, 2019
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2018.12.030
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
EndPage 376
ExternalDocumentID 10_1016_j_snb_2018_12_030
S0925400518321518
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SCH
SEW
SSH
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c277t-ab18b467879d1058fc3c31f86c7aca23da0f669b8933ee33fcdd2605c514ccc83
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Fri Jul 25 03:30:41 EDT 2025
Tue Jul 01 01:27:24 EDT 2025
Thu Apr 24 22:57:39 EDT 2025
Fri Feb 23 02:31:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dissolvable
Resorbable
Biodegradable
Microneedles
Chronic neural recording
Ultra-flexible
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-ab18b467879d1058fc3c31f86c7aca23da0f669b8933ee33fcdd2605c514ccc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9381-3398
PQID 2213147441
PQPubID 2047454
PageCount 8
ParticipantIDs proquest_journals_2213147441
crossref_citationtrail_10_1016_j_snb_2018_12_030
crossref_primary_10_1016_j_snb_2018_12_030
elsevier_sciencedirect_doi_10_1016_j_snb_2018_12_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Kozai, Gugel, Li, Gilgunn, Khilwani, Ozdoganlar, Fedder, Weber, Cui (bib0110) 2014; 35
Wang, Liang, McAllister, James, Li, Brabant, Black, Finlayson, Cao, Tang, Salley, Auner (bib0035) 2007; 81
Berényi, Somogyvári, Nagy, Roux, Long, Fujisawa, Stark, Leonardo, Harris, Buzsáki (bib0005) 2013; 111
Jiao, Wang, Qing (bib0100) 2017; 17
Agorelius, Tsanakalis, Friberg, Thorbergsson, Pettersson, Schouenborg (bib0115) 2015; 9
Gefen, Gefen, Zhu, Raghupathi, Margulies (bib0050) 2003; 20
Schalk (bib0015) 2008; 5
Turner, Shain, Szarowski, Andersen, Martins, Isaacson, Craighead (bib0145) 1999; 156
Raducanu, Yazicioglu, Lopez, Ballini, Putzeys, Wang, Andrei, Welkenhuysen, Van Helleputte, Musa, Puers (bib0025) 2016
Sabir, Xu, Li (bib0150) 2009; 44
J. Paul (2018) https://stackoverflow.com/questions/22583391. Accessed 30/3/2018.
Ceyssens, Puers (bib0155) 2015; 12
Lago, Yoshida, Koch, Navarro (bib0160) 2007; 54
Buzsáki, Anastassiou, Koch (bib0190) 2012; 13
Wester, Lee, LaPlaca (bib0070) 2009; 6
Lewitus, Smith, Shain, Kohn (bib0135) 2011; 7
Subbaroyan, Martin, Kipke (bib0060) 2005; 2
Lecomte, Degache, Descamps, Dahan, Bergaud (bib0125) 2017; 251
Chen, Gillies, Broaddus, Prabhu, Fillmore, Mitchell, Corwin, Fatouros (bib0180) 2004; 101
Schwartz, Cui, Weber, Moran (bib0010) 2006; 52
Mercanzini, Cheung, Buhl, Boers, Maillard, Colin, Bensadoun, Bertsch, Renaud (bib0075) 2008; 143
Xiang, Yen, Xue, Sun, Tsang, Zhang, Liao, Thakor, Lee (bib0130) 2014; 24
Seymour, Kipke (bib0080) 2007; 28
Richardson, Miller, Reichert (bib0170) 1993; 14
Mercanzini, Cheung, Buhl, Boers, Maillard, Colin, Bensadoun, Bertsch, Carleton, Renaud (bib0205) 2007
Nguyen, Park, Skousen, Hess-Dunning, Tyler, Rowan, Weder, Capadona (bib0065) 2014; 11
Gilletti, Muthuswamy (bib0055) 2006; 3
Luan, Wei, Zhao, Siegel, Potnis, Tuppen, Lin, Kazmi, Fowler, Holloway, Dunn (bib0095) 2017; 3
Khilwani, Gilgunn, Kozai, Ong, Korkmaz, Gunalan, Cui, Fedder, Ozdoganlar (bib0200) 2016; 18
Du, Kolarcik, Kozai, Luebben, Sapp, Zheng, Nabity, Cui (bib0185) 2017; 53
Lütcke, Margolis, Helmchen (bib0195) 2013; 36
Hämmerle, Kobuch, Kohler, Nisch, Sachs, Stelzle (bib0040) 2002; 23
Wessling, Mokwa, Schnakenberg (bib0175) 2006; 16
Polikov, Tresco, Reichert (bib0030) 2005; 148
Lecomte, Castagnola, Descamps, Dahan, Blatché, Dinis, Leclerc, Egles, Bergaud (bib0120) 2015; 25
Seo, Kim, Chung, Kim, Yu, Yu (bib0165) 2004; 24
Jun, Steinmetz, Siegle, Denman, Bauza, Barbarits, Lee, Anastassiou, Andrei, Aydin, Barbic (bib0020) 2017; 551
Zhou, Hong, Fu, Yang, Schuhmann, Viveros, Lieber (bib0090) 2017; 114
Xie, Liu, Fu, Dai, Zhou, Lieber (bib0105) 2015; 14
Guitchounts, Markowitz, Liberti, Gardner (bib0085) 2013; 10
Lecomte, Descamps, Bergaud (bib0045) 2018; 15
Altuna, Berganzo, Fernández (bib0210) 2015; 2
Mercanzini (10.1016/j.snb.2018.12.030_bib0075) 2008; 143
Xiang (10.1016/j.snb.2018.12.030_bib0130) 2014; 24
Zhou (10.1016/j.snb.2018.12.030_bib0090) 2017; 114
Berényi (10.1016/j.snb.2018.12.030_bib0005) 2013; 111
Seo (10.1016/j.snb.2018.12.030_bib0165) 2004; 24
Lago (10.1016/j.snb.2018.12.030_bib0160) 2007; 54
Buzsáki (10.1016/j.snb.2018.12.030_bib0190) 2012; 13
Polikov (10.1016/j.snb.2018.12.030_bib0030) 2005; 148
Hämmerle (10.1016/j.snb.2018.12.030_bib0040) 2002; 23
Lecomte (10.1016/j.snb.2018.12.030_bib0045) 2018; 15
Richardson (10.1016/j.snb.2018.12.030_bib0170) 1993; 14
Turner (10.1016/j.snb.2018.12.030_bib0145) 1999; 156
Altuna (10.1016/j.snb.2018.12.030_bib0210) 2015; 2
Khilwani (10.1016/j.snb.2018.12.030_bib0200) 2016; 18
Lecomte (10.1016/j.snb.2018.12.030_bib0120) 2015; 25
Sabir (10.1016/j.snb.2018.12.030_bib0150) 2009; 44
Schwartz (10.1016/j.snb.2018.12.030_bib0010) 2006; 52
Gefen (10.1016/j.snb.2018.12.030_bib0050) 2003; 20
Wang (10.1016/j.snb.2018.12.030_bib0035) 2007; 81
Guitchounts (10.1016/j.snb.2018.12.030_bib0085) 2013; 10
Luan (10.1016/j.snb.2018.12.030_bib0095) 2017; 3
Du (10.1016/j.snb.2018.12.030_bib0185) 2017; 53
Subbaroyan (10.1016/j.snb.2018.12.030_bib0060) 2005; 2
Chen (10.1016/j.snb.2018.12.030_bib0180) 2004; 101
Wester (10.1016/j.snb.2018.12.030_bib0070) 2009; 6
Kozai (10.1016/j.snb.2018.12.030_bib0110) 2014; 35
Xie (10.1016/j.snb.2018.12.030_bib0105) 2015; 14
Lütcke (10.1016/j.snb.2018.12.030_bib0195) 2013; 36
Jun (10.1016/j.snb.2018.12.030_bib0020) 2017; 551
Raducanu (10.1016/j.snb.2018.12.030_bib0025) 2016
Seymour (10.1016/j.snb.2018.12.030_bib0080) 2007; 28
Lewitus (10.1016/j.snb.2018.12.030_bib0135) 2011; 7
Ceyssens (10.1016/j.snb.2018.12.030_bib0155) 2015; 12
Schalk (10.1016/j.snb.2018.12.030_bib0015) 2008; 5
Jiao (10.1016/j.snb.2018.12.030_bib0100) 2017; 17
Agorelius (10.1016/j.snb.2018.12.030_bib0115) 2015; 9
Lecomte (10.1016/j.snb.2018.12.030_bib0125) 2017; 251
Mercanzini (10.1016/j.snb.2018.12.030_bib0205) 2007
Gilletti (10.1016/j.snb.2018.12.030_bib0055) 2006; 3
Wessling (10.1016/j.snb.2018.12.030_bib0175) 2006; 16
10.1016/j.snb.2018.12.030_bib0140
Nguyen (10.1016/j.snb.2018.12.030_bib0065) 2014; 11
References_xml – volume: 2
  start-page: 103
  year: 2005
  ident: bib0060
  article-title: A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex
  publication-title: J. Neural Eng.
– volume: 10
  year: 2013
  ident: bib0085
  article-title: A carbon-fiber electrode array for long-term neural recording
  publication-title: J. Neural Eng.
– volume: 114
  start-page: 5894
  year: 2017
  end-page: 5899
  ident: bib0090
  article-title: Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain
  publication-title: Proc. Nat. Acad. Sci.
– volume: 3
  year: 2017
  ident: bib0095
  article-title: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration
  publication-title: Sci. Adv.
– volume: 14
  start-page: 1286
  year: 2015
  ident: bib0105
  article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes
  publication-title: Nat. Mater.
– volume: 143
  start-page: 90
  year: 2008
  end-page: 96
  ident: bib0075
  article-title: Demonstration of cortical recording using novel flexible polymer neural probes
  publication-title: Sens. Actuators A
– volume: 17
  start-page: 7315
  year: 2017
  end-page: 7322
  ident: bib0100
  article-title: Scalable fabrication framework of implantable ultrathin and flexible probes with biodegradable sacrificial layers
  publication-title: Nano Lett.
– volume: 24
  start-page: 185
  year: 2004
  end-page: 189
  ident: bib0165
  article-title: Biocompatibility of polyimide microelectrode array for retinal stimulation
  publication-title: Mater. Sci. Eng.: C
– volume: 81
  start-page: 363
  year: 2007
  end-page: 372
  ident: bib0035
  article-title: Stability of and inflammatory response to silicon coated with a fluoroalkyl self‐assembled monolayer in the central nervous system
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 148
  start-page: 1
  year: 2005
  end-page: 18
  ident: bib0030
  article-title: Response of brain tissue to chronically implanted neural electrodes
  publication-title: J. Neurosci. Methods
– volume: 9
  start-page: 331
  year: 2015
  ident: bib0115
  article-title: An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation—initial evaluation in cortex cerebri of awake rats
  publication-title: Front. Neurosci.
– start-page: 573
  year: 2007
  end-page: 576
  ident: bib0205
  article-title: Demonstration of cortical recording and reduced inflammatory response using flexible polymer neural probes
  publication-title: IEEE 20th International Conference on Micro Electro Mechanical Systems(MEMS)
– volume: 15
  year: 2018
  ident: bib0045
  article-title: A review on mechanical considerations for chronically-implanted neural probes
  publication-title: J. Neural Eng.
– volume: 6
  year: 2009
  ident: bib0070
  article-title: Development and characterization of in vivo flexible electrodes compatible with large tissue displacements
  publication-title: J. Neural Eng.
– volume: 251
  start-page: 1001
  year: 2017
  end-page: 1008
  ident: bib0125
  article-title: In vitro and in vivo biostability assessment of chronically-implanted parylene C neural sensors
  publication-title: Sens. Actuators B
– volume: 24
  year: 2014
  ident: bib0130
  article-title: Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle
  publication-title: J. Micromech. Microeng.
– volume: 12
  year: 2015
  ident: bib0155
  article-title: Insulation lifetime improvement of polyimide thin film neural implants
  publication-title: J. Neural Eng.
– volume: 3
  start-page: 189
  year: 2006
  ident: bib0055
  article-title: Brain micromotion around implants in the rodent somatosensory cortex
  publication-title: J. Neural Eng.
– volume: 20
  start-page: 1163
  year: 2003
  end-page: 1177
  ident: bib0050
  article-title: Age-dependent changes in material properties of the brain and braincase of the rat
  publication-title: J. Neurotrauma
– volume: 2
  start-page: 47
  year: 2015
  ident: bib0210
  article-title: Polymer SU-8-based microprobes for neural recording and drug delivery
  publication-title: Front. Mater.
– volume: 111
  start-page: 1132
  year: 2013
  end-page: 1149
  ident: bib0005
  article-title: Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals
  publication-title: J. Neurophysiol.
– volume: 23
  start-page: 797
  year: 2002
  end-page: 804
  ident: bib0040
  article-title: Biostability of micro-photodiode arrays for subretinal implantation
  publication-title: Biomaterials
– reference: J. Paul (2018) https://stackoverflow.com/questions/22583391. Accessed 30/3/2018.
– volume: 54
  start-page: 281
  year: 2007
  end-page: 290
  ident: bib0160
  article-title: Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: pp. 385
  year: 2016
  end-page: 388
  ident: bib0025
  article-title: Time multiplexed active neural probe with 678 parallel recording sites
  publication-title: Solid-State Device Research Conference (ESSDERC), 2016 46th European
– volume: 7
  start-page: 2483
  year: 2011
  end-page: 2491
  ident: bib0135
  article-title: Ultrafast resorbing polymers for use as carriers for cortical neural probes
  publication-title: Acta Biomater.
– volume: 16
  start-page: S142
  year: 2006
  ident: bib0175
  article-title: RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants
  publication-title: J. Micromech. Microeng.
– volume: 18
  start-page: 97
  year: 2016
  ident: bib0200
  article-title: Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization
  publication-title: Biomed. Microdevices
– volume: 25
  year: 2015
  ident: bib0120
  article-title: Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery
  publication-title: J. Micromech. Microeng.
– volume: 551
  start-page: 232
  year: 2017
  ident: bib0020
  article-title: Fully integrated silicon probes for high-density recording of neural activity
  publication-title: Nature
– volume: 35
  start-page: 9255
  year: 2014
  end-page: 9268
  ident: bib0110
  article-title: Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes
  publication-title: Biomaterials
– volume: 14
  start-page: 627
  year: 1993
  end-page: 635
  ident: bib0170
  article-title: Polyimides as biomaterials: preliminary biocompatibility testing
  publication-title: Biomaterials
– volume: 101
  start-page: 314
  year: 2004
  end-page: 322
  ident: bib0180
  article-title: A realistic brain tissue phantom for intraparenchymal infusion studies
  publication-title: J. Neurosurg.
– volume: 11
  year: 2014
  ident: bib0065
  article-title: Mechanically-compliant intracortical implants reduce the neuroinflammatory response
  publication-title: J. Neural Eng.
– volume: 53
  start-page: 46
  year: 2017
  end-page: 58
  ident: bib0185
  article-title: Ultrasoft microwire neural electrodes improve chronic tissue integration
  publication-title: Acta Biomater.
– volume: 5
  start-page: 1
  year: 2008
  ident: bib0015
  article-title: Brain–computer symbiosis
  publication-title: J. Neural Eng.
– volume: 28
  start-page: 3594
  year: 2007
  end-page: 3607
  ident: bib0080
  article-title: Neural probe design for reduced tissue encapsulation in CNS
  publication-title: Biomaterials
– volume: 13
  start-page: 407
  year: 2012
  ident: bib0190
  article-title: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes
  publication-title: Nat. Rev. Neurosci.
– volume: 36
  year: 2013
  ident: bib0195
  article-title: Steady or changing? Long-term monitoring of neuronal population activity
  publication-title: Trends Neurosci.
– volume: 156
  start-page: 33
  year: 1999
  end-page: 49
  ident: bib0145
  article-title: Cerebral astrocyte response to micromachined silicon implants
  publication-title: Exp. Neurol.
– volume: 52
  start-page: 205
  year: 2006
  end-page: 220
  ident: bib0010
  article-title: Brain-controlled interfaces: movement restoration with neural prosthetics
  publication-title: Neuron
– volume: 44
  start-page: 5713
  year: 2009
  end-page: 5724
  ident: bib0150
  article-title: A review on biodegradable polymeric materials for bone tissue engineering applications
  publication-title: J. Mater. Sci.
– volume: 54
  start-page: 281
  year: 2007
  ident: 10.1016/j.snb.2018.12.030_bib0160
  article-title: Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886617
– volume: 12
  year: 2015
  ident: 10.1016/j.snb.2018.12.030_bib0155
  article-title: Insulation lifetime improvement of polyimide thin film neural implants
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/5/054001
– volume: 10
  year: 2013
  ident: 10.1016/j.snb.2018.12.030_bib0085
  article-title: A carbon-fiber electrode array for long-term neural recording
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/4/046016
– volume: 16
  start-page: S142
  year: 2006
  ident: 10.1016/j.snb.2018.12.030_bib0175
  article-title: RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/6/S21
– volume: 36
  year: 2013
  ident: 10.1016/j.snb.2018.12.030_bib0195
  article-title: Steady or changing? Long-term monitoring of neuronal population activity
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2013.03.008
– volume: 5
  start-page: 1
  year: 2008
  ident: 10.1016/j.snb.2018.12.030_bib0015
  article-title: Brain–computer symbiosis
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/5/1/P01
– volume: 14
  start-page: 627
  year: 1993
  ident: 10.1016/j.snb.2018.12.030_bib0170
  article-title: Polyimides as biomaterials: preliminary biocompatibility testing
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(93)90183-3
– volume: 20
  start-page: 1163
  year: 2003
  ident: 10.1016/j.snb.2018.12.030_bib0050
  article-title: Age-dependent changes in material properties of the brain and braincase of the rat
  publication-title: J. Neurotrauma
  doi: 10.1089/089771503770802853
– volume: 114
  start-page: 5894
  issue: 23
  year: 2017
  ident: 10.1016/j.snb.2018.12.030_bib0090
  article-title: Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.1705509114
– volume: 24
  year: 2014
  ident: 10.1016/j.snb.2018.12.030_bib0130
  article-title: Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/24/6/065015
– volume: 3
  start-page: 189
  year: 2006
  ident: 10.1016/j.snb.2018.12.030_bib0055
  article-title: Brain micromotion around implants in the rodent somatosensory cortex
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/3/001
– volume: 11
  year: 2014
  ident: 10.1016/j.snb.2018.12.030_bib0065
  article-title: Mechanically-compliant intracortical implants reduce the neuroinflammatory response
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056014
– start-page: 573
  year: 2007
  ident: 10.1016/j.snb.2018.12.030_bib0205
  article-title: Demonstration of cortical recording and reduced inflammatory response using flexible polymer neural probes
– volume: 81
  start-page: 363
  year: 2007
  ident: 10.1016/j.snb.2018.12.030_bib0035
  article-title: Stability of and inflammatory response to silicon coated with a fluoroalkyl self‐assembled monolayer in the central nervous system
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.31034
– volume: 7
  start-page: 2483
  year: 2011
  ident: 10.1016/j.snb.2018.12.030_bib0135
  article-title: Ultrafast resorbing polymers for use as carriers for cortical neural probes
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.02.027
– volume: 2
  start-page: 47
  year: 2015
  ident: 10.1016/j.snb.2018.12.030_bib0210
  article-title: Polymer SU-8-based microprobes for neural recording and drug delivery
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2015.00047
– volume: 13
  start-page: 407
  year: 2012
  ident: 10.1016/j.snb.2018.12.030_bib0190
  article-title: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3241
– volume: 15
  year: 2018
  ident: 10.1016/j.snb.2018.12.030_bib0045
  article-title: A review on mechanical considerations for chronically-implanted neural probes
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa8b4f
– volume: 143
  start-page: 90
  year: 2008
  ident: 10.1016/j.snb.2018.12.030_bib0075
  article-title: Demonstration of cortical recording using novel flexible polymer neural probes
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2007.07.027
– volume: 3
  year: 2017
  ident: 10.1016/j.snb.2018.12.030_bib0095
  article-title: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601966
– volume: 17
  start-page: 7315
  year: 2017
  ident: 10.1016/j.snb.2018.12.030_bib0100
  article-title: Scalable fabrication framework of implantable ultrathin and flexible probes with biodegradable sacrificial layers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02851
– ident: 10.1016/j.snb.2018.12.030_bib0140
– volume: 44
  start-page: 5713
  year: 2009
  ident: 10.1016/j.snb.2018.12.030_bib0150
  article-title: A review on biodegradable polymeric materials for bone tissue engineering applications
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3770-7
– volume: 18
  start-page: 97
  year: 2016
  ident: 10.1016/j.snb.2018.12.030_bib0200
  article-title: Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-016-0125-4
– volume: 9
  start-page: 331
  year: 2015
  ident: 10.1016/j.snb.2018.12.030_bib0115
  article-title: An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation—initial evaluation in cortex cerebri of awake rats
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00331
– volume: 101
  start-page: 314
  year: 2004
  ident: 10.1016/j.snb.2018.12.030_bib0180
  article-title: A realistic brain tissue phantom for intraparenchymal infusion studies
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2004.101.2.0314
– start-page: pp. 385
  year: 2016
  ident: 10.1016/j.snb.2018.12.030_bib0025
  article-title: Time multiplexed active neural probe with 678 parallel recording sites
– volume: 23
  start-page: 797
  year: 2002
  ident: 10.1016/j.snb.2018.12.030_bib0040
  article-title: Biostability of micro-photodiode arrays for subretinal implantation
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00185-5
– volume: 251
  start-page: 1001
  year: 2017
  ident: 10.1016/j.snb.2018.12.030_bib0125
  article-title: In vitro and in vivo biostability assessment of chronically-implanted parylene C neural sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.05.057
– volume: 24
  start-page: 185
  year: 2004
  ident: 10.1016/j.snb.2018.12.030_bib0165
  article-title: Biocompatibility of polyimide microelectrode array for retinal stimulation
  publication-title: Mater. Sci. Eng.: C
  doi: 10.1016/j.msec.2003.09.019
– volume: 551
  start-page: 232
  year: 2017
  ident: 10.1016/j.snb.2018.12.030_bib0020
  article-title: Fully integrated silicon probes for high-density recording of neural activity
  publication-title: Nature
  doi: 10.1038/nature24636
– volume: 156
  start-page: 33
  year: 1999
  ident: 10.1016/j.snb.2018.12.030_bib0145
  article-title: Cerebral astrocyte response to micromachined silicon implants
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1998.6983
– volume: 52
  start-page: 205
  year: 2006
  ident: 10.1016/j.snb.2018.12.030_bib0010
  article-title: Brain-controlled interfaces: movement restoration with neural prosthetics
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.09.019
– volume: 53
  start-page: 46
  year: 2017
  ident: 10.1016/j.snb.2018.12.030_bib0185
  article-title: Ultrasoft microwire neural electrodes improve chronic tissue integration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.02.010
– volume: 28
  start-page: 3594
  year: 2007
  ident: 10.1016/j.snb.2018.12.030_bib0080
  article-title: Neural probe design for reduced tissue encapsulation in CNS
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.03.024
– volume: 111
  start-page: 1132
  year: 2013
  ident: 10.1016/j.snb.2018.12.030_bib0005
  article-title: Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00785.2013
– volume: 148
  start-page: 1
  year: 2005
  ident: 10.1016/j.snb.2018.12.030_bib0030
  article-title: Response of brain tissue to chronically implanted neural electrodes
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2005.08.015
– volume: 14
  start-page: 1286
  year: 2015
  ident: 10.1016/j.snb.2018.12.030_bib0105
  article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4427
– volume: 2
  start-page: 103
  year: 2005
  ident: 10.1016/j.snb.2018.12.030_bib0060
  article-title: A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/006
– volume: 6
  year: 2009
  ident: 10.1016/j.snb.2018.12.030_bib0070
  article-title: Development and characterization of in vivo flexible electrodes compatible with large tissue displacements
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/2/024002
– volume: 35
  start-page: 9255
  year: 2014
  ident: 10.1016/j.snb.2018.12.030_bib0110
  article-title: Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.07.039
– volume: 25
  year: 2015
  ident: 10.1016/j.snb.2018.12.030_bib0120
  article-title: Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/25/12/125003
SSID ssj0004360
Score 2.4051125
Snippet [Display omitted] •Neural electrode arrays of subcellular cross section fabricated lithographically.•Novel biodegradable microneedle for insertion in brain...
Ultra-flexible electrode arrays with a cross-sectional area of only a few μm² show great promise for long-term, high resolution neural interfacing without...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 369
SubjectTerms Arrays
Biodegradability
Biodegradable
Chronic neural recording
Cross-sections
Dissolvable
Electrodes
High resolution
Insertion
Microneedles
Needles
Recording
Resorbable
Stiffness
Ultra-flexible
Title Chronic neural recording with probes of subcellular cross-section using 0.06 mm² dissolving microneedles as insertion device
URI https://dx.doi.org/10.1016/j.snb.2018.12.030
https://www.proquest.com/docview/2213147441
Volume 284
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQXOCAWMVa-cAJKTSJXTs5VhWogNQLIHGzvMSoqA0VKUf4KD6BL2PGSdiEOHCJsniTZzIzHj_PEHIkc8-t7_FIY_xLngseGQ6LFZkKqU2cwb8eUL4jMbzhF7e92wUyaM_CIKyykf21TA_SunnTbWazOxuPu1dxDosbZCpMtgNXPMHOJfL6ycsnzIOzcFIYC0dYut3ZDBivqjSI7sqCRxCB0L_rph9SOqieszWy2tiMtF8Pa50sFOUGWfkSSXCTPDdBbinGp4Syte8FPlF0tFJMG1NU9MHT6smgrx7BpzSMIqoCGKukiIC_o_FJLOh0-vZKcaf-YYL-BjpF1B705SbQiK7ouMQ9fKzkCpQ0W-Tm7PR6MIyazAqRTaWcR9okmQERmcncgYGVecssS3wmrNRWp8zp2AuRGzBmWFEw5q1zuPCxYF5ZazO2TRZL6HeHUMZtpnNpU7jhPunpQnBnvdDCcAeqbpfE7Zwq24Qdx-wXE9Xiy-4VkEEhGVSSKiDDLjn-qDKrY278VZi3hFLfGEeBTvir2kFLVNX8tZVK04QlXIKFuPe_VvfJMjzlNbLngCzOH5-KQzBa5qYTuLJDlvrnl8PROzOm7Z0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECarHtSD8RnfcvBkUrctLLRHs3Gz6upFTbwRoMWs2a3Grkf9Uf4Ef5kztPUV48FL05ShEGYYhuFjhpB9mTpuXYcHGuNf8lTwwHDYrMhYSG3CBOa6R_leiP41P73p3LRIt7kLg7DKWvdXOt1r6_pLux7N9sNw2L4MU9jcoFBhsh14TpEZjmkOQKgPXz5xHpz5q8JIHSB5c7TpQV5lYRDelXiXICKhf1-cfqhpv_b0FslCbTTSo6pfS6SVF8tk_ksowRXyXEe5pRigEmgr5wsUUfS0Uswbk5f03tHyyaCzHtGn1PciKD0aq6AIgb-l4WEo6Hj89krxqP5-hA4HOkbYHrSVjeAnuqTDAg_xsVKWo6pZJde946tuP6hTKwQ2lnISaBMlBnRkItMMLKzEWWZZ5BJhpbY6ZpkOnRCpAWuG5TljzmYZ7nws2FfW2oStkekC2l0nlHGb6FTaGF64izo6FzyzTmhheAZr3QYJmzFVto47jukvRqoBmN0pYINCNqgoVsCGDXLwUeWhCrrxFzFvGKW-SY6CReGvatsNU1U9bUsVxxGLuAQTcfN_f90js_2r84EanFycbZE5KEkrmM82mZ48PuU7YMFMzK6X0HebBO8m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chronic+neural+recording+with+probes+of+subcellular+cross-section+using+0.06+mm%C2%B2+dissolving+microneedles+as+insertion+device&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Ceyssens%2C+Frederik&rft.au=Bovet+Carmona%2C+Marta&rft.au=Kil%2C+Dries&rft.au=Deprez%2C+Marjolijn&rft.date=2019-04-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=284&rft.spage=369&rft.epage=376&rft_id=info:doi/10.1016%2Fj.snb.2018.12.030&rft.externalDocID=S0925400518321518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon