Photovoltaic DC arc fault detection method based on deep residual shrinkage network

Distributed photovoltaic systems have encountered unprecedented opportunities for development given their environmentally friendly nature and flexible power generation characteristics. However, numerous connecting lines and taps within the distributed photovoltaic system can be subject to insulation...

Full description

Saved in:
Bibliographic Details
Published inJOURNAL OF POWER ELECTRONICS Vol. 24; no. 11; pp. 1855 - 1867
Main Authors Zhang, Penghe, Xue, Yang, Song, Runan, Ma, Xiaochen, Sheng, Dejie
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.11.2024
전력전자학회
Subjects
Online AccessGet full text
ISSN1598-2092
2093-4718
DOI10.1007/s43236-024-00840-2

Cover

Abstract Distributed photovoltaic systems have encountered unprecedented opportunities for development given their environmentally friendly nature and flexible power generation characteristics. However, numerous connecting lines and taps within the distributed photovoltaic system can be subject to insulation issues, which will consequently cause direct current (DC) arc faults and severe electrical fire hazards. Moreover, the power semiconductor devices in the photovoltaic inverter can introduce common-mode noises to the DC current, resulting in unwanted tripping of the DC arc fault detector. The study proposes an arc fault detection method utilizing a deep residual shrinkage network (DRSN) to address this issue, thereby precisely detecting DC arc faults. A test platform for series arc faults in photovoltaic systems is built. The arc current data are collected for characteristic analysis in time and frequency domains to determine which bandwidth is preferred for the algorithm. The model’s depth is increased by introducing residual connections, enhancing its feature extraction, and improving noise reduction capabilities. The residual shrinkage network has been enhanced to prevent a computation increase from increased network depth. Introducing a convolutional auto-encoder for data dimension reduction has decreased neural network parameters, thereby improving training speed. A prototype for detecting photovoltaic DC arc faults was constructed using Raspberry Pi 4B, validating the practical application value of the proposed method. Experimental results demonstrate that the prototype for detecting photovoltaic DC arc faults successfully fulfills the real-time detection standard of the conduction test.
AbstractList Distributed photovoltaic systems have encountered unprecedented opportunities for development given their environmentally friendly nature and flexible power generation characteristics. However, numerous connecting lines and taps within the distributed photovoltaic system can be subject to insulation issues, which will consequently cause direct current (DC) arc faults and severe electrical fire hazards. Moreover, the power semiconductor devices in the photovoltaic inverter can introduce common-mode noises to the DC current, resulting in unwanted tripping of the DC arc fault detector. The study proposes an arc fault detection method utilizing a deep residual shrinkage network (DRSN) to address this issue, thereby precisely detecting DC arc faults. A test platform for series arc faults in photovoltaic systems is built. The arc current data are collected for characteristic analysis in time and frequency domains to determine which bandwidth is preferred for the algorithm. The model’s depth is increased by introducing residual connections, enhancing its feature extraction, and improving noise reduction capabilities. The residual shrinkage network has been enhanced to prevent a computation increase from increased network depth. Introducing a convolutional auto-encoder for data dimension reduction has decreased neural network parameters, thereby improving training speed. A prototype for detecting photovoltaic DC arc faults was constructed using Raspberry Pi 4B, validating the practical application value of the proposed method. Experimental results demonstrate that the prototype for detecting photovoltaic DC arc faults successfully fulfills the real-time detection standard of the conduction test.
Distributed photovoltaic systems have encountered unprecedented opportunities for development given their environmentally friendly nature and flexible power generation characteristics. However, numerous connecting lines and taps within the distributed photovoltaic system can be subject to insulation issues, which will consequently cause direct current (DC) arc faults and severe electrical fire hazards. Moreover, the power semiconductor devices in the photovoltaic inverter can introduce common-mode noises to the DC current, resulting in unwanted tripping of the DC arc fault detector. The study proposes an arc fault detection method utilizing a deep residual shrinkage network (DRSN) to address this issue, thereby precisely detecting DC arc faults. A test platform for series arc faults in photovoltaic systems is built. The arc current data are collected for characteristic analysis in time and frequency domains to determine which bandwidth is preferred for the algorithm. The model’s depth is increased by introducing residual connections, enhancing its feature extraction, and improving noise reduction capabilities. The residual shrinkage network has been enhanced to prevent a computation increase from increased network depth. Introducing a convolutional auto-encoder for data dimension reduction has decreased neural network parameters, thereby improving training speed. A prototype for detecting photovoltaic DC arc faults was constructed using Raspberry Pi 4B, validating the practical application value of the proposed method. Experimental results demonstrate that the prototype for detecting photovoltaic DC arc faults successfully fulfi lls the real-time detection standard of the conduction test. KCI Citation Count: 0
Author Song, Runan
Xue, Yang
Sheng, Dejie
Zhang, Penghe
Ma, Xiaochen
Author_xml – sequence: 1
  givenname: Penghe
  surname: Zhang
  fullname: Zhang, Penghe
  organization: China Electric Power Research Institute
– sequence: 2
  givenname: Yang
  surname: Xue
  fullname: Xue, Yang
  organization: China Electric Power Research Institute
– sequence: 3
  givenname: Runan
  surname: Song
  fullname: Song, Runan
  organization: China Electric Power Research Institute
– sequence: 4
  givenname: Xiaochen
  surname: Ma
  fullname: Ma, Xiaochen
  organization: Department of Electrical Engineering, Hebei University of Technology
– sequence: 5
  givenname: Dejie
  orcidid: 0009-0001-8939-0927
  surname: Sheng
  fullname: Sheng, Dejie
  email: 202311401004@stu.hebut.edu.cn
  organization: Department of Electrical Engineering, Hebei University of Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003136701$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kF1LwzAUhoMoOOf-gFe5FqqnSdqml2N-DQaKzuuQJulW2yUjyRT_vXH12quXc3jeA-e5QKfWWYPQVQ43OUB1GxgltMyAsAyAM8jICZoQqGnGqpyfokle1DxLC3KOZiF0DTAghHPgE_T2snXRfbohyk7huwWWXuFWHoaItYlGxc5ZvDNx6zRuZDAap1kbs8fehE4f5IDD1ne2lxuDrYlfzveX6KyVQzCzv5yi94f79eIpWz0_LhfzVaZIVcWM1k2jG0O0ohxUW-RlkdcM2qrhrWJG60JLronKS8VKDrRpOC0rAM0Ip60u6RRdj3etb0WvOuFkd8yNE70X89f1UuRQMlYRSDAZYeVdCN60Yu-7nfTfCRG_GsWoUSSN4qhRkFSiYykk2G6MFx_u4G166r_WDzrVdzE
Cites_doi 10.1109/JSEN.2020.3041737
10.1109/JPHOTOV.2019.2892189
10.1109/ACCESS.2019.2938979
10.1109/ACCESS.2022.3208115
10.3390/machines11100968
10.3390/app13169132
10.3390/en13164210
10.1109/ACCESS.2019.2909267
10.3390/en15103608
10.1109/SPEC.2016.7846061
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Korean Institute of Power Electronics 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to The Korean Institute of Power Electronics 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s43236-024-00840-2
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-4718
EndPage 1867
ExternalDocumentID oai_kci_go_kr_ARTI_10644720
10_1007_s43236_024_00840_2
GrantInformation_xml – fundername: China Electric Power Research Institute
  grantid: 5700-202155204A-0-0-00
  funderid: http://dx.doi.org/10.13039/501100015648
GroupedDBID .UV
0R~
406
5GY
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAYYP
ABAKF
ABECU
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADTPH
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AGMZJ
AGQEE
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
BGNMA
DBRKI
DPUIP
EBLON
EBS
FIGPU
FNLPD
GW5
IKXTQ
IWAJR
JDI
JZLTJ
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
OK1
P2P
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
ZMTXR
ZZE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ACYCR
ID FETCH-LOGICAL-c277t-39bbdbe2dc380cf51651940f7b8fc4edd5da8d2c16c46803bb836700d4283fd63
ISSN 1598-2092
IngestDate Sat Nov 16 03:19:20 EST 2024
Wed Oct 01 03:55:31 EDT 2025
Fri Feb 21 02:37:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Arc detection
Photovoltaic system
Deep residual shrinkage network
Photovoltaic system fault detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c277t-39bbdbe2dc380cf51651940f7b8fc4edd5da8d2c16c46803bb836700d4283fd63
Notes https://link.springer.com/article/10.1007/s43236-024-00840-2
ORCID 0009-0001-8939-0927
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10644720
crossref_primary_10_1007_s43236_024_00840_2
springer_journals_10_1007_s43236_024_00840_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
2024-11
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle JOURNAL OF POWER ELECTRONICS
PublicationTitleAbbrev J. Power Electron
PublicationYear 2024
Publisher Springer Nature Singapore
전력전자학회
Publisher_xml – name: Springer Nature Singapore
– name: 전력전자학회
References Wu, Wang (CR17) 2022; 38
Jing, Xia, Zhao, Zhou (CR2) 2023; 13
Dang, Kwak, Choi (CR4) 2023; 11
Wu, Zhang, Ran (CR3) 2021; 36
CR5
Cho, Park, Lim (CR6) 2020; 13
Liu, Dong, Liao (CR9) 2019; 7
Lu, Sirojan, Phung (CR15) 2019; 7
CR19
Wu, Li (CR11) 2018; 38
Miao, Xu, Lam (CR16) 2021; 21
Tang, Diao, Li (CR18) 2021; 42
Qing, Liu, Guo (CR10) 2021; 47
Wang, Lodhi, Yang, Qiu, Rehman, Lodhi, Tamir, Khan (CR12) 2022; 15
Hui, Wei, Gengjie (CR21) 2023; 01
Meng, Chen, Zihao (CR13) 2022; 42
Liu, Wang (CR14) 2022; 43
Pillai, Blaabjerg, Rajasekar (CR1) 2019; 9
Sung, Yoon, Bae, Chae (CR20) 2022; 10
Xiong, Ji (CR8) 2017; 43
Qing, Ji, Lu (CR7) 2017; 37
Y Wu (840_CR17) 2022; 38
SY Liu (840_CR9) 2019; 7
Q Wu (840_CR3) 2021; 36
Yu Meng (840_CR13) 2022; 42
S Tang (840_CR18) 2021; 42
DS Pillai (840_CR1) 2019; 9
X Qing (840_CR10) 2021; 47
840_CR19
X Qing (840_CR7) 2017; 37
L Jing (840_CR2) 2023; 13
840_CR5
X Xiong (840_CR8) 2017; 43
J Hui (840_CR21) 2023; 01
WC Miao (840_CR16) 2021; 21
Y Sung (840_CR20) 2022; 10
L Wang (840_CR12) 2022; 15
H-L Dang (840_CR4) 2023; 11
K-C Cho (840_CR6) 2020; 13
X Liu (840_CR14) 2022; 43
X Wu (840_CR11) 2018; 38
SB Lu (840_CR15) 2019; 7
References_xml – volume: 38
  start-page: 1
  issue: 01
  year: 2022
  end-page: 9
  ident: CR17
  article-title: DC series arc fault detection based on improved empirical mode decomposition
  publication-title: J. Jinan Univ. (Nat. Sci. Ed.)
– ident: CR19
– volume: 43
  start-page: 2967
  issue: 09
  year: 2017
  end-page: 2975
  ident: CR8
  article-title: DC arc detection method based on electromagnetic radiation characteristics
  publication-title: High Volt. Technol.
– volume: 42
  start-page: 150
  issue: 03
  year: 2021
  end-page: 160
  ident: CR18
  article-title: Research on DC series weak arc fault detection method for photovoltaic power generation system
  publication-title: J. Instrum.
– volume: 21
  start-page: 7024
  issue: 5
  year: 2021
  end-page: 7033
  ident: CR16
  article-title: DC arc-fault detection based on empirical mode decomposition of arc signatures and support vector machine
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3041737
– volume: 9
  start-page: 513
  issue: 2
  year: 2019
  end-page: 527
  ident: CR1
  article-title: A comparative evaluation of advanced fault detection approaches for PV systems
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2019.2892189
– volume: 7
  start-page: 126177
  year: 2019
  end-page: 126190
  ident: CR9
  article-title: Application of the variational mode decomposition-based time and time-frequency domain analysis on series DC arc fault detection of photovoltaic arrays
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938979
– volume: 10
  start-page: 100725
  year: 2022
  end-page: 100735
  ident: CR20
  article-title: TL–LED Net: transfer learning method for low-energy series DC arc-fault detection in photovoltaic systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3208115
– volume: 47
  start-page: 1625
  issue: 05
  year: 2021
  end-page: 1633
  ident: CR10
  article-title: Arc fault detection and location of photovoltaic system based on current spectrum integral difference
  publication-title: High Volt. Technol.
– volume: 11
  start-page: 968
  year: 2023
  ident: CR4
  article-title: Empirical filtering-based artificial intelligence learning diagnosis of series DC arc faults in time domains
  publication-title: Machines
  doi: 10.3390/machines11100968
– volume: 38
  start-page: 3546
  issue: 12
  year: 2018
  end-page: 3555+14
  ident: CR11
  article-title: Research on DC arc fault detection method and anti-interference of photovoltaic system
  publication-title: Chin. J. Electr. Eng.
– volume: 13
  start-page: 9132
  year: 2023
  ident: CR2
  article-title: An improved arc fault location method of DC distribution system based on EMD-SVD decomposition
  publication-title: Appl. Sci.
  doi: 10.3390/app13169132
– volume: 37
  start-page: 1071
  issue: 04
  year: 2017
  end-page: 1080
  ident: CR7
  article-title: Amplitude and frequency characteristics of electromagnetic radiation of series DC arc fault under low pressure
  publication-title: Chin. J. Electr. Eng.
– ident: CR5
– volume: 13
  start-page: 4210
  year: 2020
  ident: CR6
  article-title: Analysis of the DC fault current limiting characteristics of a DC superconducting fault current limiter using a transformer
  publication-title: Energies
  doi: 10.3390/en13164210
– volume: 7
  start-page: 45831
  year: 2019
  end-page: 45840
  ident: CR15
  article-title: DA-DCGAN: an effective methodology for DC series arc fault diagnosis in photovoltaic systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909267
– volume: 15
  start-page: 3608
  year: 2022
  ident: CR12
  article-title: Adaptive local mean decomposition and multiscale-fuzzy entropy-based algorithms for the detection of DC series arc faults in PV systems
  publication-title: Energies
  doi: 10.3390/en15103608
– volume: 01
  start-page: 43
  year: 2023
  end-page: 47+66
  ident: CR21
  article-title: An intelligent detection method for eries arc fault of photovoltaic array
  publication-title: Electr. Eng. Electr.
– volume: 36
  start-page: 2697
  issue: 13
  year: 2021
  end-page: 2709
  ident: CR3
  article-title: Simulation study on steady-state heat transfer characteristics of DC arc fault
  publication-title: J. Electr. Technol.
– volume: 42
  start-page: 2396
  issue: 06
  year: 2022
  end-page: 2407
  ident: CR13
  article-title: Research on enhancing the detection characteristics of photovoltaic DC arc fault based on stochastic resonance method
  publication-title: Chin. J. Electr. Eng.
– volume: 43
  start-page: 348
  issue: 01
  year: 2022
  end-page: 355
  ident: CR14
  article-title: Experimental study on detection algorithm and protection of series DC arc in photovoltaic power station
  publication-title: J. Solar Energy
– volume: 13
  start-page: 4210
  year: 2020
  ident: 840_CR6
  publication-title: Energies
  doi: 10.3390/en13164210
– volume: 42
  start-page: 150
  issue: 03
  year: 2021
  ident: 840_CR18
  publication-title: J. Instrum.
– volume: 01
  start-page: 43
  year: 2023
  ident: 840_CR21
  publication-title: Electr. Eng. Electr.
– volume: 15
  start-page: 3608
  year: 2022
  ident: 840_CR12
  publication-title: Energies
  doi: 10.3390/en15103608
– volume: 11
  start-page: 968
  year: 2023
  ident: 840_CR4
  publication-title: Machines
  doi: 10.3390/machines11100968
– volume: 37
  start-page: 1071
  issue: 04
  year: 2017
  ident: 840_CR7
  publication-title: Chin. J. Electr. Eng.
– volume: 43
  start-page: 2967
  issue: 09
  year: 2017
  ident: 840_CR8
  publication-title: High Volt. Technol.
– volume: 38
  start-page: 3546
  issue: 12
  year: 2018
  ident: 840_CR11
  publication-title: Chin. J. Electr. Eng.
– volume: 43
  start-page: 348
  issue: 01
  year: 2022
  ident: 840_CR14
  publication-title: J. Solar Energy
– volume: 9
  start-page: 513
  issue: 2
  year: 2019
  ident: 840_CR1
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2019.2892189
– volume: 38
  start-page: 1
  issue: 01
  year: 2022
  ident: 840_CR17
  publication-title: J. Jinan Univ. (Nat. Sci. Ed.)
– volume: 7
  start-page: 126177
  year: 2019
  ident: 840_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938979
– volume: 13
  start-page: 9132
  year: 2023
  ident: 840_CR2
  publication-title: Appl. Sci.
  doi: 10.3390/app13169132
– volume: 47
  start-page: 1625
  issue: 05
  year: 2021
  ident: 840_CR10
  publication-title: High Volt. Technol.
– volume: 42
  start-page: 2396
  issue: 06
  year: 2022
  ident: 840_CR13
  publication-title: Chin. J. Electr. Eng.
– volume: 21
  start-page: 7024
  issue: 5
  year: 2021
  ident: 840_CR16
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3041737
– volume: 7
  start-page: 45831
  year: 2019
  ident: 840_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909267
– ident: 840_CR19
– volume: 10
  start-page: 100725
  year: 2022
  ident: 840_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3208115
– ident: 840_CR5
  doi: 10.1109/SPEC.2016.7846061
– volume: 36
  start-page: 2697
  issue: 13
  year: 2021
  ident: 840_CR3
  publication-title: J. Electr. Technol.
SSID ssib040228808
ssj0003009991
Score 2.3381562
Snippet Distributed photovoltaic systems have encountered unprecedented opportunities for development given their environmentally friendly nature and flexible power...
SourceID nrf
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 1855
SubjectTerms Electrical Machines and Networks
Engineering
Original Article
Power Electronics
전기공학
Title Photovoltaic DC arc fault detection method based on deep residual shrinkage network
URI https://link.springer.com/article/10.1007/s43236-024-00840-2
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003136701
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Power Electronics, 2024, 24(11), , pp.1855-1867
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2093-4718
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib040228808
  issn: 1598-2092
  databaseCode: AFBBN
  dateStart: 20200101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67sIFgQBRxpAlyClkSh07cY5tmmkg1k2lE71FseNsYyid2vSy_4X_lWfnoymbpsElcqzISt77-X047wOhT2Cz81QI4XDFmEM5U04oSeAEvkh9qQLiCn3ecTr1Ty7o1wVb9Hq_O1FLm1IcybsH80r-h6swB3zVWbL_wNl2UZiAMfAXrsBhuD6Jx-dXy3IJ8gXce2lPIlvn3efp5ldpZ6pUVRPwqkW0rbVVpv8MZErd2uBjV0lY66sVOKM6bqeo4sF3jNVtYND52Y94Zsff4mg-O5s2fQ-NSC0uAWnm3LmVIDC2F5sWMrNNoaXIcvvE4jrVnboK-zTtHjsQWuffNUCx4sgauRanVjzWgxHrzERWGFuha8UTK2RWGJrByOJRV9CGmpdVH7wjZebg1nO0suwIVDAnWEc56_J7Dwr-KtZjTT3i6aBq6uhGAW6dWblTZfsv7bdTZ_tGXieXy-RmlYA38SUBd5lSgOse2iegNNw-2h8dj8fTRmBRXTyI18WRfhr30hjcpkZv_X11opZJ17z3djvG0F6xyu_9jzdmzvwFel77J3hUge0l6qniFfreBRqeRBiAhg3QcAs0XAENG6BhuNdAww3QcAs0XAPtNbo4jufRiVN343Bg7wal44VCZEKRTHrclTkb-mD8UzcPBM8lVVnGspRnRA59SX3uekJwXRzQzXRJvzzzvTeoXywL9RZhb6iIJ0JXDEVKmVQhLK0CwSgZpozQYIDshizJbVV0JWnLaxsiJkDExBAxIQP0EShnePcIDwfoc0PZpN7C60cWffekRQ_Qs-3eeI_65WqjDsFILcWHGip_AA94hOo
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photovoltaic+DC+arc+fault+detection+method+based+on+deep+residual+shrinkage+network&rft.jtitle=JOURNAL+OF+POWER+ELECTRONICS&rft.au=Penghe+Zhang&rft.au=Yang+Xue&rft.au=Runan+Song&rft.au=Xiaochen+Ma&rft.date=2024-11-01&rft.pub=%EC%A0%84%EB%A0%A5%EC%A0%84%EC%9E%90%ED%95%99%ED%9A%8C&rft.issn=1598-2092&rft.eissn=2093-4718&rft.spage=1855&rft.epage=1867&rft_id=info:doi/10.1007%2Fs43236-024-00840-2&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10644720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2092&client=summon