Chronic neural recording with probes of subcellular cross-section using 0.06 mm² dissolving microneedles as insertion device
[Display omitted] •Neural electrode arrays of subcellular cross section fabricated lithographically.•Novel biodegradable microneedle for insertion in brain tissue designed and tested.•Assembly tested in vitro and then in vivo for 4 months.•Very limited remaining scar and no neural cell loss beyond s...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 284; pp. 369 - 376 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.04.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0925-4005 1873-3077 |
DOI | 10.1016/j.snb.2018.12.030 |
Cover
Abstract | [Display omitted]
•Neural electrode arrays of subcellular cross section fabricated lithographically.•Novel biodegradable microneedle for insertion in brain tissue designed and tested.•Assembly tested in vitro and then in vivo for 4 months.•Very limited remaining scar and no neural cell loss beyond scar after 4 months.•Action potentials and evoked local field potentials recorded at all time points.
Ultra-flexible electrode arrays with a cross-sectional area of only a few μm² show great promise for long-term, high resolution neural interfacing without detrimental scar tissue formation. However, due to their low stiffness, insertion is a challenge. In this work, we investigate microneedles consisting of quickly biodegradable, short-chained, acid terminated PLGA (50:50 lactide:glycolide ratio) as insertion device for a polyimide-based neural electrode array of 1 μm thickness. An upscalable, wafer-level fabrication process is presented. Both separate PLGA microneedles as well as complete, assembled neural probes were tested in vivo for up to 4 months. The arrays allowed to record spontaneous spike activity and evoked local field potentials in the somatosensory cortex of rats on all measured timepoints. Very limited lesion formation, measuring about 20% of the cross sectional area of the original microneedle, was observed. Neurons can be seen to infiltrate the area originally taken up by the dissolving PLGA microneedle. The results indicate that the presented electrode arrays and insertion method are well suitable for application in long-term, high resolution neural recording. |
---|---|
AbstractList | Ultra-flexible electrode arrays with a cross-sectional area of only a few μm² show great promise for long-term, high resolution neural interfacing without detrimental scar tissue formation. However, due to their low stiffness, insertion is a challenge. In this work, we investigate microneedles consisting of quickly biodegradable, short-chained, acid terminated PLGA (50:50 lactide:glycolide ratio) as insertion device for a polyimide-based neural electrode array of 1 μm thickness. An upscalable, wafer-level fabrication process is presented. Both separate PLGA microneedles as well as complete, assembled neural probes were tested in vivo for up to 4 months. The arrays allowed to record spontaneous spike activity and evoked local field potentials in the somatosensory cortex of rats on all measured timepoints. Very limited lesion formation, measuring about 20% of the cross sectional area of the original microneedle, was observed. Neurons can be seen to infiltrate the area originally taken up by the dissolving PLGA microneedle. The results indicate that the presented electrode arrays and insertion method are well suitable for application in long-term, high resolution neural recording. [Display omitted] •Neural electrode arrays of subcellular cross section fabricated lithographically.•Novel biodegradable microneedle for insertion in brain tissue designed and tested.•Assembly tested in vitro and then in vivo for 4 months.•Very limited remaining scar and no neural cell loss beyond scar after 4 months.•Action potentials and evoked local field potentials recorded at all time points. Ultra-flexible electrode arrays with a cross-sectional area of only a few μm² show great promise for long-term, high resolution neural interfacing without detrimental scar tissue formation. However, due to their low stiffness, insertion is a challenge. In this work, we investigate microneedles consisting of quickly biodegradable, short-chained, acid terminated PLGA (50:50 lactide:glycolide ratio) as insertion device for a polyimide-based neural electrode array of 1 μm thickness. An upscalable, wafer-level fabrication process is presented. Both separate PLGA microneedles as well as complete, assembled neural probes were tested in vivo for up to 4 months. The arrays allowed to record spontaneous spike activity and evoked local field potentials in the somatosensory cortex of rats on all measured timepoints. Very limited lesion formation, measuring about 20% of the cross sectional area of the original microneedle, was observed. Neurons can be seen to infiltrate the area originally taken up by the dissolving PLGA microneedle. The results indicate that the presented electrode arrays and insertion method are well suitable for application in long-term, high resolution neural recording. |
Author | Tooten, Ester Nuttin, Bart Kil, Dries Takeoka, Aya Puers, Robert Kraft, Michael Ceyssens, Frederik Deprez, Marjolijn Balschun, Detlef Bovet Carmona, Marta |
Author_xml | – sequence: 1 givenname: Frederik orcidid: 0000-0002-9381-3398 surname: Ceyssens fullname: Ceyssens, Frederik email: fceyssen@esat.kuleuven.be organization: ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium – sequence: 2 givenname: Marta surname: Bovet Carmona fullname: Bovet Carmona, Marta email: marta.bovetcarmona@kuleuven.be organization: Laboratory for Biological Psychology, Brain & Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium – sequence: 3 givenname: Dries surname: Kil fullname: Kil, Dries email: dkil@esat.kuleuven.be organization: ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium – sequence: 4 givenname: Marjolijn surname: Deprez fullname: Deprez, Marjolijn email: marjolijn.deprez@kuleuven.be organization: Experimental Neurosurgery and Neuroanatomy, UZ Herestraat 49 box 7003, 3000 Leuven, Belgium – sequence: 5 givenname: Ester surname: Tooten fullname: Tooten, Ester email: ester.tooten@uclouvain.be organization: Université Catholique de Louvain, WinFab, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium – sequence: 6 givenname: Bart surname: Nuttin fullname: Nuttin, Bart email: bart.nuttin@kuleuven.be organization: Experimental Neurosurgery and Neuroanatomy, UZ Herestraat 49 box 7003, 3000 Leuven, Belgium – sequence: 7 givenname: Aya surname: Takeoka fullname: Takeoka, Aya email: Aya.Takeoka@nerf.be organization: Neuro-Electronics Research Flanders (NERF), Kapeldreef 75, 3001 Leuven, Belgium – sequence: 8 givenname: Detlef surname: Balschun fullname: Balschun, Detlef email: detlef.balschun@kuleuven.be organization: Laboratory for Biological Psychology, Brain & Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium – sequence: 9 givenname: Michael surname: Kraft fullname: Kraft, Michael email: Michael.kraft@esat.kuleuven.be organization: ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium – sequence: 10 givenname: Robert surname: Puers fullname: Puers, Robert email: robert.puers@esat.kuleuven.be organization: ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium |
BookMark | eNp9kU1u3DAMhYUgBTL5OUB3Arq2Q0m25UFXxaA_AQJ0064FmaIbDTxSKtlTdNFL5Qg9WeRMV11kRYB4H8n3eMnOQwzE2FsBtQDR3e7rHIZaguhrIWtQcMY2oteqUqD1OdvAVrZVA9BesMuc9wDQqA427M_uIcXgkQdakp14IozJ-fCD__LzA39McaDM48jzMiBN0zLZxDHFnKtMOPsY-JJXOdTQ8cPh7xN3Puc4HdfmwRdpIHJTGWIz9yFTeoEcHT3SNXsz2inTzb96xb5_-vht96W6__r5bvfhvkKp9VzZQfRD0-leb52Ath9RoRJj36G2aKVyFsau2w79VikipUZ0TnbQYisaROzVFXt3mlv8_Fwoz2YflxTKSiOlUKLRTSOKSp9UL_4SjQb9bNdz52T9ZASYNWuzNyVrs2ZthDQl60KK_8jH5A82_X6VeX9iqBg_ekomo6eA5Hx5wmxc9K_Qz9Y3nB4 |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2021_09_025 crossref_primary_10_1016_j_bios_2019_111489 crossref_primary_10_1088_1361_6439_ac0513 crossref_primary_10_1038_s41551_023_01021_5 crossref_primary_10_1115_1_4047858 crossref_primary_10_1038_s42003_022_04390_w crossref_primary_10_1088_1741_2552_ab5e19 crossref_primary_10_1088_1741_2552_ac98e2 crossref_primary_10_1016_j_sbsr_2022_100483 crossref_primary_10_3389_fbioe_2024_1408088 crossref_primary_10_1016_j_bprint_2024_e00333 crossref_primary_10_1016_j_jneumeth_2021_109388 crossref_primary_10_1016_j_bioactmat_2025_02_006 crossref_primary_10_1088_1741_2552_abf6f2 crossref_primary_10_1115_1_4054979 crossref_primary_10_1088_2516_1091_ad0b19 crossref_primary_10_1016_j_sna_2023_114759 crossref_primary_10_1109_JSEN_2024_3429130 crossref_primary_10_1116_6_0001269 crossref_primary_10_1115_1_4053398 crossref_primary_10_3390_mi12080972 |
Cites_doi | 10.1109/TBME.2006.886617 10.1088/1741-2560/12/5/054001 10.1088/1741-2560/10/4/046016 10.1088/0960-1317/16/6/S21 10.1016/j.tins.2013.03.008 10.1088/1741-2560/5/1/P01 10.1016/0142-9612(93)90183-3 10.1089/089771503770802853 10.1073/pnas.1705509114 10.1088/0960-1317/24/6/065015 10.1088/1741-2560/3/3/001 10.1088/1741-2560/11/5/056014 10.1002/jbm.a.31034 10.1016/j.actbio.2011.02.027 10.3389/fmats.2015.00047 10.1038/nrn3241 10.1088/1741-2552/aa8b4f 10.1016/j.sna.2007.07.027 10.1126/sciadv.1601966 10.1021/acs.nanolett.7b02851 10.1007/s10853-009-3770-7 10.1007/s10544-016-0125-4 10.3389/fnins.2015.00331 10.3171/jns.2004.101.2.0314 10.1016/S0142-9612(01)00185-5 10.1016/j.snb.2017.05.057 10.1016/j.msec.2003.09.019 10.1038/nature24636 10.1006/exnr.1998.6983 10.1016/j.neuron.2006.09.019 10.1016/j.actbio.2017.02.010 10.1016/j.biomaterials.2007.03.024 10.1152/jn.00785.2013 10.1016/j.jneumeth.2005.08.015 10.1038/nmat4427 10.1088/1741-2560/2/4/006 10.1088/1741-2560/6/2/024002 10.1016/j.biomaterials.2014.07.039 10.1088/0960-1317/25/12/125003 |
ContentType | Journal Article |
Copyright | 2018 Copyright Elsevier Science Ltd. Apr 1, 2019 |
Copyright_xml | – notice: 2018 – notice: Copyright Elsevier Science Ltd. Apr 1, 2019 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2018.12.030 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
EndPage | 376 |
ExternalDocumentID | 10_1016_j_snb_2018_12_030 S0925400518321518 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SCH SEW SSH WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c277t-ab18b467879d1058fc3c31f86c7aca23da0f669b8933ee33fcdd2605c514ccc83 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Fri Jul 25 03:30:41 EDT 2025 Tue Jul 01 01:27:24 EDT 2025 Thu Apr 24 22:57:39 EDT 2025 Fri Feb 23 02:31:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dissolvable Resorbable Biodegradable Microneedles Chronic neural recording Ultra-flexible |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c277t-ab18b467879d1058fc3c31f86c7aca23da0f669b8933ee33fcdd2605c514ccc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9381-3398 |
PQID | 2213147441 |
PQPubID | 2047454 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2213147441 crossref_citationtrail_10_1016_j_snb_2018_12_030 crossref_primary_10_1016_j_snb_2018_12_030 elsevier_sciencedirect_doi_10_1016_j_snb_2018_12_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Kozai, Gugel, Li, Gilgunn, Khilwani, Ozdoganlar, Fedder, Weber, Cui (bib0110) 2014; 35 Wang, Liang, McAllister, James, Li, Brabant, Black, Finlayson, Cao, Tang, Salley, Auner (bib0035) 2007; 81 Berényi, Somogyvári, Nagy, Roux, Long, Fujisawa, Stark, Leonardo, Harris, Buzsáki (bib0005) 2013; 111 Jiao, Wang, Qing (bib0100) 2017; 17 Agorelius, Tsanakalis, Friberg, Thorbergsson, Pettersson, Schouenborg (bib0115) 2015; 9 Gefen, Gefen, Zhu, Raghupathi, Margulies (bib0050) 2003; 20 Schalk (bib0015) 2008; 5 Turner, Shain, Szarowski, Andersen, Martins, Isaacson, Craighead (bib0145) 1999; 156 Raducanu, Yazicioglu, Lopez, Ballini, Putzeys, Wang, Andrei, Welkenhuysen, Van Helleputte, Musa, Puers (bib0025) 2016 Sabir, Xu, Li (bib0150) 2009; 44 J. Paul (2018) https://stackoverflow.com/questions/22583391. Accessed 30/3/2018. Ceyssens, Puers (bib0155) 2015; 12 Lago, Yoshida, Koch, Navarro (bib0160) 2007; 54 Buzsáki, Anastassiou, Koch (bib0190) 2012; 13 Wester, Lee, LaPlaca (bib0070) 2009; 6 Lewitus, Smith, Shain, Kohn (bib0135) 2011; 7 Subbaroyan, Martin, Kipke (bib0060) 2005; 2 Lecomte, Degache, Descamps, Dahan, Bergaud (bib0125) 2017; 251 Chen, Gillies, Broaddus, Prabhu, Fillmore, Mitchell, Corwin, Fatouros (bib0180) 2004; 101 Schwartz, Cui, Weber, Moran (bib0010) 2006; 52 Mercanzini, Cheung, Buhl, Boers, Maillard, Colin, Bensadoun, Bertsch, Renaud (bib0075) 2008; 143 Xiang, Yen, Xue, Sun, Tsang, Zhang, Liao, Thakor, Lee (bib0130) 2014; 24 Seymour, Kipke (bib0080) 2007; 28 Richardson, Miller, Reichert (bib0170) 1993; 14 Mercanzini, Cheung, Buhl, Boers, Maillard, Colin, Bensadoun, Bertsch, Carleton, Renaud (bib0205) 2007 Nguyen, Park, Skousen, Hess-Dunning, Tyler, Rowan, Weder, Capadona (bib0065) 2014; 11 Gilletti, Muthuswamy (bib0055) 2006; 3 Luan, Wei, Zhao, Siegel, Potnis, Tuppen, Lin, Kazmi, Fowler, Holloway, Dunn (bib0095) 2017; 3 Khilwani, Gilgunn, Kozai, Ong, Korkmaz, Gunalan, Cui, Fedder, Ozdoganlar (bib0200) 2016; 18 Du, Kolarcik, Kozai, Luebben, Sapp, Zheng, Nabity, Cui (bib0185) 2017; 53 Lütcke, Margolis, Helmchen (bib0195) 2013; 36 Hämmerle, Kobuch, Kohler, Nisch, Sachs, Stelzle (bib0040) 2002; 23 Wessling, Mokwa, Schnakenberg (bib0175) 2006; 16 Polikov, Tresco, Reichert (bib0030) 2005; 148 Lecomte, Castagnola, Descamps, Dahan, Blatché, Dinis, Leclerc, Egles, Bergaud (bib0120) 2015; 25 Seo, Kim, Chung, Kim, Yu, Yu (bib0165) 2004; 24 Jun, Steinmetz, Siegle, Denman, Bauza, Barbarits, Lee, Anastassiou, Andrei, Aydin, Barbic (bib0020) 2017; 551 Zhou, Hong, Fu, Yang, Schuhmann, Viveros, Lieber (bib0090) 2017; 114 Xie, Liu, Fu, Dai, Zhou, Lieber (bib0105) 2015; 14 Guitchounts, Markowitz, Liberti, Gardner (bib0085) 2013; 10 Lecomte, Descamps, Bergaud (bib0045) 2018; 15 Altuna, Berganzo, Fernández (bib0210) 2015; 2 Mercanzini (10.1016/j.snb.2018.12.030_bib0075) 2008; 143 Xiang (10.1016/j.snb.2018.12.030_bib0130) 2014; 24 Zhou (10.1016/j.snb.2018.12.030_bib0090) 2017; 114 Berényi (10.1016/j.snb.2018.12.030_bib0005) 2013; 111 Seo (10.1016/j.snb.2018.12.030_bib0165) 2004; 24 Lago (10.1016/j.snb.2018.12.030_bib0160) 2007; 54 Buzsáki (10.1016/j.snb.2018.12.030_bib0190) 2012; 13 Polikov (10.1016/j.snb.2018.12.030_bib0030) 2005; 148 Hämmerle (10.1016/j.snb.2018.12.030_bib0040) 2002; 23 Lecomte (10.1016/j.snb.2018.12.030_bib0045) 2018; 15 Richardson (10.1016/j.snb.2018.12.030_bib0170) 1993; 14 Turner (10.1016/j.snb.2018.12.030_bib0145) 1999; 156 Altuna (10.1016/j.snb.2018.12.030_bib0210) 2015; 2 Khilwani (10.1016/j.snb.2018.12.030_bib0200) 2016; 18 Lecomte (10.1016/j.snb.2018.12.030_bib0120) 2015; 25 Sabir (10.1016/j.snb.2018.12.030_bib0150) 2009; 44 Schwartz (10.1016/j.snb.2018.12.030_bib0010) 2006; 52 Gefen (10.1016/j.snb.2018.12.030_bib0050) 2003; 20 Wang (10.1016/j.snb.2018.12.030_bib0035) 2007; 81 Guitchounts (10.1016/j.snb.2018.12.030_bib0085) 2013; 10 Luan (10.1016/j.snb.2018.12.030_bib0095) 2017; 3 Du (10.1016/j.snb.2018.12.030_bib0185) 2017; 53 Subbaroyan (10.1016/j.snb.2018.12.030_bib0060) 2005; 2 Chen (10.1016/j.snb.2018.12.030_bib0180) 2004; 101 Wester (10.1016/j.snb.2018.12.030_bib0070) 2009; 6 Kozai (10.1016/j.snb.2018.12.030_bib0110) 2014; 35 Xie (10.1016/j.snb.2018.12.030_bib0105) 2015; 14 Lütcke (10.1016/j.snb.2018.12.030_bib0195) 2013; 36 Jun (10.1016/j.snb.2018.12.030_bib0020) 2017; 551 Raducanu (10.1016/j.snb.2018.12.030_bib0025) 2016 Seymour (10.1016/j.snb.2018.12.030_bib0080) 2007; 28 Lewitus (10.1016/j.snb.2018.12.030_bib0135) 2011; 7 Ceyssens (10.1016/j.snb.2018.12.030_bib0155) 2015; 12 Schalk (10.1016/j.snb.2018.12.030_bib0015) 2008; 5 Jiao (10.1016/j.snb.2018.12.030_bib0100) 2017; 17 Agorelius (10.1016/j.snb.2018.12.030_bib0115) 2015; 9 Lecomte (10.1016/j.snb.2018.12.030_bib0125) 2017; 251 Mercanzini (10.1016/j.snb.2018.12.030_bib0205) 2007 Gilletti (10.1016/j.snb.2018.12.030_bib0055) 2006; 3 Wessling (10.1016/j.snb.2018.12.030_bib0175) 2006; 16 10.1016/j.snb.2018.12.030_bib0140 Nguyen (10.1016/j.snb.2018.12.030_bib0065) 2014; 11 |
References_xml | – volume: 2 start-page: 103 year: 2005 ident: bib0060 article-title: A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex publication-title: J. Neural Eng. – volume: 10 year: 2013 ident: bib0085 article-title: A carbon-fiber electrode array for long-term neural recording publication-title: J. Neural Eng. – volume: 114 start-page: 5894 year: 2017 end-page: 5899 ident: bib0090 article-title: Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain publication-title: Proc. Nat. Acad. Sci. – volume: 3 year: 2017 ident: bib0095 article-title: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration publication-title: Sci. Adv. – volume: 14 start-page: 1286 year: 2015 ident: bib0105 article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes publication-title: Nat. Mater. – volume: 143 start-page: 90 year: 2008 end-page: 96 ident: bib0075 article-title: Demonstration of cortical recording using novel flexible polymer neural probes publication-title: Sens. Actuators A – volume: 17 start-page: 7315 year: 2017 end-page: 7322 ident: bib0100 article-title: Scalable fabrication framework of implantable ultrathin and flexible probes with biodegradable sacrificial layers publication-title: Nano Lett. – volume: 24 start-page: 185 year: 2004 end-page: 189 ident: bib0165 article-title: Biocompatibility of polyimide microelectrode array for retinal stimulation publication-title: Mater. Sci. Eng.: C – volume: 81 start-page: 363 year: 2007 end-page: 372 ident: bib0035 article-title: Stability of and inflammatory response to silicon coated with a fluoroalkyl self‐assembled monolayer in the central nervous system publication-title: J. Biomed. Mater. Res. Part A – volume: 148 start-page: 1 year: 2005 end-page: 18 ident: bib0030 article-title: Response of brain tissue to chronically implanted neural electrodes publication-title: J. Neurosci. Methods – volume: 9 start-page: 331 year: 2015 ident: bib0115 article-title: An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation—initial evaluation in cortex cerebri of awake rats publication-title: Front. Neurosci. – start-page: 573 year: 2007 end-page: 576 ident: bib0205 article-title: Demonstration of cortical recording and reduced inflammatory response using flexible polymer neural probes publication-title: IEEE 20th International Conference on Micro Electro Mechanical Systems(MEMS) – volume: 15 year: 2018 ident: bib0045 article-title: A review on mechanical considerations for chronically-implanted neural probes publication-title: J. Neural Eng. – volume: 6 year: 2009 ident: bib0070 article-title: Development and characterization of in vivo flexible electrodes compatible with large tissue displacements publication-title: J. Neural Eng. – volume: 251 start-page: 1001 year: 2017 end-page: 1008 ident: bib0125 article-title: In vitro and in vivo biostability assessment of chronically-implanted parylene C neural sensors publication-title: Sens. Actuators B – volume: 24 year: 2014 ident: bib0130 article-title: Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle publication-title: J. Micromech. Microeng. – volume: 12 year: 2015 ident: bib0155 article-title: Insulation lifetime improvement of polyimide thin film neural implants publication-title: J. Neural Eng. – volume: 3 start-page: 189 year: 2006 ident: bib0055 article-title: Brain micromotion around implants in the rodent somatosensory cortex publication-title: J. Neural Eng. – volume: 20 start-page: 1163 year: 2003 end-page: 1177 ident: bib0050 article-title: Age-dependent changes in material properties of the brain and braincase of the rat publication-title: J. Neurotrauma – volume: 2 start-page: 47 year: 2015 ident: bib0210 article-title: Polymer SU-8-based microprobes for neural recording and drug delivery publication-title: Front. Mater. – volume: 111 start-page: 1132 year: 2013 end-page: 1149 ident: bib0005 article-title: Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals publication-title: J. Neurophysiol. – volume: 23 start-page: 797 year: 2002 end-page: 804 ident: bib0040 article-title: Biostability of micro-photodiode arrays for subretinal implantation publication-title: Biomaterials – reference: J. Paul (2018) https://stackoverflow.com/questions/22583391. Accessed 30/3/2018. – volume: 54 start-page: 281 year: 2007 end-page: 290 ident: bib0160 article-title: Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes publication-title: IEEE Trans. Biomed. Eng. – start-page: pp. 385 year: 2016 end-page: 388 ident: bib0025 article-title: Time multiplexed active neural probe with 678 parallel recording sites publication-title: Solid-State Device Research Conference (ESSDERC), 2016 46th European – volume: 7 start-page: 2483 year: 2011 end-page: 2491 ident: bib0135 article-title: Ultrafast resorbing polymers for use as carriers for cortical neural probes publication-title: Acta Biomater. – volume: 16 start-page: S142 year: 2006 ident: bib0175 article-title: RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants publication-title: J. Micromech. Microeng. – volume: 18 start-page: 97 year: 2016 ident: bib0200 article-title: Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization publication-title: Biomed. Microdevices – volume: 25 year: 2015 ident: bib0120 article-title: Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery publication-title: J. Micromech. Microeng. – volume: 551 start-page: 232 year: 2017 ident: bib0020 article-title: Fully integrated silicon probes for high-density recording of neural activity publication-title: Nature – volume: 35 start-page: 9255 year: 2014 end-page: 9268 ident: bib0110 article-title: Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes publication-title: Biomaterials – volume: 14 start-page: 627 year: 1993 end-page: 635 ident: bib0170 article-title: Polyimides as biomaterials: preliminary biocompatibility testing publication-title: Biomaterials – volume: 101 start-page: 314 year: 2004 end-page: 322 ident: bib0180 article-title: A realistic brain tissue phantom for intraparenchymal infusion studies publication-title: J. Neurosurg. – volume: 11 year: 2014 ident: bib0065 article-title: Mechanically-compliant intracortical implants reduce the neuroinflammatory response publication-title: J. Neural Eng. – volume: 53 start-page: 46 year: 2017 end-page: 58 ident: bib0185 article-title: Ultrasoft microwire neural electrodes improve chronic tissue integration publication-title: Acta Biomater. – volume: 5 start-page: 1 year: 2008 ident: bib0015 article-title: Brain–computer symbiosis publication-title: J. Neural Eng. – volume: 28 start-page: 3594 year: 2007 end-page: 3607 ident: bib0080 article-title: Neural probe design for reduced tissue encapsulation in CNS publication-title: Biomaterials – volume: 13 start-page: 407 year: 2012 ident: bib0190 article-title: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes publication-title: Nat. Rev. Neurosci. – volume: 36 year: 2013 ident: bib0195 article-title: Steady or changing? Long-term monitoring of neuronal population activity publication-title: Trends Neurosci. – volume: 156 start-page: 33 year: 1999 end-page: 49 ident: bib0145 article-title: Cerebral astrocyte response to micromachined silicon implants publication-title: Exp. Neurol. – volume: 52 start-page: 205 year: 2006 end-page: 220 ident: bib0010 article-title: Brain-controlled interfaces: movement restoration with neural prosthetics publication-title: Neuron – volume: 44 start-page: 5713 year: 2009 end-page: 5724 ident: bib0150 article-title: A review on biodegradable polymeric materials for bone tissue engineering applications publication-title: J. Mater. Sci. – volume: 54 start-page: 281 year: 2007 ident: 10.1016/j.snb.2018.12.030_bib0160 article-title: Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.886617 – volume: 12 year: 2015 ident: 10.1016/j.snb.2018.12.030_bib0155 article-title: Insulation lifetime improvement of polyimide thin film neural implants publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/5/054001 – volume: 10 year: 2013 ident: 10.1016/j.snb.2018.12.030_bib0085 article-title: A carbon-fiber electrode array for long-term neural recording publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/4/046016 – volume: 16 start-page: S142 year: 2006 ident: 10.1016/j.snb.2018.12.030_bib0175 article-title: RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/6/S21 – volume: 36 year: 2013 ident: 10.1016/j.snb.2018.12.030_bib0195 article-title: Steady or changing? Long-term monitoring of neuronal population activity publication-title: Trends Neurosci. doi: 10.1016/j.tins.2013.03.008 – volume: 5 start-page: 1 year: 2008 ident: 10.1016/j.snb.2018.12.030_bib0015 article-title: Brain–computer symbiosis publication-title: J. Neural Eng. doi: 10.1088/1741-2560/5/1/P01 – volume: 14 start-page: 627 year: 1993 ident: 10.1016/j.snb.2018.12.030_bib0170 article-title: Polyimides as biomaterials: preliminary biocompatibility testing publication-title: Biomaterials doi: 10.1016/0142-9612(93)90183-3 – volume: 20 start-page: 1163 year: 2003 ident: 10.1016/j.snb.2018.12.030_bib0050 article-title: Age-dependent changes in material properties of the brain and braincase of the rat publication-title: J. Neurotrauma doi: 10.1089/089771503770802853 – volume: 114 start-page: 5894 issue: 23 year: 2017 ident: 10.1016/j.snb.2018.12.030_bib0090 article-title: Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.1705509114 – volume: 24 year: 2014 ident: 10.1016/j.snb.2018.12.030_bib0130 article-title: Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/24/6/065015 – volume: 3 start-page: 189 year: 2006 ident: 10.1016/j.snb.2018.12.030_bib0055 article-title: Brain micromotion around implants in the rodent somatosensory cortex publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/3/001 – volume: 11 year: 2014 ident: 10.1016/j.snb.2018.12.030_bib0065 article-title: Mechanically-compliant intracortical implants reduce the neuroinflammatory response publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/5/056014 – start-page: 573 year: 2007 ident: 10.1016/j.snb.2018.12.030_bib0205 article-title: Demonstration of cortical recording and reduced inflammatory response using flexible polymer neural probes – volume: 81 start-page: 363 year: 2007 ident: 10.1016/j.snb.2018.12.030_bib0035 article-title: Stability of and inflammatory response to silicon coated with a fluoroalkyl self‐assembled monolayer in the central nervous system publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.31034 – volume: 7 start-page: 2483 year: 2011 ident: 10.1016/j.snb.2018.12.030_bib0135 article-title: Ultrafast resorbing polymers for use as carriers for cortical neural probes publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.02.027 – volume: 2 start-page: 47 year: 2015 ident: 10.1016/j.snb.2018.12.030_bib0210 article-title: Polymer SU-8-based microprobes for neural recording and drug delivery publication-title: Front. Mater. doi: 10.3389/fmats.2015.00047 – volume: 13 start-page: 407 year: 2012 ident: 10.1016/j.snb.2018.12.030_bib0190 article-title: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3241 – volume: 15 year: 2018 ident: 10.1016/j.snb.2018.12.030_bib0045 article-title: A review on mechanical considerations for chronically-implanted neural probes publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa8b4f – volume: 143 start-page: 90 year: 2008 ident: 10.1016/j.snb.2018.12.030_bib0075 article-title: Demonstration of cortical recording using novel flexible polymer neural probes publication-title: Sens. Actuators A doi: 10.1016/j.sna.2007.07.027 – volume: 3 year: 2017 ident: 10.1016/j.snb.2018.12.030_bib0095 article-title: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration publication-title: Sci. Adv. doi: 10.1126/sciadv.1601966 – volume: 17 start-page: 7315 year: 2017 ident: 10.1016/j.snb.2018.12.030_bib0100 article-title: Scalable fabrication framework of implantable ultrathin and flexible probes with biodegradable sacrificial layers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02851 – ident: 10.1016/j.snb.2018.12.030_bib0140 – volume: 44 start-page: 5713 year: 2009 ident: 10.1016/j.snb.2018.12.030_bib0150 article-title: A review on biodegradable polymeric materials for bone tissue engineering applications publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3770-7 – volume: 18 start-page: 97 year: 2016 ident: 10.1016/j.snb.2018.12.030_bib0200 article-title: Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization publication-title: Biomed. Microdevices doi: 10.1007/s10544-016-0125-4 – volume: 9 start-page: 331 year: 2015 ident: 10.1016/j.snb.2018.12.030_bib0115 article-title: An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation—initial evaluation in cortex cerebri of awake rats publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00331 – volume: 101 start-page: 314 year: 2004 ident: 10.1016/j.snb.2018.12.030_bib0180 article-title: A realistic brain tissue phantom for intraparenchymal infusion studies publication-title: J. Neurosurg. doi: 10.3171/jns.2004.101.2.0314 – start-page: pp. 385 year: 2016 ident: 10.1016/j.snb.2018.12.030_bib0025 article-title: Time multiplexed active neural probe with 678 parallel recording sites – volume: 23 start-page: 797 year: 2002 ident: 10.1016/j.snb.2018.12.030_bib0040 article-title: Biostability of micro-photodiode arrays for subretinal implantation publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00185-5 – volume: 251 start-page: 1001 year: 2017 ident: 10.1016/j.snb.2018.12.030_bib0125 article-title: In vitro and in vivo biostability assessment of chronically-implanted parylene C neural sensors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.05.057 – volume: 24 start-page: 185 year: 2004 ident: 10.1016/j.snb.2018.12.030_bib0165 article-title: Biocompatibility of polyimide microelectrode array for retinal stimulation publication-title: Mater. Sci. Eng.: C doi: 10.1016/j.msec.2003.09.019 – volume: 551 start-page: 232 year: 2017 ident: 10.1016/j.snb.2018.12.030_bib0020 article-title: Fully integrated silicon probes for high-density recording of neural activity publication-title: Nature doi: 10.1038/nature24636 – volume: 156 start-page: 33 year: 1999 ident: 10.1016/j.snb.2018.12.030_bib0145 article-title: Cerebral astrocyte response to micromachined silicon implants publication-title: Exp. Neurol. doi: 10.1006/exnr.1998.6983 – volume: 52 start-page: 205 year: 2006 ident: 10.1016/j.snb.2018.12.030_bib0010 article-title: Brain-controlled interfaces: movement restoration with neural prosthetics publication-title: Neuron doi: 10.1016/j.neuron.2006.09.019 – volume: 53 start-page: 46 year: 2017 ident: 10.1016/j.snb.2018.12.030_bib0185 article-title: Ultrasoft microwire neural electrodes improve chronic tissue integration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.02.010 – volume: 28 start-page: 3594 year: 2007 ident: 10.1016/j.snb.2018.12.030_bib0080 article-title: Neural probe design for reduced tissue encapsulation in CNS publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.03.024 – volume: 111 start-page: 1132 year: 2013 ident: 10.1016/j.snb.2018.12.030_bib0005 article-title: Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals publication-title: J. Neurophysiol. doi: 10.1152/jn.00785.2013 – volume: 148 start-page: 1 year: 2005 ident: 10.1016/j.snb.2018.12.030_bib0030 article-title: Response of brain tissue to chronically implanted neural electrodes publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2005.08.015 – volume: 14 start-page: 1286 year: 2015 ident: 10.1016/j.snb.2018.12.030_bib0105 article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes publication-title: Nat. Mater. doi: 10.1038/nmat4427 – volume: 2 start-page: 103 year: 2005 ident: 10.1016/j.snb.2018.12.030_bib0060 article-title: A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/4/006 – volume: 6 year: 2009 ident: 10.1016/j.snb.2018.12.030_bib0070 article-title: Development and characterization of in vivo flexible electrodes compatible with large tissue displacements publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/2/024002 – volume: 35 start-page: 9255 year: 2014 ident: 10.1016/j.snb.2018.12.030_bib0110 article-title: Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.07.039 – volume: 25 year: 2015 ident: 10.1016/j.snb.2018.12.030_bib0120 article-title: Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/25/12/125003 |
SSID | ssj0004360 |
Score | 2.4051125 |
Snippet | [Display omitted]
•Neural electrode arrays of subcellular cross section fabricated lithographically.•Novel biodegradable microneedle for insertion in brain... Ultra-flexible electrode arrays with a cross-sectional area of only a few μm² show great promise for long-term, high resolution neural interfacing without... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 369 |
SubjectTerms | Arrays Biodegradability Biodegradable Chronic neural recording Cross-sections Dissolvable Electrodes High resolution Insertion Microneedles Needles Recording Resorbable Stiffness Ultra-flexible |
Title | Chronic neural recording with probes of subcellular cross-section using 0.06 mm² dissolving microneedles as insertion device |
URI | https://dx.doi.org/10.1016/j.snb.2018.12.030 https://www.proquest.com/docview/2213147441 |
Volume | 284 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQXOCAWMVa-cAJKTSJXTs5VhWogNQLIHGzvMSoqA0VKUf4KD6BL2PGSdiEOHCJsniTZzIzHj_PEHIkc8-t7_FIY_xLngseGQ6LFZkKqU2cwb8eUL4jMbzhF7e92wUyaM_CIKyykf21TA_SunnTbWazOxuPu1dxDosbZCpMtgNXPMHOJfL6ycsnzIOzcFIYC0dYut3ZDBivqjSI7sqCRxCB0L_rph9SOqieszWy2tiMtF8Pa50sFOUGWfkSSXCTPDdBbinGp4Syte8FPlF0tFJMG1NU9MHT6smgrx7BpzSMIqoCGKukiIC_o_FJLOh0-vZKcaf-YYL-BjpF1B705SbQiK7ouMQ9fKzkCpQ0W-Tm7PR6MIyazAqRTaWcR9okmQERmcncgYGVecssS3wmrNRWp8zp2AuRGzBmWFEw5q1zuPCxYF5ZazO2TRZL6HeHUMZtpnNpU7jhPunpQnBnvdDCcAeqbpfE7Zwq24Qdx-wXE9Xiy-4VkEEhGVSSKiDDLjn-qDKrY278VZi3hFLfGEeBTvir2kFLVNX8tZVK04QlXIKFuPe_VvfJMjzlNbLngCzOH5-KQzBa5qYTuLJDlvrnl8PROzOm7Z0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECarHtSD8RnfcvBkUrctLLRHs3Gz6upFTbwRoMWs2a3Grkf9Uf4Ef5kztPUV48FL05ShEGYYhuFjhpB9mTpuXYcHGuNf8lTwwHDYrMhYSG3CBOa6R_leiP41P73p3LRIt7kLg7DKWvdXOt1r6_pLux7N9sNw2L4MU9jcoFBhsh14TpEZjmkOQKgPXz5xHpz5q8JIHSB5c7TpQV5lYRDelXiXICKhf1-cfqhpv_b0FslCbTTSo6pfS6SVF8tk_ksowRXyXEe5pRigEmgr5wsUUfS0Uswbk5f03tHyyaCzHtGn1PciKD0aq6AIgb-l4WEo6Hj89krxqP5-hA4HOkbYHrSVjeAnuqTDAg_xsVKWo6pZJde946tuP6hTKwQ2lnISaBMlBnRkItMMLKzEWWZZ5BJhpbY6ZpkOnRCpAWuG5TljzmYZ7nws2FfW2oStkekC2l0nlHGb6FTaGF64izo6FzyzTmhheAZr3QYJmzFVto47jukvRqoBmN0pYINCNqgoVsCGDXLwUeWhCrrxFzFvGKW-SY6CReGvatsNU1U9bUsVxxGLuAQTcfN_f90js_2r84EanFycbZE5KEkrmM82mZ48PuU7YMFMzK6X0HebBO8m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chronic+neural+recording+with+probes+of+subcellular+cross-section+using+0.06+mm%C2%B2+dissolving+microneedles+as+insertion+device&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Ceyssens%2C+Frederik&rft.au=Bovet+Carmona%2C+Marta&rft.au=Kil%2C+Dries&rft.au=Deprez%2C+Marjolijn&rft.date=2019-04-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=284&rft.spage=369&rft.epage=376&rft_id=info:doi/10.1016%2Fj.snb.2018.12.030&rft.externalDocID=S0925400518321518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |