Bifidobacterium breve HH079 alleviates early-life antibiotic-exposed colon dysbiosis in mice by restoring the gut microbiota and gut barrier function
Antibiotic exposure in early life disrupts gut microbiota development in infants, which could result in intestinal dysfunction. This study mimicked early-life antibiotic exposure in mice by administering antibiotic water to lactating dams, and investigated the effects of a new strain of Bifidobacter...
Saved in:
Published in | Food & function Vol. 16; no. 10; pp. 3833 - 3847 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
19.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2042-6496 2042-650X 2042-650X |
DOI | 10.1039/D5FO00535C |
Cover
Abstract | Antibiotic exposure in early life disrupts gut microbiota development in infants, which could result in intestinal dysfunction. This study mimicked early-life antibiotic exposure in mice by administering antibiotic water to lactating dams, and investigated the effects of a new strain of Bifidobacterium breve HH079 ( B. breve HH079) on intestinal dysbiosis associated with early-life antibiotic exposure in pups. The results showed that B. breve HH079 treatment inhibited the proliferation of Pseudomonas and Morganella after antibiotic exposure, but promoted the abundance of Bifidobacterium and Bacteroides and acetate production. Concomitantly, the B. breve HH079 administration resulted in decreased M1 gene ( Cd86 ) and protein (TNF-α, IL-1β, LBP and iNOS) expression and increased M2 macrophage marker ( Cd206 , IL-10 and Arg1) expression in the colonic macrophages of antibiotic-exposed pups, probably by inhibiting the TLR4/NF-κB pathway. Moreover, there was increased intestinal epithelial tight junction protein (Cldn1 and Ocln) expression and the transcription of marker gene ( Lyz2 , Igha and Reg3β ) normalization involved in innate immunity. The results suggested that the new B. breve HH079 strain could alleviate early-life antibiotic-induced colon dysbiosis by regulating the gut microbiota and promoting acetate production and the subsequent M2 macrophage polarization to recover gut health. |
---|---|
AbstractList | Antibiotic exposure in early life disrupts gut microbiota development in infants, which could result in intestinal dysfunction. This study mimicked early-life antibiotic exposure in mice by administering antibiotic water to lactating dams, and investigated the effects of a new strain of Bifidobacterium breve HH079 (B. breve HH079) on intestinal dysbiosis associated with early-life antibiotic exposure in pups. The results showed that B. breve HH079 treatment inhibited the proliferation of Pseudomonas and Morganella after antibiotic exposure, but promoted the abundance of Bifidobacterium and Bacteroides and acetate production. Concomitantly, the B. breve HH079 administration resulted in decreased M1 gene (Cd86) and protein (TNF-α, IL-1β, LBP and iNOS) expression and increased M2 macrophage marker (Cd206, IL-10 and Arg1) expression in the colonic macrophages of antibiotic-exposed pups, probably by inhibiting the TLR4/NF-κB pathway. Moreover, there was increased intestinal epithelial tight junction protein (Cldn1 and Ocln) expression and the transcription of marker gene (Lyz2, Igha and Reg3β) normalization involved in innate immunity. The results suggested that the new B. breve HH079 strain could alleviate early-life antibiotic-induced colon dysbiosis by regulating the gut microbiota and promoting acetate production and the subsequent M2 macrophage polarization to recover gut health.Antibiotic exposure in early life disrupts gut microbiota development in infants, which could result in intestinal dysfunction. This study mimicked early-life antibiotic exposure in mice by administering antibiotic water to lactating dams, and investigated the effects of a new strain of Bifidobacterium breve HH079 (B. breve HH079) on intestinal dysbiosis associated with early-life antibiotic exposure in pups. The results showed that B. breve HH079 treatment inhibited the proliferation of Pseudomonas and Morganella after antibiotic exposure, but promoted the abundance of Bifidobacterium and Bacteroides and acetate production. Concomitantly, the B. breve HH079 administration resulted in decreased M1 gene (Cd86) and protein (TNF-α, IL-1β, LBP and iNOS) expression and increased M2 macrophage marker (Cd206, IL-10 and Arg1) expression in the colonic macrophages of antibiotic-exposed pups, probably by inhibiting the TLR4/NF-κB pathway. Moreover, there was increased intestinal epithelial tight junction protein (Cldn1 and Ocln) expression and the transcription of marker gene (Lyz2, Igha and Reg3β) normalization involved in innate immunity. The results suggested that the new B. breve HH079 strain could alleviate early-life antibiotic-induced colon dysbiosis by regulating the gut microbiota and promoting acetate production and the subsequent M2 macrophage polarization to recover gut health. Antibiotic exposure in early life disrupts gut microbiota development in infants, which could result in intestinal dysfunction. This study mimicked early-life antibiotic exposure in mice by administering antibiotic water to lactating dams, and investigated the effects of a new strain of HH079 ( HH079) on intestinal dysbiosis associated with early-life antibiotic exposure in pups. The results showed that HH079 treatment inhibited the proliferation of and after antibiotic exposure, but promoted the abundance of and and acetate production. Concomitantly, the HH079 administration resulted in decreased M1 gene ( ) and protein (TNF-α, IL-1β, LBP and iNOS) expression and increased M2 macrophage marker ( , IL-10 and Arg1) expression in the colonic macrophages of antibiotic-exposed pups, probably by inhibiting the TLR4/NF-κB pathway. Moreover, there was increased intestinal epithelial tight junction protein (Cldn1 and Ocln) expression and the transcription of marker gene ( , and ) normalization involved in innate immunity. The results suggested that the new HH079 strain could alleviate early-life antibiotic-induced colon dysbiosis by regulating the gut microbiota and promoting acetate production and the subsequent M2 macrophage polarization to recover gut health. Antibiotic exposure in early life disrupts gut microbiota development in infants, which could result in intestinal dysfunction. This study mimicked early-life antibiotic exposure in mice by administering antibiotic water to lactating dams, and investigated the effects of a new strain of Bifidobacterium breve HH079 (B. breve HH079) on intestinal dysbiosis associated with early-life antibiotic exposure in pups. The results showed that B. breve HH079 treatment inhibited the proliferation of Pseudomonas and Morganella after antibiotic exposure, but promoted the abundance of Bifidobacterium and Bacteroides and acetate production. Concomitantly, the B. breve HH079 administration resulted in decreased M1 gene (Cd86) and protein (TNF-α, IL-1β, LBP and iNOS) expression and increased M2 macrophage marker (Cd206, IL-10 and Arg1) expression in the colonic macrophages of antibiotic-exposed pups, probably by inhibiting the TLR4/NF-κB pathway. Moreover, there was increased intestinal epithelial tight junction protein (Cldn1 and Ocln) expression and the transcription of marker gene (Lyz2, Igha and Reg3β) normalization involved in innate immunity. The results suggested that the new B. breve HH079 strain could alleviate early-life antibiotic-induced colon dysbiosis by regulating the gut microbiota and promoting acetate production and the subsequent M2 macrophage polarization to recover gut health. |
Author | Wu, Jian-yong Huang, Qiang Lu, Zerong Zhang, Bin Gu, Zhipeng Hu, Ruibiao Liu, Feitong Xie, Zhuqing |
Author_xml | – sequence: 1 givenname: Zhipeng surname: Gu fullname: Gu, Zhipeng organization: School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China – sequence: 2 givenname: Zerong surname: Lu fullname: Lu, Zerong organization: H&H Group, H&H Research, Global Research and Technology Center, Guangzhou 510700, China – sequence: 3 givenname: Jian-yong surname: Wu fullname: Wu, Jian-yong organization: Research Institute for Future Food, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 4 givenname: Zhuqing orcidid: 0000-0002-8323-4472 surname: Xie fullname: Xie, Zhuqing organization: School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China – sequence: 5 givenname: Ruibiao surname: Hu fullname: Hu, Ruibiao organization: H&H Group, H&H Research, Global Research and Technology Center, Guangzhou 510700, China – sequence: 6 givenname: Qiang orcidid: 0000-0002-7162-1221 surname: Huang fullname: Huang, Qiang organization: School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China – sequence: 7 givenname: Feitong surname: Liu fullname: Liu, Feitong organization: H&H Group, H&H Research, Global Research and Technology Center, Guangzhou 510700, China – sequence: 8 givenname: Bin orcidid: 0000-0003-4465-4826 surname: Zhang fullname: Zhang, Bin organization: School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China, Sino-Singapore International Research Institute, Guangzhou 510555, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40143684$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0UtrHSEUB3ApKXk1m36AInRTAtPqqDPjsr1NcgOBbFrIbvBxTA0zeqtO6P0g-b715tFC3CjHH38O5xyhvRADIPSeks-UMPnluzi_JkQwsXqDDlvC26YT5Gbv5c1ld4BOcr4j9TApBznsowNOKGfdwA_RwzfvvI1amQLJLzPWCe4Br9ekl1hNE9x7VSBjUGnaNpN3gFUoXvtYvGngzyZmsNjEKQZst7nWs8_YBzx7A1hvcYJcYvLhFpdfgG-XsvtJcRegapR9LGmVkoeE3RJM8TG8Q2-dmjKcPN_H6Of52Y_Vurm6vrhcfb1qTNt3pXEdN1TIXoMgrYIe-p4qrjXnqpcMrBDEUSOppaAtky2VTvW6am0dUUyyY_TpKXeT4u-ldjrOPhuYJhUgLnlkdKBDSyTnlX58Re_ikkLtbmQtEWLnuqo-PKtFz2DHTfKzStvxZeAVnD6BOoOcE7h_hJJxt9Dx_0LZX_6vk88 |
Cites_doi | 10.1016/j.idairyj.2023.105860 10.1016/j.immuni.2023.08.005 10.3389/fmicb.2021.610080 10.1186/s12964-021-00712-3 10.1039/D3FO01257C 10.1128/mBio.01087-19 10.1007/s10753-012-9484-z 10.3390/antibiotics11020267 10.1136/pgmj.2003.011973 10.1080/19490976.2023.2291164 10.1186/s13059-021-02463-3 10.1089/omi.2011.0118 10.1016/j.isci.2023.106810 10.1186/s40168-018-0567-4 10.1021/acs.jafc.4c07683 10.1111/1471-0528.15799 10.1126/scitranslmed.aao4755 10.3390/pharmaceutics15112524 10.1186/s40168-022-01458-x 10.1016/j.immuni.2022.11.003 10.1016/j.xpro.2022.101220 10.1016/j.ijid.2016.07.006 10.1038/s41586-019-1560-1 10.1038/s41467-018-06393-w 10.1016/j.celrep.2019.03.028 10.1016/j.it.2015.06.006 10.1126/scitranslmed.abl3981 10.1016/j.clinbiochem.2015.06.023 10.1002/mnfr.201900035 10.3390/nu16081134 10.1001/jamanetworkopen.2021.5245 10.1186/s40168-024-01872-3 10.1016/j.csbj.2021.03.006 10.1111/pai.12153 10.1016/j.foodhyd.2023.109634 10.1016/j.celrep.2021.109564 10.1093/bioinformatics/btp616 10.1016/j.isci.2024.110626 10.1039/D0FO00116C 10.1126/sciadv.abc4009 10.1093/bioinformatics/btt656 10.1016/j.eclinm.2024.102428 10.1038/nmeth.3869 10.1016/j.trsl.2017.10.004 10.1186/s40168-023-01732-6 10.1038/s41467-023-37419-7 10.1007/s12602-023-10093-3 10.1007/s00394-019-02161-8 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 |
DOI | 10.1039/D5FO00535C |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oncogenes and Growth Factors Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Oncogenes and Growth Factors Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2042-650X |
EndPage | 3847 |
ExternalDocumentID | 40143684 10_1039_D5FO00535C |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 4.4 53G 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c276t-f64c1597be502ae7e771a4bb44a793ed550f1c91d1ebd39219fa7bbe5bdf0a393 |
ISSN | 2042-6496 2042-650X |
IngestDate | Wed Jul 02 05:14:57 EDT 2025 Mon Jun 30 08:09:46 EDT 2025 Sat Jul 26 01:47:22 EDT 2025 Tue Jul 01 04:46:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c276t-f64c1597be502ae7e771a4bb44a793ed550f1c91d1ebd39219fa7bbe5bdf0a393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7162-1221 0000-0002-8323-4472 0000-0003-4465-4826 |
PMID | 40143684 |
PQID | 3205518206 |
PQPubID | 2047526 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3181820944 proquest_journals_3205518206 pubmed_primary_40143684 crossref_primary_10_1039_D5FO00535C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-19 |
PublicationDateYYYYMMDD | 2025-05-19 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Xiao (D5FO00535C/cit11/1) 2021; 22 Zablocka (D5FO00535C/cit17/1) 2023; 16 Hoskin-Parr (D5FO00535C/cit39/1) 2013; 24 Kim (D5FO00535C/cit13/1) 2022; 55 Garcia (D5FO00535C/cit41/1) 2022; 11 Gu (D5FO00535C/cit26/1) 2024; 150 Li (D5FO00535C/cit23/1) 2024; 68 Coker (D5FO00535C/cit6/1) 2020; 127 Patangia (D5FO00535C/cit10/1) 2024; 12 Zheng (D5FO00535C/cit21/1) 2024; 12 Lynn (D5FO00535C/cit20/1) 2021; 36 Li (D5FO00535C/cit35/1) 2018; 191 Pärnänen (D5FO00535C/cit9/1) 2018; 9 Gerasimidis (D5FO00535C/cit46/1) 2020; 59 Li (D5FO00535C/cit3/1) 2023; 15 Lynn (D5FO00535C/cit31/1) 2022; 3 Horigome (D5FO00535C/cit12/1) 2021; 12 Alba (D5FO00535C/cit18/1) 2024; 16 Robinson (D5FO00535C/cit29/1) 2010; 26 Kirpich (D5FO00535C/cit33/1) 2015; 48 Kuntz (D5FO00535C/cit47/1) 2019; 63 Scott (D5FO00535C/cit7/1) 2018; 10 Xu (D5FO00535C/cit51/1) 2019; 51 Callahan (D5FO00535C/cit25/1) 2016; 13 Engevik (D5FO00535C/cit48/1) 2019; 10 Macpherson (D5FO00535C/cit36/1) 2015; 36 Dinleyici (D5FO00535C/cit1/1) 2018; 22 Stevens (D5FO00535C/cit38/1) 2022; 14 Shao (D5FO00535C/cit37/1) 2019; 574 Liao (D5FO00535C/cit28/1) 2014; 30 Alessandri (D5FO00535C/cit49/1) 2021; 19 Cai (D5FO00535C/cit27/1) 2024; 73 Shindo (D5FO00535C/cit42/1) 2020; 21 Yu (D5FO00535C/cit52/1) 2021; 7 Mathew (D5FO00535C/cit2/1) 2004; 80 Gu (D5FO00535C/cit24/1) 2020; 11 Liu (D5FO00535C/cit50/1) 2012; 35 Sanyang (D5FO00535C/cit14/1) 2024; 27 Huang (D5FO00535C/cit19/1) 2024; 149 Pi (D5FO00535C/cit22/1) 2023; 11 Korpela (D5FO00535C/cit15/1) 2018; 6 Tian (D5FO00535C/cit40/1) 2023; 14 Huang (D5FO00535C/cit4/1) 2024; 68 Gavzy (D5FO00535C/cit16/1) 2023; 15 Ternet (D5FO00535C/cit34/1) 2021; 19 Mubanga (D5FO00535C/cit5/1) 2021; 4 Yu (D5FO00535C/cit30/1) 2012; 16 Zhou (D5FO00535C/cit44/1) 2019; 27 Liu (D5FO00535C/cit32/1) 2016; 50 Borbet (D5FO00535C/cit8/1) 2023; 26 Kim (D5FO00535C/cit45/1) 2023; 56 Navalón-Monllor (D5FO00535C/cit43/1) 2023; 14 |
References_xml | – volume: 150 start-page: 105860 year: 2024 ident: D5FO00535C/cit26/1 publication-title: Int. Dairy J. doi: 10.1016/j.idairyj.2023.105860 – volume: 56 start-page: 2175 year: 2023 ident: D5FO00535C/cit45/1 publication-title: Immunity doi: 10.1016/j.immuni.2023.08.005 – volume: 12 start-page: 610080 year: 2021 ident: D5FO00535C/cit12/1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.610080 – volume: 19 start-page: 31 year: 2021 ident: D5FO00535C/cit34/1 publication-title: Cell Commun. Signaling doi: 10.1186/s12964-021-00712-3 – volume: 21 start-page: 100738 year: 2020 ident: D5FO00535C/cit42/1 publication-title: Biochem. Biophys. Rep. – volume: 14 start-page: 7317 year: 2023 ident: D5FO00535C/cit43/1 publication-title: Food Funct. doi: 10.1039/D3FO01257C – volume: 10 start-page: e01087 year: 2019 ident: D5FO00535C/cit48/1 publication-title: mBio doi: 10.1128/mBio.01087-19 – volume: 68 start-page: 202200777 year: 2024 ident: D5FO00535C/cit23/1 publication-title: Mol. Nutr. Food Res. – volume: 35 start-page: 1676 year: 2012 ident: D5FO00535C/cit50/1 publication-title: Inflammation doi: 10.1007/s10753-012-9484-z – volume: 11 start-page: 267 year: 2022 ident: D5FO00535C/cit41/1 publication-title: Antibiotics doi: 10.3390/antibiotics11020267 – volume: 80 start-page: 196 year: 2004 ident: D5FO00535C/cit2/1 publication-title: Postgrad. Med. J. doi: 10.1136/pgmj.2003.011973 – volume: 15 start-page: 2291164 year: 2023 ident: D5FO00535C/cit16/1 publication-title: Gut Microbes doi: 10.1080/19490976.2023.2291164 – volume: 22 start-page: 243 year: 2021 ident: D5FO00535C/cit11/1 publication-title: Genome Biol. doi: 10.1186/s13059-021-02463-3 – volume: 16 start-page: 284 year: 2012 ident: D5FO00535C/cit30/1 publication-title: OMICS doi: 10.1089/omi.2011.0118 – volume: 26 start-page: 106810 year: 2023 ident: D5FO00535C/cit8/1 publication-title: iScience doi: 10.1016/j.isci.2023.106810 – volume: 6 start-page: 182 year: 2018 ident: D5FO00535C/cit15/1 publication-title: Microbiome doi: 10.1186/s40168-018-0567-4 – volume: 73 start-page: 1642 year: 2024 ident: D5FO00535C/cit27/1 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.4c07683 – volume: 127 start-page: 217 year: 2020 ident: D5FO00535C/cit6/1 publication-title: BJOG doi: 10.1111/1471-0528.15799 – volume: 10 start-page: eaao4755 year: 2018 ident: D5FO00535C/cit7/1 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aao4755 – volume: 15 start-page: 2524 year: 2023 ident: D5FO00535C/cit3/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics15112524 – volume: 11 start-page: 19 year: 2023 ident: D5FO00535C/cit22/1 publication-title: Microbiome doi: 10.1186/s40168-022-01458-x – volume: 55 start-page: 2300 year: 2022 ident: D5FO00535C/cit13/1 publication-title: Immunity doi: 10.1016/j.immuni.2022.11.003 – volume: 3 start-page: 101220 year: 2022 ident: D5FO00535C/cit31/1 publication-title: STAR Protoc. doi: 10.1016/j.xpro.2022.101220 – volume: 50 start-page: 10 year: 2016 ident: D5FO00535C/cit32/1 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2016.07.006 – volume: 22 start-page: 6560 year: 2018 ident: D5FO00535C/cit1/1 publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 574 start-page: 117 year: 2019 ident: D5FO00535C/cit37/1 publication-title: Nature doi: 10.1038/s41586-019-1560-1 – volume: 9 start-page: 3891 year: 2018 ident: D5FO00535C/cit9/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06393-w – volume: 27 start-page: 1176 year: 2019 ident: D5FO00535C/cit44/1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.028 – volume: 36 start-page: 460 year: 2015 ident: D5FO00535C/cit36/1 publication-title: Trends Immunol. doi: 10.1016/j.it.2015.06.006 – volume: 14 start-page: eabl3981 year: 2022 ident: D5FO00535C/cit38/1 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abl3981 – volume: 48 start-page: 923 year: 2015 ident: D5FO00535C/cit33/1 publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2015.06.023 – volume: 63 start-page: 1900035 year: 2019 ident: D5FO00535C/cit47/1 publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201900035 – volume: 16 start-page: 1134 year: 2024 ident: D5FO00535C/cit18/1 publication-title: Nutrients doi: 10.3390/nu16081134 – volume: 4 start-page: e215245 year: 2021 ident: D5FO00535C/cit5/1 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2021.5245 – volume: 12 start-page: 157 year: 2024 ident: D5FO00535C/cit21/1 publication-title: Microbiome doi: 10.1186/s40168-024-01872-3 – volume: 19 start-page: 1472 year: 2021 ident: D5FO00535C/cit49/1 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.03.006 – volume: 51 start-page: 1 year: 2019 ident: D5FO00535C/cit51/1 publication-title: Exp. Mol. Med. – volume: 24 start-page: 762 year: 2013 ident: D5FO00535C/cit39/1 publication-title: Pediatr. Allergy Immunol. doi: 10.1111/pai.12153 – volume: 149 start-page: 109634 year: 2024 ident: D5FO00535C/cit19/1 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2023.109634 – volume: 36 start-page: 109564 year: 2021 ident: D5FO00535C/cit20/1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109564 – volume: 26 start-page: 139 year: 2010 ident: D5FO00535C/cit29/1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 27 start-page: 110626 year: 2024 ident: D5FO00535C/cit14/1 publication-title: iScience doi: 10.1016/j.isci.2024.110626 – volume: 11 start-page: 3245 year: 2020 ident: D5FO00535C/cit24/1 publication-title: Food Funct. doi: 10.1039/D0FO00116C – volume: 7 start-page: eabc4009 year: 2021 ident: D5FO00535C/cit52/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abc4009 – volume: 30 start-page: 923 year: 2014 ident: D5FO00535C/cit28/1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 68 start-page: 102428 year: 2024 ident: D5FO00535C/cit4/1 publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2024.102428 – volume: 13 start-page: 581 year: 2016 ident: D5FO00535C/cit25/1 publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 191 start-page: 29 year: 2018 ident: D5FO00535C/cit35/1 publication-title: Transl. Res. doi: 10.1016/j.trsl.2017.10.004 – volume: 12 start-page: 19 year: 2024 ident: D5FO00535C/cit10/1 publication-title: Microbiome doi: 10.1186/s40168-023-01732-6 – volume: 14 start-page: 1710 year: 2023 ident: D5FO00535C/cit40/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37419-7 – volume: 16 start-page: 1012 year: 2023 ident: D5FO00535C/cit17/1 publication-title: Probiotics Antimicrob. doi: 10.1007/s12602-023-10093-3 – volume: 59 start-page: 3213 year: 2020 ident: D5FO00535C/cit46/1 publication-title: Eur. J. Nutr. doi: 10.1007/s00394-019-02161-8 |
SSID | ssj0000399898 |
Score | 2.3851967 |
Snippet | Antibiotic exposure in early life disrupts gut microbiota development in infants, which could result in intestinal dysfunction. This study mimicked early-life... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | 3833 |
SubjectTerms | Acetates - metabolism Acetic acid Ampicillin - pharmacology Animals Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antibiotics Bifidobacterium breve Bifidobacterium breve - drug effects CD86 antigen Colon Colon - drug effects Colon - metabolism Colon - microbiology Colon - pathology Digestive system Dysbacteriosis Dysbiosis - drug therapy Dysbiosis - microbiology Exposure Gastrointestinal Microbiome - drug effects Gastrointestinal tract Gene Expression Regulation, Bacterial - drug effects Innate immunity Innate Immunity Recognition Intestinal Barrier Function - drug effects Intestinal microflora Intestine Juveniles Macrophages Macrophages - drug effects Macrophages - microbiology Mice Mice, Inbred C57BL Microbiota Microorganisms Neomycin - pharmacology NF-kappa B - metabolism NF-κB protein Nitric-oxide synthase Proteins Signal Transduction - drug effects TLR4 protein Toll-like receptors Tumor necrosis factor-α |
Title | Bifidobacterium breve HH079 alleviates early-life antibiotic-exposed colon dysbiosis in mice by restoring the gut microbiota and gut barrier function |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40143684 https://www.proquest.com/docview/3205518206 https://www.proquest.com/docview/3181820944 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage-GCeBNYkBGISxXIw0ma47LbqqxK99KKcorieLIbqSSlTRDL_-D_MuO8WArSwiWKxo4jZT7bn2PPN4y9clQ6SlLLMm1A-iYCsM1YJtivZKxsW0I60tkbPsz96VKcrrxVH3uio0tK-Sb5_se4kv_xKtrQrxQl-w-e7RpFA96jf_GKHsbrtXz8LkszhR1SCy5Xn4eS9JiG06kVhEPKkfI1IyY5BBIxNtdZSlsFFCNSYEsmfNsUO6CgtjUiQF3u0E7qJFk-pBT1xEu3Ou1MG1B1XpVUooWbSh3KpU0y3uqsdzRDdl7uEn8WSoPrSiEd96n0rshFtoFm6qRDQbURtkVv-6htpwhi89Mv5lWzrXJRfWnn3ubXhePRrnszQOoRzqHYIKSIq3oy2rftje-WS_KoyksLLUyT9LNYu3M_P4smy9ksWoxXi5vswAmQUg3YwdF48X7W_XzDZihvJiUebF_XSte64du--atk5S8rEM1EFnfY7WYJwY9qPNxlNyC_x4yTDEr-mjc6r2s-b9Ms3Gc_fsMJ1zjhGie8xwnvccL3ccI1TniHE57lnHDC5SXvcMIRJxxBwXucYFNKmxqc8BYKD9hyMl4cT80mHYeZ4FcszdQXCZLfQIJnOTEEEAR2LKQUIsZBHhSudVM7CW1lg1RIu-0wjQOJtaVKrdgN3YdskBc5PGYc8FnwfJUg3RWAi1SpcJXnhTEliPQgMNjL9rtHm1p1JdKnJdwwOvEmZ9o7xwY7bF0SNb1yF7mORSKDjuUb7EVXjGMmbYTFORQV1kFaizVCIQz2qHZl9xpBgpf-SDy5xtNP2a0e1odsUG4reIYctZTPG8T9BMojmXE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifidobacterium+breve+HH079+alleviates+early-life+antibiotic-exposed+colon+dysbiosis+in+mice+by+restoring+the+gut+microbiota+and+gut+barrier+function&rft.jtitle=Food+%26+function&rft.au=Gu%2C+Zhipeng&rft.au=Lu%2C+Zerong&rft.au=Wu%2C+Jian-Yong&rft.au=Xie%2C+Zhuqing&rft.date=2025-05-19&rft.issn=2042-650X&rft.eissn=2042-650X&rft_id=info:doi/10.1039%2Fd5fo00535c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |