MWCNT Doped Reverse-Mode Polymer Network Liquid Crystals with Frequency Response Property

Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain transparency. We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes (MWCNTs) into a reverse-mode polymer network liquid crystal (R-...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 41; no. 3; pp. 38501 - 170
Main Authors Li, Jiajun, Ji, Dongchao, Zhang, Zhibo, Yang, Yanan, Zhang, Ruicong, Wang, Tianyu, Zhang, Yumin, Cao, Wenxin, Zhu, Jiaqi
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.03.2024
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/41/3/038501

Cover

Abstract Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain transparency. We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes (MWCNTs) into a reverse-mode polymer network liquid crystal (R-PNLC). It is found that doping MWCNTs could effectively reduce the threshold voltage ( V th ) of R-PNLC from 19.0 V to 8.4 V. Due to co-orientation between MWCNT and LC molecules, the doped R-PNLC is able to maintain a high transmittance of visible light (∼ 80%) without an applied electric field. We find that doping MWCNTs could change the frequency modulation property of R-PNLC. The doped R-PNLC exhibits a wider frequency modulation range up to 40000 Hz, while the frequency modulation of the undoped R-PNLC reached to a saturation at 23000 Hz. We also tested the electromagnetic interference (EMI) shielding efficiency of R-PNLC and find that the EMI shielding efficiency could be improved by doping only 0.01 wt% MWCNTs into the system. The total shielding effectiveness of 0.01 wt% MWCNT doped R-PNLC was up to 14.91 dB in the frequency band of 5.38–8.17 GHz. This study demonstrates that the films are potentially useful for low-energy-consumption smart windows with enhanced electromagnetic shielding capability.
AbstractList Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain transparency. We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes (MWCNTs) into a reverse-mode polymer network liquid crystal (R-PNLC). It is found that doping MWCNTs could effectively reduce the threshold voltage ( V th ) of R-PNLC from 19.0 V to 8.4 V. Due to co-orientation between MWCNT and LC molecules, the doped R-PNLC is able to maintain a high transmittance of visible light (∼ 80%) without an applied electric field. We find that doping MWCNTs could change the frequency modulation property of R-PNLC. The doped R-PNLC exhibits a wider frequency modulation range up to 40000 Hz, while the frequency modulation of the undoped R-PNLC reached to a saturation at 23000 Hz. We also tested the electromagnetic interference (EMI) shielding efficiency of R-PNLC and find that the EMI shielding efficiency could be improved by doping only 0.01 wt% MWCNTs into the system. The total shielding effectiveness of 0.01 wt% MWCNT doped R-PNLC was up to 14.91 dB in the frequency band of 5.38–8.17 GHz. This study demonstrates that the films are potentially useful for low-energy-consumption smart windows with enhanced electromagnetic shielding capability.
Polymer-liquid crystals(PLCs)are common materials for smart windows.However,PLC smart windows usually require high driving voltage to maintain transparency.We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes(MWCNTs)into a reverse-mode polymer network liquid crystal(R-PNLC).It is found that doping MWCNTs could effectively reduce the threshold voltage(Vth)of R-PNLC from 19.0 V to 8.4 V.Due to co-orientation between MWCNT and LC molecules,the doped R-PNLC is able to maintain a high transmittance of visible light(~80%)without an applied electric field.We find that doping MWCNTs could change the frequency modulation property of R-PNLC.The doped R-PNLC exhibits a wider frequency modulation range up to 40000 Hz,while the frequency modulation of the undoped R-PNLC reached to a saturation at 23000 Hz.We also tested the electromagnetic interference(EMI)shielding efficiency of R-PNLC and find that the EMI shielding efficiency could be improved by doping only 0.01 wt%MWCNTs into the system.The total shielding effectiveness of 0.01 wt%MWCNT doped R-PNLC was up to 14.91 dB in the frequency band of 5.38-8.17 GHz.This study demonstrates that the films are potentially useful for low-energy-consumption smart windows with enhanced electromagnetic shielding capability.
Author Wang, Tianyu
Zhang, Ruicong
Li, Jiajun
Zhu, Jiaqi
Yang, Yanan
Zhang, Zhibo
Cao, Wenxin
Ji, Dongchao
Zhang, Yumin
Author_xml – sequence: 1
  givenname: Jiajun
  surname: Li
  fullname: Li, Jiajun
  organization: Zhengzhou Research Institute, Harbin Institute of Technology , China
– sequence: 2
  givenname: Dongchao
  surname: Ji
  fullname: Ji, Dongchao
  organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology , China
– sequence: 3
  givenname: Zhibo
  surname: Zhang
  fullname: Zhang, Zhibo
  organization: Zhengzhou Research Institute, Harbin Institute of Technology , China
– sequence: 4
  givenname: Yanan
  surname: Yang
  fullname: Yang, Yanan
  organization: Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials and Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , China
– sequence: 5
  givenname: Ruicong
  surname: Zhang
  fullname: Zhang, Ruicong
  organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology , China
– sequence: 6
  givenname: Tianyu
  surname: Wang
  fullname: Wang, Tianyu
  organization: School of Energy Science & Engineering, Harbin Institute of Technology , China
– sequence: 7
  givenname: Yumin
  surname: Zhang
  fullname: Zhang, Yumin
  organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology , China
– sequence: 8
  givenname: Wenxin
  surname: Cao
  fullname: Cao, Wenxin
  organization: Zhengzhou Research Institute, Harbin Institute of Technology , China
– sequence: 9
  givenname: Jiaqi
  surname: Zhu
  fullname: Zhu, Jiaqi
  organization: Zhengzhou Research Institute, Harbin Institute of Technology , China
BookMark eNp9kEtLw0AURgdRsK3-BCFbFzF3HpmkS4lWhbaKVNTVkMdNTR-ZdCY1xF9vSkR3ru7mnO_CGZLjUpdIyAWFKwph6AHzpcshePME9bgHPPSBHpEBDQR1uS_gmAx-mVMytHYFQGlI6YC8z16j-cK50RVmzjN-orHoznSGzpPetFs0zhzrRpu1My12-yJzItPaOt5YpynqD2dicLfHMm0711a6tJ1nui1Tt2fkJO84PP-5I_IyuV1E9-708e4hup66KQuC2pU0ZEEiECXI2M-ZFAmHDDNBx0maZOM8DSBAzmUiJeQpj7mkUqBMQsnGYZzzEbnsd5u4zONyqVZ6b8ruo_paNpt1opABE8CBQcf6PZsaba3BXFWm2MamVRTUoaU6dFKHTkpQxVXfsvNo7xW6-tv_3_kGgrN3-Q
Cites_doi 10.1080/02678292.2018.1483038
10.1002/adsu.201700164
10.1080/02678292.2018.1545264
10.34133/2022/9780290
10.1016/j.molliq.2022.118905
10.1002/sdtp.14382
10.3788/COL202220.013301
10.1080/02678292.2016.1175677
10.1109/ICEE50728.2020.9776981
10.3390/molecules25235510
10.1002/(SICI)1521-4095(200002)12:3<167::AID-ADMA167>3.0.CO;2-I
10.1016/j.carbon.2018.03.023
10.1103/PhysRevApplied.12.054037
10.1088/0256-307X/12/7/007
10.1002/pc.22734
10.1515/ntrev-2020-0064
10.1016/j.matlet.2019.126634
10.1088/0256-307X/38/1/015201
10.1021/acsami.2c23065
10.1039/C5RA24956B
10.1016/j.synthmet.2015.03.032
10.34133/2022/9867378
10.1080/02678292.2022.2046880
10.26855/jepes.2022.11.001
10.1039/D2SM00203E
10.1080/15980316.2021.1960648
10.1016/j.compscitech.2021.108866
10.1080/02678298908027783
10.1002/adma.200306196
10.1016/j.molliq.2020.114959
10.1080/15421401003799128
10.3390/cryst11010007
10.1080/02678292.2020.1849835
10.1016/j.jpcs.2021.110363
10.1080/02678292.2017.1404153
10.3390/s21217291
10.1038/s41598-022-15636-2
10.1109/JDT.2013.2294680
10.1016/j.compositesa.2021.106376
10.1039/D1DT01575C
10.1016/j.jallcom.2022.163938
10.1007/s42114-023-00697-2
10.1002/adfm.202000883
10.1364/OE.392489
10.1016/j.jmrt.2022.02.134
10.1016/j.optmat.2023.113546
10.1063/1.1850606
10.1016/j.tsf.2005.09.099
10.1364/OE.26.003394
10.3390/polym12122862
10.3390/nano12213865
10.1002/pssb.200776205
10.1016/j.molliq.2022.119895
10.1021/acsnano.0c00107
10.1039/C9NA00108E
10.1021/acsami.2c19197
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/0256-307X/41/3/038501
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1741-3540
EndPage 170
ExternalDocumentID zgwlkb_e202403020
10_1088_0256_307X_41_3_038501
cpl_41_3_038501
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
UCJ
W28
XPP
~02
AAYXX
ADEQX
AEINN
CITATION
Q--
TGP
02O
042
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NS0
NT-
NT.
PSX
Q02
S3P
T37
TCJ
ID FETCH-LOGICAL-c277t-61827b4ee606a5f264b30ded419bcbd9fc707e336b660fc3a36164e6b86298af3
IEDL.DBID IOP
ISSN 0256-307X
IngestDate Thu May 29 04:07:19 EDT 2025
Wed Oct 01 02:18:56 EDT 2025
Sun Aug 18 16:20:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-61827b4ee606a5f264b30ded419bcbd9fc707e336b660fc3a36164e6b86298af3
PageCount 7
ParticipantIDs crossref_primary_10_1088_0256_307X_41_3_038501
wanfang_journals_zgwlkb_e202403020
iop_journals_10_1088_0256_307X_41_3_038501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Phys. Lett
PublicationTitle_FL Chinese Physics Letters
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Jang (cpl_41_3_038501bib32) 2021; 212
Zheng (cpl_41_3_038501bib52) 2013; 10
Jang (cpl_41_3_038501bib35) 2022; 18
Kazmi (cpl_41_3_038501bib34) 2022; 903
Liu (cpl_41_3_038501bib42) 2018; 26
Scalia (cpl_41_3_038501bib50) 2007; 244
Tang (cpl_41_3_038501bib14) 2021; 52
Shivaraja (cpl_41_3_038501bib46) 2023; 137
Shriyan (cpl_41_3_038501bib49) 2010; 525
Yan (cpl_41_3_038501bib11) 2022; 20
Gulrez (cpl_41_3_038501bib30) 2014; 35
Shivaraja (cpl_41_3_038501bib27) 2022; 354
Liu (cpl_41_3_038501bib29) 2021; 145
Iqbal (cpl_41_3_038501bib53) 2020; 30
Pagidi (cpl_41_3_038501bib8) 2021; 322
He (cpl_41_3_038501bib9) 2020; 28
Radka (cpl_41_3_038501bib5) 2022; 18
Wang (cpl_41_3_038501bib13) 2020; 14
Zhao (cpl_41_3_038501bib44) 2021; 48
Oh (cpl_41_3_038501bib4) 2018; 2
Dierking (cpl_41_3_038501bib45) 2005; 97
Katariya Jain (cpl_41_3_038501bib47) 2019; 46
Hu (cpl_41_3_038501bib2) 2019; 46
Han (cpl_41_3_038501bib16) 2022; 12
Zhang (cpl_41_3_038501bib23) 2021; 50
Yang (cpl_41_3_038501bib55) 2019; 256
Zhang (cpl_41_3_038501bib37) 2022; 2022
Russell (cpl_41_3_038501bib24) 2006; 509
Zhang (cpl_41_3_038501bib41) 2023; 15
Tsonos (cpl_41_3_038501bib36) 2016; 6
Yangming (cpl_41_3_038501bib12) 1995; 12
Gao (cpl_41_3_038501bib7) 2023; 6
Jamil (cpl_41_3_038501bib17) 2011; 101
Li (cpl_41_3_038501bib40) 2020; 12
Bhandari (cpl_41_3_038501bib31) 2021; 21
Saeed (cpl_41_3_038501bib20) 2020; 25
Shim (cpl_41_3_038501bib38) 2016; 43
Dierking (cpl_41_3_038501bib25) 2004; 16
Kumari (cpl_41_3_038501bib39) 2020
Zhu (cpl_41_3_038501bib33) 2021; 38
Ishinabe (cpl_41_3_038501bib15) 2022; 23
Xiong (cpl_41_3_038501bib18) 2022; 2022
Jiang (cpl_41_3_038501bib3) 2019; 12
Li (cpl_41_3_038501bib43) 2023; 15
Shukla (cpl_41_3_038501bib54) 2019; 1
Katariya-Jain (cpl_41_3_038501bib1) 2022; 160
Dierking (cpl_41_3_038501bib10) 2000; 12
Rastogi (cpl_41_3_038501bib21) 2022; 6
Al-Saleh (cpl_41_3_038501bib57) 2015; 205
Meng (cpl_41_3_038501bib48) 2022; 49
Zhao (cpl_41_3_038501bib22) 2022; 12
Wu (cpl_41_3_038501bib51) 1989; 5
Lee (cpl_41_3_038501bib6) 2021; 11
Zhang (cpl_41_3_038501bib19) 2022; 363
Wu (cpl_41_3_038501bib26) 2018; 45
Zhou (cpl_41_3_038501bib56) 2018; 133
Barathi Dassan (cpl_41_3_038501bib28) 2020; 9
References_xml – volume: 46
  start-page: 185
  year: 2019
  ident: cpl_41_3_038501bib2
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2018.1483038
– volume: 2
  year: 2018
  ident: cpl_41_3_038501bib4
  publication-title: Adv. Sustainable Syst.
  doi: 10.1002/adsu.201700164
– volume: 46
  start-page: 1191
  year: 2019
  ident: cpl_41_3_038501bib47
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2018.1545264
– volume: 2022
  year: 2022
  ident: cpl_41_3_038501bib37
  publication-title: Research
  doi: 10.34133/2022/9780290
– volume: 354
  year: 2022
  ident: cpl_41_3_038501bib27
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.118905
– volume: 52
  start-page: 78
  year: 2021
  ident: cpl_41_3_038501bib14
  publication-title: SID Symposium Digest of Technical Papers
  doi: 10.1002/sdtp.14382
– volume: 20
  year: 2022
  ident: cpl_41_3_038501bib11
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL202220.013301
– volume: 43
  start-page: 1390
  year: 2016
  ident: cpl_41_3_038501bib38
  publication-title: Liq Cryst.
  doi: 10.1080/02678292.2016.1175677
– start-page: 1
  year: 2020
  ident: cpl_41_3_038501bib39
  doi: 10.1109/ICEE50728.2020.9776981
– volume: 25
  start-page: 5510
  year: 2020
  ident: cpl_41_3_038501bib20
  publication-title: Molecules
  doi: 10.3390/molecules25235510
– volume: 12
  start-page: 167
  year: 2000
  ident: cpl_41_3_038501bib10
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(200002)12:3<167::AID-ADMA167>3.0.CO;2-I
– volume: 133
  start-page: 316
  year: 2018
  ident: cpl_41_3_038501bib56
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.03.023
– volume: 12
  year: 2019
  ident: cpl_41_3_038501bib3
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.054037
– volume: 12
  start-page: 408
  year: 1995
  ident: cpl_41_3_038501bib12
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/12/7/007
– volume: 35
  start-page: 900
  year: 2014
  ident: cpl_41_3_038501bib30
  publication-title: Polym. Compos.
  doi: 10.1002/pc.22734
– volume: 9
  start-page: 768
  year: 2020
  ident: cpl_41_3_038501bib28
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2020-0064
– volume: 256
  year: 2019
  ident: cpl_41_3_038501bib55
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.126634
– volume: 38
  year: 2021
  ident: cpl_41_3_038501bib33
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/1/015201
– volume: 15
  year: 2023
  ident: cpl_41_3_038501bib41
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c23065
– volume: 6
  start-page: 1919
  year: 2016
  ident: cpl_41_3_038501bib36
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24956B
– volume: 205
  start-page: 78
  year: 2015
  ident: cpl_41_3_038501bib57
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2015.03.032
– volume: 2022
  year: 2022
  ident: cpl_41_3_038501bib18
  publication-title: Research
  doi: 10.34133/2022/9867378
– volume: 49
  start-page: 1612
  year: 2022
  ident: cpl_41_3_038501bib48
  publication-title: Liq Cryst.
  doi: 10.1080/02678292.2022.2046880
– volume: 6
  start-page: 71
  year: 2022
  ident: cpl_41_3_038501bib21
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.26855/jepes.2022.11.001
– volume: 18
  start-page: 3013
  year: 2022
  ident: cpl_41_3_038501bib5
  publication-title: Soft Matter
  doi: 10.1039/D2SM00203E
– volume: 23
  start-page: 69
  year: 2022
  ident: cpl_41_3_038501bib15
  publication-title: J. Inf. Disp.
  doi: 10.1080/15980316.2021.1960648
– volume: 212
  year: 2021
  ident: cpl_41_3_038501bib32
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.108866
– volume: 5
  start-page: 1453
  year: 1989
  ident: cpl_41_3_038501bib51
  publication-title: Liq. Cryst.
  doi: 10.1080/02678298908027783
– volume: 16
  start-page: 865
  year: 2004
  ident: cpl_41_3_038501bib25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306196
– volume: 322
  year: 2021
  ident: cpl_41_3_038501bib8
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.114959
– volume: 525
  start-page: 158
  year: 2010
  ident: cpl_41_3_038501bib49
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421401003799128
– volume: 11
  start-page: 7
  year: 2021
  ident: cpl_41_3_038501bib6
  publication-title: Crystals
  doi: 10.3390/cryst11010007
– volume: 48
  start-page: 1162
  year: 2021
  ident: cpl_41_3_038501bib44
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2020.1849835
– volume: 160
  year: 2022
  ident: cpl_41_3_038501bib1
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2021.110363
– volume: 45
  start-page: 1023
  year: 2018
  ident: cpl_41_3_038501bib26
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2017.1404153
– volume: 21
  start-page: 7291
  year: 2021
  ident: cpl_41_3_038501bib31
  publication-title: Sensors
  doi: 10.3390/s21217291
– volume: 101
  start-page: 1544
  year: 2011
  ident: cpl_41_3_038501bib17
  publication-title: Curr. Sci.
– volume: 12
  year: 2022
  ident: cpl_41_3_038501bib16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-15636-2
– volume: 10
  start-page: 215
  year: 2013
  ident: cpl_41_3_038501bib52
  publication-title: J. Disp. Technol.
  doi: 10.1109/JDT.2013.2294680
– volume: 145
  year: 2021
  ident: cpl_41_3_038501bib29
  publication-title: Compos. Part. A: Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2021.106376
– volume: 50
  year: 2021
  ident: cpl_41_3_038501bib23
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT01575C
– volume: 903
  year: 2022
  ident: cpl_41_3_038501bib34
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.163938
– volume: 6
  start-page: 116
  year: 2023
  ident: cpl_41_3_038501bib7
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-023-00697-2
– volume: 30
  year: 2020
  ident: cpl_41_3_038501bib53
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000883
– volume: 28
  year: 2020
  ident: cpl_41_3_038501bib9
  publication-title: Opt. Express
  doi: 10.1364/OE.392489
– volume: 18
  start-page: 1256
  year: 2022
  ident: cpl_41_3_038501bib35
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.02.134
– volume: 137
  year: 2023
  ident: cpl_41_3_038501bib46
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2023.113546
– volume: 97
  year: 2005
  ident: cpl_41_3_038501bib45
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1850606
– volume: 509
  start-page: 53
  year: 2006
  ident: cpl_41_3_038501bib24
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.09.099
– volume: 26
  start-page: 3394
  year: 2018
  ident: cpl_41_3_038501bib42
  publication-title: Opt. Express
  doi: 10.1364/OE.26.003394
– volume: 12
  start-page: 2862
  year: 2020
  ident: cpl_41_3_038501bib40
  publication-title: Polymers
  doi: 10.3390/polym12122862
– volume: 12
  start-page: 3865
  year: 2022
  ident: cpl_41_3_038501bib22
  publication-title: Nanomaterials
  doi: 10.3390/nano12213865
– volume: 244
  start-page: 4212
  year: 2007
  ident: cpl_41_3_038501bib50
  publication-title: Phys. Status Solidi B Basic Res.
  doi: 10.1002/pssb.200776205
– volume: 363
  year: 2022
  ident: cpl_41_3_038501bib19
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.119895
– volume: 14
  start-page: 3630
  year: 2020
  ident: cpl_41_3_038501bib13
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00107
– volume: 1
  start-page: 1640
  year: 2019
  ident: cpl_41_3_038501bib54
  publication-title: Nanoscale Adv.
  doi: 10.1039/C9NA00108E
– volume: 15
  start-page: 2228
  year: 2023
  ident: cpl_41_3_038501bib43
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c19197
SSID ssj0011811
Score 2.3725324
Snippet Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain...
Polymer-liquid crystals(PLCs)are common materials for smart windows.However,PLC smart windows usually require high driving voltage to maintain transparency.We...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 38501
Title MWCNT Doped Reverse-Mode Polymer Network Liquid Crystals with Frequency Response Property
URI https://iopscience.iop.org/article/10.1088/0256-307X/41/3/038501
https://d.wanfangdata.com.cn/periodical/zgwlkb-e202403020
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Electronic Journals
  customDbUrl:
  eissn: 1741-3540
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011811
  issn: 0256-307X
  databaseCode: IOP
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swEBZdymAv27q2tF03ROlTwUkcKbL9ONKFrDRpGC3NnoRlnUJo6mSOQ3F-_U6WvWWFMcaebMOdkE6y7k733YmQc2ODW6BCTyOBxwPAfVCh4wos7mquk9Av08WGIzG441eT7mQri3-2WFZbfxNfXaFgJ8IKEBe2rJa2RyaTFvdbrGVDWzaBaxefXbuuv9yMf8YRUH-Vd-bVLHUOz5-a-U07vcAelLk8qYnT6Zba6b8hcd1hhzZ5aK5z1Uw2z2o5_s-I3pLXlU1KPzn6PbID6TvyssSGJqt98m143xvd0svFEjT9ChbHAZ69Q42OF_PiETI6clhyej37vp5p2ssKtDnnK2oPeWk_c2jtAnlLPC7y2QhAlhcH5K7_-bY38KobGbykEwQ5-plhJ1AcAN2euGvQmFKsrUFzP1KJ0pFJgnYAjAklRNskLGYC3TEQCv2mKIwNOySNdJHCEaGGdXxcJRoCYzjXPIZYMCOSCL-CqC2OSbOeCbl0hTdkGTAPQ2nlJa28JPclk05ex-QC5SurX3D1N-Kzalp_MWymT_MHJaFjy74xNKNP_qXF9-SVZXTwtFPSyLM1fEB7JVcfyyX5A8ek3RQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tQyBeYHxMjI9hIZ6Q0iS16ySPU0u1ja1UaBPlyYrj8zStpCVNhbq_fuc4HQwJIcRbIvlOztnx3fl-dwfwzrrgFuo0MDQgEAnSOajJcUWe94wwRRo36WKnI3l4Lo4nvckGDG5zYWbz9ujv0KMvFOxF2ALi0tBpaXdlMglFHPLQhbaiOJwbuwnbTbESl8b3aXwbSyAd1vTNW5Ot83j-xOqOhtqkWTT5PKXNy4tfVM_wEeB60h5xctVZ1rpTXP9Wz_F_v2oHHra2KTvwNI9hA8sncK_BiBaLp_D19Et_dMYGszka9hkdngMD10uNjWfT1Tes2MhjytnJ5fflpWH9akW253TB3GUvG1Yetb0i2gaXS3QuElDVq2dwPvxw1j8M2s4MQdFNkpr8zbSbaIFI7k_es2RUaR4ZNCLOdKFNZoskSpBzqaWMbMFzLsktQ6nJf8rS3PJd2CpnJT4HZnk3pt1iMLFWCCNyzCW3ssjoLckiuQed9WqouS_AoZrAeZoqJzPlZKZErLjyMtuD9yRj1f6Ki78Nftsu7U-C64sf0yutsOvKv3Eyp1_8C8c3cH88GKqTo9HHl_DA8fCItVewVVdLfE0mTK33mx16A6Oc4nU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MWCNT+Doped+Reverse-Mode+Polymer+Network+Liquid+Crystals+with+Frequency+Response+Property&rft.jtitle=Chinese+physics+letters&rft.au=Li%2C+Jiajun&rft.au=Ji%2C+Dongchao&rft.au=Zhang%2C+Zhibo&rft.au=Yang%2C+Yanan&rft.date=2024-03-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=0256-307X&rft.volume=41&rft.issue=3&rft_id=info:doi/10.1088%2F0256-307X%2F41%2F3%2F038501&rft.externalDocID=cpl_41_3_038501
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwlkb-e%2Fzgwlkb-e.jpg