Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size

Set-membership identification (SMI) theory is extended to the more general problem of linear-in-parameters filtering by defining a set-membership specification, as opposed to a bounded noise assumption. This sets the framework for several important filtering problems that are not modeled by a "...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 5; no. 5; pp. 111 - 114
Main Authors Gollamudi, S., Nagaraj, S., Kapoor, S., Yih-Fang Huang
Format Journal Article
LanguageEnglish
Published IEEE 01.05.1998
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/97.668945

Cover

Abstract Set-membership identification (SMI) theory is extended to the more general problem of linear-in-parameters filtering by defining a set-membership specification, as opposed to a bounded noise assumption. This sets the framework for several important filtering problems that are not modeled by a "true" unknown system with bounded noise, such as adaptive equalization, to exploit the unique advantages of SMI algorithms. A recursive solution for set membership filtering is derived that resembles a variable step size normalized least mean squares (NLMS) algorithm. Interesting properties of the algorithm, such as asymptotic cessation of updates and monotonically non-increasing parameter error, are established. Simulations show significant performance improvement in varied environments with a greatly reduced number of updates.
AbstractList Set-membership identification (SMI) theory is extended to the more general problem of linear-in-parameters filtering by defining a set-membership specification, as opposed to a bounded noise assumption. This sets the framework for several important filtering problems that are not modeled by a "true" unknown system with bounded noise, such as adaptive equalization, to exploit the unique advantages of SMI algorithms. A recursive solution for set membership filtering is derived that resembles a variable step size normalized least mean squares (NLMS) algorithm. Interesting properties of the algorithm, such as asymptotic cessation of updates and monotonically non-increasing parameter error, are established. Simulations show significant performance improvement in varied environments with a greatly reduced number of updates.
Set-membership identification (SMI) theory is extended to the more general problem of linear-in-parameters filtering by defining a set-membership specification, as opposed to a bounded noise assumption. This sets the framework for several important filtering problems that are not modeled by a "true" unknown system with bounded noise, such as adaptive equalization, to exploit the unique advantages of SMI algorithms. A recursive solution for set membership filtering is derived that resembles a variable step size normalized least mean squares (NLMS) algorithm. Interesting properties of the algorithm, such as asymptotic cessation of updates and monotonically non-increasing parameter error, are established. Simulations show significant performance improvement in varied environments with a greatly reduced number of updates
Author Gollamudi, S.
Kapoor, S.
Yih-Fang Huang
Nagaraj, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Gollamudi
  fullname: Gollamudi, S.
  organization: Lab. for Image & Signal Anal., Notre Dame Univ., IN, USA
– sequence: 2
  givenname: S.
  surname: Nagaraj
  fullname: Nagaraj, S.
– sequence: 3
  givenname: S.
  surname: Kapoor
  fullname: Kapoor, S.
– sequence: 4
  surname: Yih-Fang Huang
  fullname: Yih-Fang Huang
BookMark eNptkM1LAzEUxINUsK0evHrKSfCwbZLdbJKjFL-g4qF6Xl63L21kv0xSRf96V1YExcubB_ObOcyEjJq2QUJOOZtxzszcqFmea5PJAzLmUupEpDkf9T9TLDGG6SMyCeGZMaa5lmMCK4xJjfUafdi5jlpXRfSu2VJoNhRo-G03ra-hch-4ocv7FYVq23oXdzV9628fobCBLrpXpCFiR0NPHpNDC1XAk2-dkqfrq8fFbbJ8uLlbXC6TUigVEwWciaxkWWotmo0UUq8FFwasXKPG3hTSgijTXNkMuFUZZ4wjkzo3Zg0ynZLzobfz7cseQyxqF0qsKmiw3YdC6FzJVLIevBjA0rcheLRF510N_r3grPgasTCqGEbs2fkftnQRomub6MFV_ybOhoRDxJ_mb_MTOeJ-FQ
CODEN ISPLEM
CitedBy_id crossref_primary_10_1109_TSP_2012_2236831
crossref_primary_10_1016_j_sigpro_2016_12_020
crossref_primary_10_1109_TASL_2009_2032948
crossref_primary_10_1109_TVT_2011_2153884
crossref_primary_10_1007_s11045_014_0304_5
crossref_primary_10_1109_TAES_2013_6621805
crossref_primary_10_1007_s11760_016_0925_2
crossref_primary_10_1109_TNN_2008_2003286
crossref_primary_10_1109_TCSII_2007_906974
crossref_primary_10_1109_TSP_2013_2292035
crossref_primary_10_1002_acs_1237
crossref_primary_10_1016_S1474_6670_17_39862_2
crossref_primary_10_1109_JSYST_2022_3150749
crossref_primary_10_1002_acs_2845
crossref_primary_10_1016_j_compeleceng_2008_11_012
crossref_primary_10_1081_NFA_200045806
crossref_primary_10_1080_21642583_2018_1494639
crossref_primary_10_1016_j_sigpro_2008_04_014
crossref_primary_10_1007_s00034_019_01341_5
crossref_primary_10_1016_j_dsp_2023_104216
crossref_primary_10_1109_TSP_2005_861893
crossref_primary_10_1109_TSP_2014_2327005
crossref_primary_10_1155_2008_735351
crossref_primary_10_7763_IJCEE_2012_V4_561
crossref_primary_10_1016_j_sigpro_2024_109661
crossref_primary_10_1109_TSP_2012_2200889
crossref_primary_10_1007_s11432_023_3905_1
crossref_primary_10_1109_TNNLS_2019_2899052
crossref_primary_10_1080_01630560600884661
crossref_primary_10_1109_TASLP_2019_2949928
crossref_primary_10_1049_el_19990654
crossref_primary_10_1049_el_20072330
crossref_primary_10_1109_TSP_2020_2975370
crossref_primary_10_1109_TSP_2005_859348
crossref_primary_10_1109_97_935739
crossref_primary_10_1109_TAC_2021_3123210
crossref_primary_10_1016_j_sigpro_2012_09_024
crossref_primary_10_1109_TSP_2014_2334560
crossref_primary_10_1016_j_apacoust_2020_107210
crossref_primary_10_1007_s00034_020_01620_6
crossref_primary_10_1007_s11432_014_5078_8
crossref_primary_10_1109_TCSII_2024_3382825
crossref_primary_10_1007_s00034_010_9219_z
crossref_primary_10_1109_TSP_2008_917376
crossref_primary_10_1016_j_dsp_2016_01_013
crossref_primary_10_1109_TVT_2011_2171376
crossref_primary_10_1109_TSP_2004_823483
crossref_primary_10_1109_TSP_2014_2324997
crossref_primary_10_1007_s11265_008_0234_2
crossref_primary_10_1109_TCSII_2016_2555942
crossref_primary_10_1007_s42452_019_1641_7
crossref_primary_10_1109_TSP_2012_2229995
crossref_primary_10_1007_s00034_012_9545_4
crossref_primary_10_1109_TCSI_2014_2304665
crossref_primary_10_1109_TCSII_2017_2671521
crossref_primary_10_1109_LCOMM_2021_3051007
crossref_primary_10_1109_TCSII_2011_2168023
crossref_primary_10_1007_s11063_017_9679_2
crossref_primary_10_1016_j_sigpro_2018_07_007
crossref_primary_10_1007_s11432_010_4141_3
crossref_primary_10_1016_j_sigpro_2016_06_007
crossref_primary_10_1155_2017_8140702
crossref_primary_10_1109_TSP_2016_2546225
crossref_primary_10_1016_j_sigpro_2018_01_014
crossref_primary_10_1109_TNSE_2017_2742360
crossref_primary_10_1049_el_2016_1944
crossref_primary_10_1109_TVT_2008_926608
crossref_primary_10_2200_S00289ED1V01Y201006SAP006
crossref_primary_10_3390_sym10030075
crossref_primary_10_1109_TSP_2018_2847657
crossref_primary_10_1186_s13634_017_0507_7
crossref_primary_10_1016_j_jfranklin_2010_11_003
crossref_primary_10_1109_TSP_2006_881225
crossref_primary_10_1109_TCSII_2020_3017003
crossref_primary_10_1016_j_jfranklin_2023_03_025
crossref_primary_10_1049_iet_spr_2017_0131
crossref_primary_10_1016_S1474_6670_17_39864_6
crossref_primary_10_1109_LSP_2006_876323
crossref_primary_10_1109_78_815504
crossref_primary_10_1109_TPWRS_2021_3050150
crossref_primary_10_1587_transfun_E96_A_2198
crossref_primary_10_1155_2017_8056126
crossref_primary_10_1049_el_2017_4434
crossref_primary_10_1109_TSP_2009_2027397
crossref_primary_10_1186_s13634_019_0605_9
crossref_primary_10_1016_j_apacoust_2019_01_002
crossref_primary_10_1109_TAES_2019_2933961
crossref_primary_10_1109_TSP_2006_888890
crossref_primary_10_1007_s00034_016_0471_8
crossref_primary_10_1016_j_apacoust_2018_07_020
crossref_primary_10_1109_TCSI_2017_2685679
crossref_primary_10_1007_s11081_014_9274_6
crossref_primary_10_1109_TCSII_2014_2327376
crossref_primary_10_1016_j_sigpro_2014_03_007
crossref_primary_10_1088_0256_307X_23_12_018
crossref_primary_10_3390_e19060281
crossref_primary_10_3390_e22010093
crossref_primary_10_1016_j_aej_2017_08_005
crossref_primary_10_1016_j_jfranklin_2017_07_036
crossref_primary_10_1109_LSP_2010_2053355
crossref_primary_10_1016_j_sigpro_2015_06_006
crossref_primary_10_1002_hbm_20721
crossref_primary_10_1109_ACCESS_2022_3201135
crossref_primary_10_1016_j_sigpro_2015_11_001
crossref_primary_10_1016_j_sigpro_2016_11_025
crossref_primary_10_1080_00207217_2017_1335792
crossref_primary_10_1109_TCSI_2022_3204931
crossref_primary_10_1007_s00034_010_9258_5
crossref_primary_10_1049_iet_spr_2019_0294
crossref_primary_10_1109_TCSI_2018_2868662
crossref_primary_10_1007_s11277_016_3869_5
crossref_primary_10_1007_s13369_017_2453_y
crossref_primary_10_1049_el_2012_4011
crossref_primary_10_1109_ACCESS_2024_3370439
crossref_primary_10_1109_25_790508
crossref_primary_10_1109_TSP_2009_2020747
crossref_primary_10_1016_j_aeue_2017_04_018
crossref_primary_10_1109_TCSI_2013_2268551
crossref_primary_10_1109_TSP_2003_1145712
crossref_primary_10_1109_78_796429
crossref_primary_10_1016_j_dsp_2024_104948
crossref_primary_10_1016_S1474_6670_17_39865_8
crossref_primary_10_1109_LSP_2013_2257169
crossref_primary_10_1155_2007_34242
crossref_primary_10_1016_j_sigpro_2022_108638
crossref_primary_10_1109_TASL_2007_896655
crossref_primary_10_1155_ASP_2006_84797
crossref_primary_10_1109_JIOT_2022_3218484
crossref_primary_10_1016_j_sigpro_2012_07_005
crossref_primary_10_1587_transfun_E96_A_1482
crossref_primary_10_1016_j_inffus_2016_12_004
crossref_primary_10_1002_acs_1172
crossref_primary_10_1007_s13344_014_0043_2
crossref_primary_10_1016_S0005_1098_00_00009_1
crossref_primary_10_1016_j_dsp_2017_10_022
crossref_primary_10_1109_LSP_2002_805312
crossref_primary_10_1016_j_aeue_2016_04_001
crossref_primary_10_1587_transfun_E97_A_1659
Cites_doi 10.1016/0378-4754(90)90002-Z
10.1016/0005-1098(82)90110-8
10.1002/acs.4480080105
10.1109/5.58323
10.1109/5.257681
10.1109/78.709523
10.1109/78.205719
10.1109/ISCAS.1996.540340
10.1109/TIT.1987.1057307
ContentType Journal Article
DBID RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/97.668945
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 114
ExternalDocumentID 10_1109_97_668945
668945
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c277t-7a1024c043ffe9d5258b2129af5be8e10225fa2c367f4a1f741001e058699ba53
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Thu Oct 02 10:41:30 EDT 2025
Wed Oct 01 01:10:54 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Tue Aug 26 21:00:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-7a1024c043ffe9d5258b2129af5be8e10225fa2c367f4a1f741001e058699ba53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28675350
PQPubID 23500
PageCount 4
ParticipantIDs ieee_primary_668945
crossref_citationtrail_10_1109_97_668945
proquest_miscellaneous_28675350
crossref_primary_10_1109_97_668945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-05-01
PublicationDateYYYYMMDD 1998-05-01
PublicationDate_xml – month: 05
  year: 1998
  text: 1998-05-01
  day: 01
PublicationDecade 1990
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 1998
Publisher IEEE
Publisher_xml – name: IEEE
References ref8
ref7
nayeri (ref5) 1994
ref9
fogel (ref1) 1982; 18
ref4
ref3
ref6
ref11
nagaraj (ref10) 1997
ref2
References_xml – ident: ref7
  doi: 10.1016/0378-4754(90)90002-Z
– volume: 18
  start-page: 229
  year: 1982
  ident: ref1
  article-title: on the value of information in system identification-bounded noise case
  publication-title: Automatica
  doi: 10.1016/0005-1098(82)90110-8
– ident: ref4
  doi: 10.1002/acs.4480080105
– ident: ref11
  doi: 10.1109/5.58323
– ident: ref6
  doi: 10.1109/5.257681
– ident: ref9
  doi: 10.1109/78.709523
– year: 1997
  ident: ref10
  article-title: bounded error estimation: set-theoretic and least-squares formulations
  publication-title: Proc Conf Information Sciences and Systems
– ident: ref3
  doi: 10.1109/78.205719
– ident: ref8
  doi: 10.1109/ISCAS.1996.540340
– year: 1994
  ident: ref5
  article-title: do interpretable optimal bounding ellipsoid algorithms converge?-part i and ii
  publication-title: Proc IFAC Symp System Identification
– ident: ref2
  doi: 10.1109/TIT.1987.1057307
SSID ssj0008185
Score 2.0491073
Snippet Set-membership identification (SMI) theory is extended to the more general problem of linear-in-parameters filtering by defining a set-membership...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111
SubjectTerms Adaptive filters
Additive noise
Convergence
Filtering algorithms
Filtering theory
Least squares approximation
Resonance light scattering
Signal processing algorithms
System identification
Time sharing computer systems
Title Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size
URI https://ieeexplore.ieee.org/document/668945
https://www.proquest.com/docview/28675350
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgT-VAWwpigbYW6qGXLHnZsY9VBVpVhQsgcYsm9hhWLNkVm73w6zuTZFflceAWxTNSZE_m4Zn5Rogf3gdwHnzkSfdFuU4gguDiqEjAkXdvgnHc73x-ocfX-Z8bddPjbLe9MIjYFp_hiB_bXL6fuSVflZ1obWyuNsVmYXTXqrVWumx3uvLCOCIFa3oQoSS2J7YYdYzPTE87S-WVAm6tytnHrl170YIRcjHJ_WjZVCP39AKq8Z0f_Els996l_NWJw2exgfWO2PoPc_CLgEukUBd5DggXaskw4Xw5LUmovQS5eL5cs087nTyhl3_PLyVMb2ePk-buQfIFLrFI8DBnlSlJXOZyQZS74vrs9Or3OOrnLEQuLYomKoC8jNzFeRYCWq9SZSqyaBaCqtAgx4QqQOoyXYQckkBOCBk3jJXR1lagsj0xqGc17guZJJhhagAyr3NFQkAKVaNLGeU-0S4dip-rIyhdD0LOszCmZRuMxLa0Rdnt2lAcr0nnHfLGW0Q7vOtrgtXb76tjLelv4RQI1DhbLsrUUICUqfjgTb5D8aFrOeR6xiMxaB6X-JV8jqb61krbPz-q1mI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADjwKivGohDlyyzcN27GNVUS2w20tbqbdoYo_bVZfsqpu99Nczk2RXFHrgFsUzUmRP5uGZ-UaILyFE8AFCEkj3JcpkkED0aVJm4Mm7t9F67neenpjxufpxoS8GnO2uFwYRu-IzHPFjl8sPC7_mq7IDY6xT-qF4pJVSum_W2qpdtjx9gWGakIq1A4xQlroDV4561jvGp5um8o8K7uzK8fO-YXvVwRFyOcn1aN3WI3_7F1jjf37yC_Fs8C_lYS8QL8UDbHbF0z9QB18JOEUKdpEngXCplowzzpjTkoQmSJCru8sNe7Xz2S0GOZmeSphfLm5m7dUvyVe4xCIhwJKVpiSBWcoVUb4W58ffzo7GyTBpIfF5WbZJCeRnKJ-qIkZ0Qefa1mTTHERdo0WOCnWE3BemjAqySG4ImTdMtTXO1aCLN2KnWTT4VsgswwJzC1AEozSJAalUgz5nnPvM-HxPfN0cQeUHGHKehjGvunAkdZUrq37X9sTnLemyx964j2iXd31LsHm7vznWiv4XToJAg4v1qsothUiFTt_dy7cvHo_PppNq8v3k53vxpG9A5OrGD2KnvVnjR_JA2vpTJ3m_AaAk2a8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Set-membership+filtering+and+a+set-membership+normalized+LMS+algorithm+with+an+adaptive+step+size&rft.jtitle=IEEE+signal+processing+letters&rft.au=Gollamudi%2C+S.&rft.au=Nagaraj%2C+S.&rft.au=Kapoor%2C+S.&rft.au=Yih-Fang+Huang&rft.date=1998-05-01&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=5&rft.issue=5&rft.spage=111&rft.epage=114&rft_id=info:doi/10.1109%2F97.668945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_97_668945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon