MWCNT Doped Reverse-Mode Polymer Network Liquid Crystals with Frequency Response Property
Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain transparency. We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes (MWCNTs) into a reverse-mode polymer network liquid crystal (R-...
Saved in:
| Published in | Chinese physics letters Vol. 41; no. 3; pp. 38501 - 170 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Chinese Physical Society and IOP Publishing Ltd
01.03.2024
|
| Online Access | Get full text |
| ISSN | 0256-307X 1741-3540 |
| DOI | 10.1088/0256-307X/41/3/038501 |
Cover
| Abstract | Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain transparency. We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes (MWCNTs) into a reverse-mode polymer network liquid crystal (R-PNLC). It is found that doping MWCNTs could effectively reduce the threshold voltage (
V
th
) of R-PNLC from 19.0 V to 8.4 V. Due to co-orientation between MWCNT and LC molecules, the doped R-PNLC is able to maintain a high transmittance of visible light (∼ 80%) without an applied electric field. We find that doping MWCNTs could change the frequency modulation property of R-PNLC. The doped R-PNLC exhibits a wider frequency modulation range up to 40000 Hz, while the frequency modulation of the undoped R-PNLC reached to a saturation at 23000 Hz. We also tested the electromagnetic interference (EMI) shielding efficiency of R-PNLC and find that the EMI shielding efficiency could be improved by doping only 0.01 wt% MWCNTs into the system. The total shielding effectiveness of 0.01 wt% MWCNT doped R-PNLC was up to 14.91 dB in the frequency band of 5.38–8.17 GHz. This study demonstrates that the films are potentially useful for low-energy-consumption smart windows with enhanced electromagnetic shielding capability. |
|---|---|
| AbstractList | Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain transparency. We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes (MWCNTs) into a reverse-mode polymer network liquid crystal (R-PNLC). It is found that doping MWCNTs could effectively reduce the threshold voltage (
V
th
) of R-PNLC from 19.0 V to 8.4 V. Due to co-orientation between MWCNT and LC molecules, the doped R-PNLC is able to maintain a high transmittance of visible light (∼ 80%) without an applied electric field. We find that doping MWCNTs could change the frequency modulation property of R-PNLC. The doped R-PNLC exhibits a wider frequency modulation range up to 40000 Hz, while the frequency modulation of the undoped R-PNLC reached to a saturation at 23000 Hz. We also tested the electromagnetic interference (EMI) shielding efficiency of R-PNLC and find that the EMI shielding efficiency could be improved by doping only 0.01 wt% MWCNTs into the system. The total shielding effectiveness of 0.01 wt% MWCNT doped R-PNLC was up to 14.91 dB in the frequency band of 5.38–8.17 GHz. This study demonstrates that the films are potentially useful for low-energy-consumption smart windows with enhanced electromagnetic shielding capability. Polymer-liquid crystals(PLCs)are common materials for smart windows.However,PLC smart windows usually require high driving voltage to maintain transparency.We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes(MWCNTs)into a reverse-mode polymer network liquid crystal(R-PNLC).It is found that doping MWCNTs could effectively reduce the threshold voltage(Vth)of R-PNLC from 19.0 V to 8.4 V.Due to co-orientation between MWCNT and LC molecules,the doped R-PNLC is able to maintain a high transmittance of visible light(~80%)without an applied electric field.We find that doping MWCNTs could change the frequency modulation property of R-PNLC.The doped R-PNLC exhibits a wider frequency modulation range up to 40000 Hz,while the frequency modulation of the undoped R-PNLC reached to a saturation at 23000 Hz.We also tested the electromagnetic interference(EMI)shielding efficiency of R-PNLC and find that the EMI shielding efficiency could be improved by doping only 0.01 wt%MWCNTs into the system.The total shielding effectiveness of 0.01 wt%MWCNT doped R-PNLC was up to 14.91 dB in the frequency band of 5.38-8.17 GHz.This study demonstrates that the films are potentially useful for low-energy-consumption smart windows with enhanced electromagnetic shielding capability. |
| Author | Wang, Tianyu Zhang, Ruicong Li, Jiajun Zhu, Jiaqi Yang, Yanan Zhang, Zhibo Cao, Wenxin Ji, Dongchao Zhang, Yumin |
| Author_xml | – sequence: 1 givenname: Jiajun surname: Li fullname: Li, Jiajun organization: Zhengzhou Research Institute, Harbin Institute of Technology , China – sequence: 2 givenname: Dongchao surname: Ji fullname: Ji, Dongchao organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology , China – sequence: 3 givenname: Zhibo surname: Zhang fullname: Zhang, Zhibo organization: Zhengzhou Research Institute, Harbin Institute of Technology , China – sequence: 4 givenname: Yanan surname: Yang fullname: Yang, Yanan organization: Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials and Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , China – sequence: 5 givenname: Ruicong surname: Zhang fullname: Zhang, Ruicong organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology , China – sequence: 6 givenname: Tianyu surname: Wang fullname: Wang, Tianyu organization: School of Energy Science & Engineering, Harbin Institute of Technology , China – sequence: 7 givenname: Yumin surname: Zhang fullname: Zhang, Yumin organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology , China – sequence: 8 givenname: Wenxin surname: Cao fullname: Cao, Wenxin organization: Zhengzhou Research Institute, Harbin Institute of Technology , China – sequence: 9 givenname: Jiaqi surname: Zhu fullname: Zhu, Jiaqi organization: Zhengzhou Research Institute, Harbin Institute of Technology , China |
| BookMark | eNp9kEtLw0AURgdRsK3-BCFbFzF3HpmkS4lWhbaKVNTVkMdNTR-ZdCY1xF9vSkR3ru7mnO_CGZLjUpdIyAWFKwph6AHzpcshePME9bgHPPSBHpEBDQR1uS_gmAx-mVMytHYFQGlI6YC8z16j-cK50RVmzjN-orHoznSGzpPetFs0zhzrRpu1My12-yJzItPaOt5YpynqD2dicLfHMm0711a6tJ1nui1Tt2fkJO84PP-5I_IyuV1E9-708e4hup66KQuC2pU0ZEEiECXI2M-ZFAmHDDNBx0maZOM8DSBAzmUiJeQpj7mkUqBMQsnGYZzzEbnsd5u4zONyqVZ6b8ruo_paNpt1opABE8CBQcf6PZsaba3BXFWm2MamVRTUoaU6dFKHTkpQxVXfsvNo7xW6-tv_3_kGgrN3-Q |
| Cites_doi | 10.1080/02678292.2018.1483038 10.1002/adsu.201700164 10.1080/02678292.2018.1545264 10.34133/2022/9780290 10.1016/j.molliq.2022.118905 10.1002/sdtp.14382 10.3788/COL202220.013301 10.1080/02678292.2016.1175677 10.1109/ICEE50728.2020.9776981 10.3390/molecules25235510 10.1002/(SICI)1521-4095(200002)12:3<167::AID-ADMA167>3.0.CO;2-I 10.1016/j.carbon.2018.03.023 10.1103/PhysRevApplied.12.054037 10.1088/0256-307X/12/7/007 10.1002/pc.22734 10.1515/ntrev-2020-0064 10.1016/j.matlet.2019.126634 10.1088/0256-307X/38/1/015201 10.1021/acsami.2c23065 10.1039/C5RA24956B 10.1016/j.synthmet.2015.03.032 10.34133/2022/9867378 10.1080/02678292.2022.2046880 10.26855/jepes.2022.11.001 10.1039/D2SM00203E 10.1080/15980316.2021.1960648 10.1016/j.compscitech.2021.108866 10.1080/02678298908027783 10.1002/adma.200306196 10.1016/j.molliq.2020.114959 10.1080/15421401003799128 10.3390/cryst11010007 10.1080/02678292.2020.1849835 10.1016/j.jpcs.2021.110363 10.1080/02678292.2017.1404153 10.3390/s21217291 10.1038/s41598-022-15636-2 10.1109/JDT.2013.2294680 10.1016/j.compositesa.2021.106376 10.1039/D1DT01575C 10.1016/j.jallcom.2022.163938 10.1007/s42114-023-00697-2 10.1002/adfm.202000883 10.1364/OE.392489 10.1016/j.jmrt.2022.02.134 10.1016/j.optmat.2023.113546 10.1063/1.1850606 10.1016/j.tsf.2005.09.099 10.1364/OE.26.003394 10.3390/polym12122862 10.3390/nano12213865 10.1002/pssb.200776205 10.1016/j.molliq.2022.119895 10.1021/acsnano.0c00107 10.1039/C9NA00108E 10.1021/acsami.2c19197 |
| ContentType | Journal Article |
| Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1088/0256-307X/41/3/038501 |
| DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1741-3540 |
| EndPage | 170 |
| ExternalDocumentID | zgwlkb_e202403020 10_1088_0256_307X_41_3_038501 cpl_41_3_038501 |
| GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 U1G U5K UCJ W28 XPP ~02 AAYXX ADEQX AEINN CITATION Q-- TGP 02O 042 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NS0 NT- NT. PSX Q02 S3P T37 TCJ |
| ID | FETCH-LOGICAL-c277t-61827b4ee606a5f264b30ded419bcbd9fc707e336b660fc3a36164e6b86298af3 |
| IEDL.DBID | IOP |
| ISSN | 0256-307X |
| IngestDate | Thu May 29 04:07:19 EDT 2025 Wed Oct 01 02:18:56 EDT 2025 Sun Aug 18 16:20:26 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c277t-61827b4ee606a5f264b30ded419bcbd9fc707e336b660fc3a36164e6b86298af3 |
| PageCount | 7 |
| ParticipantIDs | crossref_primary_10_1088_0256_307X_41_3_038501 wanfang_journals_zgwlkb_e202403020 iop_journals_10_1088_0256_307X_41_3_038501 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese physics letters |
| PublicationTitleAlternate | Chinese Phys. Lett |
| PublicationTitle_FL | Chinese Physics Letters |
| PublicationYear | 2024 |
| Publisher | Chinese Physical Society and IOP Publishing Ltd |
| Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
| References | Jang (cpl_41_3_038501bib32) 2021; 212 Zheng (cpl_41_3_038501bib52) 2013; 10 Jang (cpl_41_3_038501bib35) 2022; 18 Kazmi (cpl_41_3_038501bib34) 2022; 903 Liu (cpl_41_3_038501bib42) 2018; 26 Scalia (cpl_41_3_038501bib50) 2007; 244 Tang (cpl_41_3_038501bib14) 2021; 52 Shivaraja (cpl_41_3_038501bib46) 2023; 137 Shriyan (cpl_41_3_038501bib49) 2010; 525 Yan (cpl_41_3_038501bib11) 2022; 20 Gulrez (cpl_41_3_038501bib30) 2014; 35 Shivaraja (cpl_41_3_038501bib27) 2022; 354 Liu (cpl_41_3_038501bib29) 2021; 145 Iqbal (cpl_41_3_038501bib53) 2020; 30 Pagidi (cpl_41_3_038501bib8) 2021; 322 He (cpl_41_3_038501bib9) 2020; 28 Radka (cpl_41_3_038501bib5) 2022; 18 Wang (cpl_41_3_038501bib13) 2020; 14 Zhao (cpl_41_3_038501bib44) 2021; 48 Oh (cpl_41_3_038501bib4) 2018; 2 Dierking (cpl_41_3_038501bib45) 2005; 97 Katariya Jain (cpl_41_3_038501bib47) 2019; 46 Hu (cpl_41_3_038501bib2) 2019; 46 Han (cpl_41_3_038501bib16) 2022; 12 Zhang (cpl_41_3_038501bib23) 2021; 50 Yang (cpl_41_3_038501bib55) 2019; 256 Zhang (cpl_41_3_038501bib37) 2022; 2022 Russell (cpl_41_3_038501bib24) 2006; 509 Zhang (cpl_41_3_038501bib41) 2023; 15 Tsonos (cpl_41_3_038501bib36) 2016; 6 Yangming (cpl_41_3_038501bib12) 1995; 12 Gao (cpl_41_3_038501bib7) 2023; 6 Jamil (cpl_41_3_038501bib17) 2011; 101 Li (cpl_41_3_038501bib40) 2020; 12 Bhandari (cpl_41_3_038501bib31) 2021; 21 Saeed (cpl_41_3_038501bib20) 2020; 25 Shim (cpl_41_3_038501bib38) 2016; 43 Dierking (cpl_41_3_038501bib25) 2004; 16 Kumari (cpl_41_3_038501bib39) 2020 Zhu (cpl_41_3_038501bib33) 2021; 38 Ishinabe (cpl_41_3_038501bib15) 2022; 23 Xiong (cpl_41_3_038501bib18) 2022; 2022 Jiang (cpl_41_3_038501bib3) 2019; 12 Li (cpl_41_3_038501bib43) 2023; 15 Shukla (cpl_41_3_038501bib54) 2019; 1 Katariya-Jain (cpl_41_3_038501bib1) 2022; 160 Dierking (cpl_41_3_038501bib10) 2000; 12 Rastogi (cpl_41_3_038501bib21) 2022; 6 Al-Saleh (cpl_41_3_038501bib57) 2015; 205 Meng (cpl_41_3_038501bib48) 2022; 49 Zhao (cpl_41_3_038501bib22) 2022; 12 Wu (cpl_41_3_038501bib51) 1989; 5 Lee (cpl_41_3_038501bib6) 2021; 11 Zhang (cpl_41_3_038501bib19) 2022; 363 Wu (cpl_41_3_038501bib26) 2018; 45 Zhou (cpl_41_3_038501bib56) 2018; 133 Barathi Dassan (cpl_41_3_038501bib28) 2020; 9 |
| References_xml | – volume: 46 start-page: 185 year: 2019 ident: cpl_41_3_038501bib2 publication-title: Liq. Cryst. doi: 10.1080/02678292.2018.1483038 – volume: 2 year: 2018 ident: cpl_41_3_038501bib4 publication-title: Adv. Sustainable Syst. doi: 10.1002/adsu.201700164 – volume: 46 start-page: 1191 year: 2019 ident: cpl_41_3_038501bib47 publication-title: Liq. Cryst. doi: 10.1080/02678292.2018.1545264 – volume: 2022 year: 2022 ident: cpl_41_3_038501bib37 publication-title: Research doi: 10.34133/2022/9780290 – volume: 354 year: 2022 ident: cpl_41_3_038501bib27 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2022.118905 – volume: 52 start-page: 78 year: 2021 ident: cpl_41_3_038501bib14 publication-title: SID Symposium Digest of Technical Papers doi: 10.1002/sdtp.14382 – volume: 20 year: 2022 ident: cpl_41_3_038501bib11 publication-title: Chin. Opt. Lett. doi: 10.3788/COL202220.013301 – volume: 43 start-page: 1390 year: 2016 ident: cpl_41_3_038501bib38 publication-title: Liq Cryst. doi: 10.1080/02678292.2016.1175677 – start-page: 1 year: 2020 ident: cpl_41_3_038501bib39 doi: 10.1109/ICEE50728.2020.9776981 – volume: 25 start-page: 5510 year: 2020 ident: cpl_41_3_038501bib20 publication-title: Molecules doi: 10.3390/molecules25235510 – volume: 12 start-page: 167 year: 2000 ident: cpl_41_3_038501bib10 publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(200002)12:3<167::AID-ADMA167>3.0.CO;2-I – volume: 133 start-page: 316 year: 2018 ident: cpl_41_3_038501bib56 publication-title: Carbon doi: 10.1016/j.carbon.2018.03.023 – volume: 12 year: 2019 ident: cpl_41_3_038501bib3 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.054037 – volume: 12 start-page: 408 year: 1995 ident: cpl_41_3_038501bib12 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/12/7/007 – volume: 35 start-page: 900 year: 2014 ident: cpl_41_3_038501bib30 publication-title: Polym. Compos. doi: 10.1002/pc.22734 – volume: 9 start-page: 768 year: 2020 ident: cpl_41_3_038501bib28 publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2020-0064 – volume: 256 year: 2019 ident: cpl_41_3_038501bib55 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.126634 – volume: 38 year: 2021 ident: cpl_41_3_038501bib33 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/1/015201 – volume: 15 year: 2023 ident: cpl_41_3_038501bib41 publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/acsami.2c23065 – volume: 6 start-page: 1919 year: 2016 ident: cpl_41_3_038501bib36 publication-title: RSC Adv. doi: 10.1039/C5RA24956B – volume: 205 start-page: 78 year: 2015 ident: cpl_41_3_038501bib57 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2015.03.032 – volume: 2022 year: 2022 ident: cpl_41_3_038501bib18 publication-title: Research doi: 10.34133/2022/9867378 – volume: 49 start-page: 1612 year: 2022 ident: cpl_41_3_038501bib48 publication-title: Liq Cryst. doi: 10.1080/02678292.2022.2046880 – volume: 6 start-page: 71 year: 2022 ident: cpl_41_3_038501bib21 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.26855/jepes.2022.11.001 – volume: 18 start-page: 3013 year: 2022 ident: cpl_41_3_038501bib5 publication-title: Soft Matter doi: 10.1039/D2SM00203E – volume: 23 start-page: 69 year: 2022 ident: cpl_41_3_038501bib15 publication-title: J. Inf. Disp. doi: 10.1080/15980316.2021.1960648 – volume: 212 year: 2021 ident: cpl_41_3_038501bib32 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.108866 – volume: 5 start-page: 1453 year: 1989 ident: cpl_41_3_038501bib51 publication-title: Liq. Cryst. doi: 10.1080/02678298908027783 – volume: 16 start-page: 865 year: 2004 ident: cpl_41_3_038501bib25 publication-title: Adv. Mater. doi: 10.1002/adma.200306196 – volume: 322 year: 2021 ident: cpl_41_3_038501bib8 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.114959 – volume: 525 start-page: 158 year: 2010 ident: cpl_41_3_038501bib49 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421401003799128 – volume: 11 start-page: 7 year: 2021 ident: cpl_41_3_038501bib6 publication-title: Crystals doi: 10.3390/cryst11010007 – volume: 48 start-page: 1162 year: 2021 ident: cpl_41_3_038501bib44 publication-title: Liq. Cryst. doi: 10.1080/02678292.2020.1849835 – volume: 160 year: 2022 ident: cpl_41_3_038501bib1 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2021.110363 – volume: 45 start-page: 1023 year: 2018 ident: cpl_41_3_038501bib26 publication-title: Liq. Cryst. doi: 10.1080/02678292.2017.1404153 – volume: 21 start-page: 7291 year: 2021 ident: cpl_41_3_038501bib31 publication-title: Sensors doi: 10.3390/s21217291 – volume: 101 start-page: 1544 year: 2011 ident: cpl_41_3_038501bib17 publication-title: Curr. Sci. – volume: 12 year: 2022 ident: cpl_41_3_038501bib16 publication-title: Sci. Rep. doi: 10.1038/s41598-022-15636-2 – volume: 10 start-page: 215 year: 2013 ident: cpl_41_3_038501bib52 publication-title: J. Disp. Technol. doi: 10.1109/JDT.2013.2294680 – volume: 145 year: 2021 ident: cpl_41_3_038501bib29 publication-title: Compos. Part. A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2021.106376 – volume: 50 year: 2021 ident: cpl_41_3_038501bib23 publication-title: Dalton Trans. doi: 10.1039/D1DT01575C – volume: 903 year: 2022 ident: cpl_41_3_038501bib34 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.163938 – volume: 6 start-page: 116 year: 2023 ident: cpl_41_3_038501bib7 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-023-00697-2 – volume: 30 year: 2020 ident: cpl_41_3_038501bib53 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000883 – volume: 28 year: 2020 ident: cpl_41_3_038501bib9 publication-title: Opt. Express doi: 10.1364/OE.392489 – volume: 18 start-page: 1256 year: 2022 ident: cpl_41_3_038501bib35 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.02.134 – volume: 137 year: 2023 ident: cpl_41_3_038501bib46 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2023.113546 – volume: 97 year: 2005 ident: cpl_41_3_038501bib45 publication-title: J. Appl. Phys. doi: 10.1063/1.1850606 – volume: 509 start-page: 53 year: 2006 ident: cpl_41_3_038501bib24 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.09.099 – volume: 26 start-page: 3394 year: 2018 ident: cpl_41_3_038501bib42 publication-title: Opt. Express doi: 10.1364/OE.26.003394 – volume: 12 start-page: 2862 year: 2020 ident: cpl_41_3_038501bib40 publication-title: Polymers doi: 10.3390/polym12122862 – volume: 12 start-page: 3865 year: 2022 ident: cpl_41_3_038501bib22 publication-title: Nanomaterials doi: 10.3390/nano12213865 – volume: 244 start-page: 4212 year: 2007 ident: cpl_41_3_038501bib50 publication-title: Phys. Status Solidi B Basic Res. doi: 10.1002/pssb.200776205 – volume: 363 year: 2022 ident: cpl_41_3_038501bib19 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2022.119895 – volume: 14 start-page: 3630 year: 2020 ident: cpl_41_3_038501bib13 publication-title: ACS Nano doi: 10.1021/acsnano.0c00107 – volume: 1 start-page: 1640 year: 2019 ident: cpl_41_3_038501bib54 publication-title: Nanoscale Adv. doi: 10.1039/C9NA00108E – volume: 15 start-page: 2228 year: 2023 ident: cpl_41_3_038501bib43 publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/acsami.2c19197 |
| SSID | ssj0011811 |
| Score | 2.3725324 |
| Snippet | Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain... Polymer-liquid crystals(PLCs)are common materials for smart windows.However,PLC smart windows usually require high driving voltage to maintain transparency.We... |
| SourceID | wanfang crossref iop |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 38501 |
| Title | MWCNT Doped Reverse-Mode Polymer Network Liquid Crystals with Frequency Response Property |
| URI | https://iopscience.iop.org/article/10.1088/0256-307X/41/3/038501 https://d.wanfangdata.com.cn/periodical/zgwlkb-e202403020 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 1741-3540 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011811 issn: 0256-307X databaseCode: IOP dateStart: 19840101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swEBZdymAv27q2tF03ROlTwUkcKbL9ONKFrDRpGC3NnoRlnUJo6mSOQ3F-_U6WvWWFMcaebMOdkE6y7k733YmQc2ODW6BCTyOBxwPAfVCh4wos7mquk9Av08WGIzG441eT7mQri3-2WFZbfxNfXaFgJ8IKEBe2rJa2RyaTFvdbrGVDWzaBaxefXbuuv9yMf8YRUH-Vd-bVLHUOz5-a-U07vcAelLk8qYnT6Zba6b8hcd1hhzZ5aK5z1Uw2z2o5_s-I3pLXlU1KPzn6PbID6TvyssSGJqt98m143xvd0svFEjT9ChbHAZ69Q42OF_PiETI6clhyej37vp5p2ssKtDnnK2oPeWk_c2jtAnlLPC7y2QhAlhcH5K7_-bY38KobGbykEwQ5-plhJ1AcAN2euGvQmFKsrUFzP1KJ0pFJgnYAjAklRNskLGYC3TEQCv2mKIwNOySNdJHCEaGGdXxcJRoCYzjXPIZYMCOSCL-CqC2OSbOeCbl0hTdkGTAPQ2nlJa28JPclk05ex-QC5SurX3D1N-Kzalp_MWymT_MHJaFjy74xNKNP_qXF9-SVZXTwtFPSyLM1fEB7JVcfyyX5A8ek3RQ |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tQyBeYHxMjI9hIZ6Q0iS16ySPU0u1ja1UaBPlyYrj8zStpCVNhbq_fuc4HQwJIcRbIvlOztnx3fl-dwfwzrrgFuo0MDQgEAnSOajJcUWe94wwRRo36WKnI3l4Lo4nvckGDG5zYWbz9ujv0KMvFOxF2ALi0tBpaXdlMglFHPLQhbaiOJwbuwnbTbESl8b3aXwbSyAd1vTNW5Ot83j-xOqOhtqkWTT5PKXNy4tfVM_wEeB60h5xctVZ1rpTXP9Wz_F_v2oHHra2KTvwNI9hA8sncK_BiBaLp_D19Et_dMYGszka9hkdngMD10uNjWfT1Tes2MhjytnJ5fflpWH9akW253TB3GUvG1Yetb0i2gaXS3QuElDVq2dwPvxw1j8M2s4MQdFNkpr8zbSbaIFI7k_es2RUaR4ZNCLOdKFNZoskSpBzqaWMbMFzLsktQ6nJf8rS3PJd2CpnJT4HZnk3pt1iMLFWCCNyzCW3ssjoLckiuQed9WqouS_AoZrAeZoqJzPlZKZErLjyMtuD9yRj1f6Ki78Nftsu7U-C64sf0yutsOvKv3Eyp1_8C8c3cH88GKqTo9HHl_DA8fCItVewVVdLfE0mTK33mx16A6Oc4nU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MWCNT+Doped+Reverse-Mode+Polymer+Network+Liquid+Crystals+with+Frequency+Response+Property&rft.jtitle=Chinese+physics+letters&rft.au=Li%2C+Jiajun&rft.au=Ji%2C+Dongchao&rft.au=Zhang%2C+Zhibo&rft.au=Yang%2C+Yanan&rft.date=2024-03-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=0256-307X&rft.volume=41&rft.issue=3&rft_id=info:doi/10.1088%2F0256-307X%2F41%2F3%2F038501&rft.externalDocID=cpl_41_3_038501 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwlkb-e%2Fzgwlkb-e.jpg |