Related Applications of Deep Learning Algorithms in Medical Image Fusion Systems

As the continuous advancement of medical technology, image fusion technology has also been used in it. However, current medical image fusion systems still have drawbacks such as low image clarity, low accuracy, and slow computing speed. To address this drawback, this study utilized speeded up robust...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 16; no. 3
Main Authors Sun, Hua, Zhao, Li
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2025
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
2156-5570
DOI10.14569/IJACSA.2025.0160338

Cover

Abstract As the continuous advancement of medical technology, image fusion technology has also been used in it. However, current medical image fusion systems still have drawbacks such as low image clarity, low accuracy, and slow computing speed. To address this drawback, this study utilized speeded up robust features image recognition algorithms to optimize deep residual network algorithms and proposed an optimization algorithm based on residual network deep learning algorithms. Based on this optimization algorithm, a medical image fusion system was constructed. Comparative experiments were organized on the improved algorithm, and the experiment outcomes denoted that the accuracy of image feature extraction was 0.98, the average time for feature extraction was 0.12 seconds, and the extraction capability was significantly better than that of the comparative algorithms HPF-CNN, PSO and PCA-CNN. Subsequently, experiments were conducted on the image fusion system, and the outcomes denoted that the accuracy and clarity of the fused images were 0.98 and 0.97, respectively, which were superior to other systems. The above outcomes indicate that the proposed medical image fusion system based on optimized deep learning algorithms can not only improve the speed of image fusion, but also enhance the clarity and accuracy of fused images. This study not only improves the accuracy of medical diagnosis, but also provides a theoretical basis for the field of image fusion.
AbstractList As the continuous advancement of medical technology, image fusion technology has also been used in it. However, current medical image fusion systems still have drawbacks such as low image clarity, low accuracy, and slow computing speed. To address this drawback, this study utilized speeded up robust features image recognition algorithms to optimize deep residual network algorithms and proposed an optimization algorithm based on residual network deep learning algorithms. Based on this optimization algorithm, a medical image fusion system was constructed. Comparative experiments were organized on the improved algorithm, and the experiment outcomes denoted that the accuracy of image feature extraction was 0.98, the average time for feature extraction was 0.12 seconds, and the extraction capability was significantly better than that of the comparative algorithms HPF-CNN, PSO and PCA-CNN. Subsequently, experiments were conducted on the image fusion system, and the outcomes denoted that the accuracy and clarity of the fused images were 0.98 and 0.97, respectively, which were superior to other systems. The above outcomes indicate that the proposed medical image fusion system based on optimized deep learning algorithms can not only improve the speed of image fusion, but also enhance the clarity and accuracy of fused images. This study not only improves the accuracy of medical diagnosis, but also provides a theoretical basis for the field of image fusion.
Author Zhao, Li
Sun, Hua
Author_xml – sequence: 1
  givenname: Hua
  surname: Sun
  fullname: Sun, Hua
– sequence: 2
  givenname: Li
  surname: Zhao
  fullname: Zhao, Li
BookMark eNplkEtPwzAQhC1UJErpP-BgiXOKH3HsHKPyKioCUZC4WZvEKakSJ9iJUP89oekFsZfdw8xo5ztHE9tYg9AlJQsaiii-Xj0my02yYISJBaER4VydoCmjIgqEkGRyuFVAifw4Q3Pvd2QYHrNI8Sl6eTUVdCbHSdtWZQZd2ViPmwLfGNPitQFnS7vFSbVtXNl91h6XFj-ZfJBWeFXD1uC73g8mvNn7ztT-Ap0WUHkzP-4Zer-7fVs-BOvn-9UyWQcZk1EXFDwFosIUihxywo0SheSxirIMBKW5iVPDs9wIoRgJ04jyXFKZCi6BCJBDxxkSY25vW9h_Q1Xp1pU1uL2mRB_I6HIHmQf9S0YfyQy-q9HXuuarN77Tu6Z3dnhVcxozLqSSbFCFoypzjffOFP_DR-x_w38Arz11kQ
ContentType Journal Article
Copyright 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.14569/IJACSA.2025.0160338
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10.14569/ijacsa.2025.0160338
10_14569_IJACSA_2025_0160338
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
3V.
7XB
8FE
8FG
8FK
COVID
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c276t-f3ba084bafdad03e85f73986cca511de9be3cde558204b613d717b537a05a7033
IEDL.DBID BENPR
ISSN 2158-107X
2156-5570
IngestDate Tue Aug 19 23:28:23 EDT 2025
Fri Jul 25 20:19:18 EDT 2025
Wed Oct 01 06:36:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-f3ba084bafdad03e85f73986cca511de9be3cde558204b613d717b537a05a7033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3192357872?pq-origsite=%requestingapplication%&accountid=15518
PQID 3192357872
PQPubID 5444811
ParticipantIDs unpaywall_primary_10_14569_ijacsa_2025_0160338
proquest_journals_3192357872
crossref_primary_10_14569_IJACSA_2025_0160338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2025
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.281113
Snippet As the continuous advancement of medical technology, image fusion technology has also been used in it. However, current medical image fusion systems still have...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Computer science
Computer vision
Deep learning
Experiments
Feature extraction
Machine learning
Medical diagnosis
Medical imaging
Medical research
Neural networks
Optimization
Optimization algorithms
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09b9swED2kztCpSb9QF0nBoSttSZQoaRSSGkmAGgZaF-5EkOIxTeNIRm2jaH9Af3ePEdW4yJQhmxbxQLzj8R2P9wjwvsYyQZtonkib8NRizjXGgpcuTqwwMjLozzs-TuXZPL1YZIs96O-qEulZ666Cf-rF4ltt1-Mvt-s0ltNWjGd6Rbk7LdLbu2JoVbVT51WtU6eIKxW0SS9VtbxsKcn-dkNJp3VPYF9mRNkHsD-fzqqv_uE5yl-4l6Hqvr3Uab4ILXbELcrx1Xddr71AUeL1PWUkfCfL7hZ2x0ufbpuV_vVTL5c7W9TkAP70jT7dzZTr0XZjRvXv-7qPjzv7Q3gWSC6rOq98DnvYvICD_gEJFuLJS5gFA2zXAGsd8wZYb4DdGWBXDQulJXZ-Q6GQTbb-uI8F4fVXMJ98-HxyxsMTD7xOcrnhThgdFanRzmobCSwyl4uykORXxAQtlgZFbTHLiKikhqiHpfTTZCLXUaYpWInXMGjaBt8AK13ujEsRidKlNiWcY1mgiDObWuJVxRB4j5padUoeymdAHmV1flGdfKqUR1kFlIdw1EOrwrpeK-EJsQ9yyRBG_-C-P17nNf-N9_ahPxzBYPNji8dEejbmXXDZvzv4CBo
  priority: 102
  providerName: Unpaywall
Title Related Applications of Deep Learning Algorithms in Medical Image Fusion Systems
URI https://www.proquest.com/docview/3192357872
http://thesai.org/Downloads/Volume16No3/Paper_38-Related_Applications_of_Deep_Learning_Algorithms.pdf
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: ADMLS
  dateStart: 20231101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB1BOcCFHVEoyAeuhtROnOSAUFjKIlFVQKVyiux4wqI2LbQV4u-xWweKkDjlElnysz3zZux5A3CQYcxQM0mZ0Iz6GkMqsc5pnNeZ5kp4Cm2-47Yprtr-TSfozEGzrIWxzypLmzgx1Lqf2Rz5EbdUxG4vdjJ4o7ZrlL1dLVtoSNdaQR9PJMbmYYFZZawKLJxeNFt331kXz9ABMdHmNK7O6pqGHVdPZ4hEfHR9k5zdJyZqZFbMU3jclq3M-qsfEro4Lgby80N2uzP-qLEKy45IkmS68mswh8U6rJRNGog7sxvQmjx3Q02Smatq0s_JOeKAOHnVJ5J0n8xsR8-9IXkpiLu-Idc9Y25IY2xTasSJm29Cu3HxcHZFXRsFmrFQjGjOlfQiX8lcS-1xjII85HEkzNoZtqUxVsgzjUFgyICvjHvXJsRTAQ-lF0hjEPgWVIp-gdtA4jzMVe4jGtrkaz-IRV1EyOuB9rXhLlEVaAlWOpiqZaQ2yrDgplNwUwtu6sCtQq1ENHVnZ5j-rHQVDr9R_jvey6vMhvLXeDv_j7cLS_bvaQalBpXR-xj3DKcYqX2YjxqX-267mG-72UoevwCElsqZ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RONBL31UDtPWhPbpsbK9394CqLRAlPCLUgpTb1l7PUqqwCSQR4s_x2xgnXh6q1Bs_YEfaz-OZb8b2NwBfSswEOmG40E5w5TDhBtuSZ1VbOGl1ZNH3Ow77unui9gbxYAlumrcw_lplExPngdqNSt8j35Seinj3Et_HF9xPjfKnq80IDRNGK7itucRYeNixj9dXVMJNtno7tN5fhejsHm93eZgywEuR6CmvpDVRqqypnHGRxDSuEpmlmn6NyIjDzKIsHcYx5UplKfs5qoBsLBMTxYb2iyS7z2BFSZVR8bfyY7d_9POuyxMR_dBzLVBKrV5HNRmE93tEXLLN3l6-_SunKlV48VBNxtLH-fGe9K7O6rG5vjLD4YP813kFLwJxZfnC017DEtZv4GUzFIKFGPEWjubX69Cx_MHROBtVbAdxzIKc6ynLh6eE7vTP-YSd1SwcF7HeOYU31pn5Fh4LYurv4ORJAH0Py_Woxg_AsiqpbKUQiaYpp-JMt3WKsh075YgrpS3gDVjFeKHOUfiqxoNbLMAtPLhFALcFGw2iRdirk-Les1rw7Q7lf-2d_TXlxDyyt_Z_e59htXt8eFAc9Pr76_Dcf7no3mzA8vRyhh-Jz0ztp-A0DH4_tZ_eAiKGBXY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09b9swED2kztCpSb9QF0nBoSttSZQoaRSSGkmAGgZaF-5EkOIxTeNIRm2jaH9Af3ePEdW4yJQhmxbxQLzj8R2P9wjwvsYyQZtonkib8NRizjXGgpcuTqwwMjLozzs-TuXZPL1YZIs96O-qEulZ666Cf-rF4ltt1-Mvt-s0ltNWjGd6Rbk7LdLbu2JoVbVT51WtU6eIKxW0SS9VtbxsKcn-dkNJp3VPYF9mRNkHsD-fzqqv_uE5yl-4l6Hqvr3Uab4ILXbELcrx1Xddr71AUeL1PWUkfCfL7hZ2x0ufbpuV_vVTL5c7W9TkAP70jT7dzZTr0XZjRvXv-7qPjzv7Q3gWSC6rOq98DnvYvICD_gEJFuLJS5gFA2zXAGsd8wZYb4DdGWBXDQulJXZ-Q6GQTbb-uI8F4fVXMJ98-HxyxsMTD7xOcrnhThgdFanRzmobCSwyl4uykORXxAQtlgZFbTHLiKikhqiHpfTTZCLXUaYpWInXMGjaBt8AK13ujEsRidKlNiWcY1mgiDObWuJVxRB4j5padUoeymdAHmV1flGdfKqUR1kFlIdw1EOrwrpeK-EJsQ9yyRBG_-C-P17nNf-N9_ahPxzBYPNji8dEejbmXXDZvzv4CBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Related+Applications+of+Deep+Learning+Algorithms+in+Medical+Image+Fusion+Systems&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Sun%2C+Hua&rft.au=Zhao%2C+Li&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=3&rft_id=info:doi/10.14569%2FIJACSA.2025.0160338&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_0160338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon