A statistical model of neural network learning via the Cramer–Rao lower bound

The neural networks (NN) remain as black boxes, albeit their quite successful stories everywhere. It is mainly because they provide only the complex structure of the underlying network with a huge validation data set whenever their serendipities reveal themselves. In this paper, we propose the stati...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Statistical Society Vol. 50; no. 3; pp. 756 - 772
Main Authors Kim, Tae Yoon, Park, Inho
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.09.2021
한국통계학회
Subjects
Online AccessGet full text
ISSN1226-3192
2005-2863
DOI10.1007/s42952-021-00122-8

Cover

Abstract The neural networks (NN) remain as black boxes, albeit their quite successful stories everywhere. It is mainly because they provide only the complex structure of the underlying network with a huge validation data set whenever their serendipities reveal themselves. In this paper, we propose the statistical NN learning model related to the concept of universal Turing computer for regression predictive model. Based on this model, we define ’statistically successful NN (SSNN) learning.’ This is mainly done by calculating the well-known Cramer–Rao lower bound for the averaged square error (ASE) of NN learning. Using such formal definition, we propose an ASE-based NN learning (ANL) algorithm. The ANL algorithm not only implements the Cramer–Rao lower bound successfully but also presents an effective way to figure out a complicated geometry of ASE over hyper-parameter space for NN. This enables the ANL to be free of huge validation data set. Simple numerical simulation and real data analysis are done to evaluate performance of the ANL and present how to implement it.
AbstractList The neural networks (NN) remain as black boxes, albeit their quite successful stories everywhere. It is mainly because they provide only the complex structure of the underlying network with a huge validation data set whenever their serendipities reveal themselves. In this paper, we propose the statistical NN learning model related to the concept of universal Turing computer for regression predictive model. Based on this model, we define ’statistically successful NN (SSNN) learning.’ This is mainly done by calculating the well-known Cramer–Rao lower bound for the averaged square error (ASE) of NN learning. Using such formal definition, we propose an ASE-based NN learning (ANL) algorithm. The ANL algorithm not only implements the Cramer–Rao lower bound successfully but also presents an effective way to figure out a complicated geometry of ASE over hyper-parameter space for NN. This enables the ANL to be free of huge validation data set. Simple numerical simulation and real data analysis are done to evaluate performance of the ANL and present how to implement it.
The neural networks (NN) remain as black boxes, albeit their quite successful stories everywhere. It is mainly because they provide only the complex structure of the underlying network with a huge validation data set whenever their serendipities reveal themselves. In this paper, we propose the statistical NN learning model related to the concept of universal Turing computer for regression predictive model. Based on this model, we define ’statistically successful NN (SSNN) learning.’ This is mainly done by calculating the well-known Cramer–Rao lower bound for the averaged square error (ASE) of NN learning. Using such formal definition, we propose an ASE-based NN learning (ANL) algorithm. The ANL algorithm not only implements the Cramer–Rao lower bound successfully but also presents an effective way to figure out a complicated geometry of ASE over hyper-parameter space for NN. This enables the ANL to be free of huge validation data set. Simple numerical simulation and real data analysis are done to evaluate performance of the ANL and present how to implement it. KCI Citation Count: 0
Author Kim, Tae Yoon
Park, Inho
Author_xml – sequence: 1
  givenname: Tae Yoon
  orcidid: 0000-0002-9869-8632
  surname: Kim
  fullname: Kim, Tae Yoon
  email: tykim@kmu.ac.kr
  organization: Department of Statistics, Keimyung University
– sequence: 2
  givenname: Inho
  surname: Park
  fullname: Park, Inho
  organization: Department of Statistics, Pukyong National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002762876$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1OwzAQRi1UJErhAqy8ZWGYOHYSL6uKn0qVKlVlbTnOpKRNbWSnVOy4AzfkJISGNatPM3rfSPMuych5h4TcJHCXAOT3UXAlOQOeMICEc1ackTEHkIwXWToi436XsTRR_IJcxrgFyETCYUyWUxo70zWxa6xp6d5X2FJfU4eH0M8Ou6MPO9qiCa5xG_reGNq9Ip0Fs8fw_fm1Mp62_oiBlv7gqityXps24vVfTsjL48N69swWy6f5bLpgludZxypllbBSQYW8lEaWBk2eZrlBUVqTCotQSiEqQG6KXAHKOrVVjorzHERVpxNyO9x1odY722hvmlNuvN4FPV2t51oVWaEy2bN8YG3wMQas9Vto9iZ86AT0rz496NO9Pn3Sp4u-lA6l2MNug0Fv_SG4_qf_Wj9kbnXs
Cites_doi 10.1016/j.amc.2009.04.057
10.1016/0893-6080(89)90020-8
10.1007/978-1-4614-7138-7
10.1007/978-0-387-21706-2
10.1109/TPAMI.2018.2876413
10.1006/jcss.1995.1013
10.32614/RJ-2010-006
ContentType Journal Article
Copyright Korean Statistical Society 2021
Copyright_xml – notice: Korean Statistical Society 2021
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42952-021-00122-8
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2005-2863
EndPage 772
ExternalDocumentID oai_kci_go_kr_ARTI_9868965
10_1007_s42952_021_00122_8
GroupedDBID --K
--M
.UV
.~1
0R~
1B1
1~.
1~5
2JY
4.4
406
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AAAKF
AACDK
AACTN
AAEDT
AAHNG
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AAQFI
AASML
AATNV
AAXUO
ABAKF
ABAOU
ABECU
ABMQK
ABTEG
ABTKH
ABTMW
ABUCO
ABWVN
ABXDB
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACOKC
ACPIV
ACRPL
ACZOJ
ADBBV
ADEZE
ADMUD
ADNMO
ADTPH
ADYFF
AEFQL
AEKER
AEMSY
AENEX
AESKC
AFTJW
AGHFR
AGMZJ
AGQEE
AGUBO
AGYEJ
AIGIU
AIGVJ
AILAN
AITUG
AJOXV
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMXSW
ARUGR
BGNMA
BLXMC
CS3
DPUIP
DU5
EBLON
EBS
EJD
EO9
EP2
EP3
F5P
FDB
FIGPU
FIRID
FNLPD
FNPLU
GBLVA
HAMUX
HZ~
IKXTQ
IWAJR
J1W
JZLTJ
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q38
RIG
ROL
RPZ
RSV
SDF
SDG
SES
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
SSZ
T5K
UOJIU
UTJUX
ZMTXR
~G-
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
EFLBG
~HD
AAFGU
AAYFA
ABFGW
ABKAS
ABYKQ
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJBFU
AJDOV
AKQUC
ID FETCH-LOGICAL-c276t-d9c94c590de2b5a5baea7367ae4bca34ce0b544d0e2a8790e5f3cd7e922704df3
ISSN 1226-3192
IngestDate Tue Nov 21 21:04:29 EST 2023
Wed Oct 01 02:09:30 EDT 2025
Fri Feb 21 02:48:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Validation
Cramer–Rao lower bound
68T05
ANL algorithm
Statistical NN learning model
Statistically successful NN learning
68Q32
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c276t-d9c94c590de2b5a5baea7367ae4bca34ce0b544d0e2a8790e5f3cd7e922704df3
ORCID 0000-0002-9869-8632
PageCount 17
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9868965
crossref_primary_10_1007_s42952_021_00122_8
springer_journals_10_1007_s42952_021_00122_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
2021-09
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of the Korean Statistical Society
PublicationTitleAbbrev J. Korean Stat. Soc
PublicationYear 2021
Publisher Springer Singapore
한국통계학회
Publisher_xml – name: Springer Singapore
– name: 한국통계학회
References Günther, Fritsch (CR3) 2010; 2
James, Witten, Hastie, Tibshirani (CR5) 2013
Hornik, Stichcombe, White (CR4) 1989; 2
Venables, Ripley (CR11) 2002
CR8
Bergmeir, Benítez (CR1) 2012; 42
Shao (CR9) 1998
Delvenne (CR2) 2009; 4
Krogh, Hertz (CR6) 1992; 4
Liao, Drummond, Reid, Carneiro (CR7) 2020; 42
Siegelmann, Sontag (CR10) 1995; 50
K Hornik (122_CR4) 1989; 2
C Bergmeir (122_CR1) 2012; 42
J-C Delvenne (122_CR2) 2009; 4
F Günther (122_CR3) 2010; 2
A Krogh (122_CR6) 1992; 4
Z Liao (122_CR7) 2020; 42
HT Siegelmann (122_CR10) 1995; 50
122_CR8
G James (122_CR5) 2013
J Shao (122_CR9) 1998
WN Venables (122_CR11) 2002
References_xml – volume: 4
  start-page: 1368
  year: 2009
  end-page: 1374
  ident: CR2
  article-title: What is a universal computing machine?
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.04.057
– volume: 4
  start-page: 950
  year: 1992
  end-page: 957
  ident: CR6
  article-title: A simple weight decay can improve generalization
  publication-title: Advances in Neural Information Processing Systems
– volume: 42
  start-page: 1
  year: 2012
  end-page: 26
  ident: CR1
  article-title: Neural networks in R using the Stuttgart neural network simulator: RSNNS
  publication-title: Journal of Statistical Software
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: CR4
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– year: 2013
  ident: CR5
  publication-title: An Introduction to Statistical Learning with Applications in R
  doi: 10.1007/978-1-4614-7138-7
– ident: CR8
– year: 2002
  ident: CR11
  publication-title: Modern Applied Statistics with S
  doi: 10.1007/978-0-387-21706-2
– volume: 42
  start-page: 15
  year: 2020
  end-page: 26
  ident: CR7
  article-title: Approximate Fisher information matrix to characterise the training of deep neural networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2876413
– year: 1998
  ident: CR9
  publication-title: Mathematical Statistics
– volume: 50
  start-page: 132
  year: 1995
  end-page: 150
  ident: CR10
  article-title: On the computatonal power of neural nets
  publication-title: Journal of Computer and System Science
  doi: 10.1006/jcss.1995.1013
– volume: 2
  start-page: 30
  year: 2010
  end-page: 38
  ident: CR3
  article-title: Neuralnet: Training of neural networks R foundation for statistical computing
  publication-title: The R Journal
  doi: 10.32614/RJ-2010-006
– ident: 122_CR8
– volume: 2
  start-page: 30
  year: 2010
  ident: 122_CR3
  publication-title: The R Journal
  doi: 10.32614/RJ-2010-006
– volume: 2
  start-page: 359
  year: 1989
  ident: 122_CR4
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 4
  start-page: 950
  year: 1992
  ident: 122_CR6
  publication-title: Advances in Neural Information Processing Systems
– volume-title: Modern Applied Statistics with S
  year: 2002
  ident: 122_CR11
  doi: 10.1007/978-0-387-21706-2
– volume-title: An Introduction to Statistical Learning with Applications in R
  year: 2013
  ident: 122_CR5
  doi: 10.1007/978-1-4614-7138-7
– volume: 4
  start-page: 1368
  year: 2009
  ident: 122_CR2
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.04.057
– volume-title: Mathematical Statistics
  year: 1998
  ident: 122_CR9
– volume: 50
  start-page: 132
  year: 1995
  ident: 122_CR10
  publication-title: Journal of Computer and System Science
  doi: 10.1006/jcss.1995.1013
– volume: 42
  start-page: 15
  year: 2020
  ident: 122_CR7
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2876413
– volume: 42
  start-page: 1
  year: 2012
  ident: 122_CR1
  publication-title: Journal of Statistical Software
SSID ssj0064120
ssib023362471
Score 2.1947615
Snippet The neural networks (NN) remain as black boxes, albeit their quite successful stories everywhere. It is mainly because they provide only the complex structure...
SourceID nrf
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 756
SubjectTerms Applied Statistics
Bayesian Inference
Mathematics and Statistics
Research Article
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
통계학
Title A statistical model of neural network learning via the Cramer–Rao lower bound
URI https://link.springer.com/article/10.1007/s42952-021-00122-8
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002762876
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Korean Statistical Society, 2021, 50(3), , pp.756-772
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2005-2863
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064120
  issn: 1226-3192
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 2005-2863
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064120
  issn: 1226-3192
  databaseCode: .~1
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoufSCeIrlJQtxC1mlfsTxcVWBWhAP0a1UTpaTOG1VlKBs4NBDxX_gH_aXdPzIo1qKKJfsyuv1Zj1fZsb2NzMIvZKCclbxNOaZYDEDgx1rnbKY6IomZSXBibb7HR8-prsH7N0hPxwpQS66pMvnxdkf40r-R6rQBnK1UbI3kOwwKDTAe5AvXEHCcP0nGS_sTkDnUi3bIBBb1MYRM4zLpVF7hndfGOIo-nminZ-5YwlZbU9zoF90E32zxdKi3NZYusZdtV9837R2435_8qOB9Tke5Tt8LbWJvjbjCf_nwMjeq4-b6T4D2R6IVFf3GaN9W6ob1gZmojXBhwNl7ovazY1rcylOSRa0V1C1PsdsgBSd6E3B04kJFr6az5p294SOFZhQTmJ3i_ZgMM5GWzYwDIdszK6zgs7KdVbZBrpNwALYMh_z80G3EQqWnImBHpQyn9Jz-Gsh4MqFXa7dwBWnZqNuq7VzdeeuLO-iO0FweOFBcw_dMvV9tDVIbvUAfVrgCXqwQw9uKuzRgwN6cI8eDOjBAALs0XPx6zfgBjvcYIebh-jg7Zvlzm4cymvEBUxAF5eykKzgMikNybnmuTZa0FRow_JCU1aYJOeMlYkhOhMyMbyiRSmMJEQkrKzoI7RZN7V5jHCSag0f5AYWAExuFzmFVUIGw8kKHO6UzFDUz4_67rOoqOslNEMvYQrVaXGibPJz-3rUqNNWwRJvT4H6yGTKZ-h1P8MqPJKrv4z55Gbdn6Kt8Rl4hja79od5Dt5nl79wsLkEqiV8lw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+statistical+model+of+neural+network+learning+via+the+Cramer%E2%80%93Rao+lower+bound&rft.jtitle=Journal+of+the+Korean+Statistical+Society&rft.au=Kim%2C+Tae+Yoon&rft.au=Park%2C+Inho&rft.date=2021-09-01&rft.pub=Springer+Singapore&rft.issn=1226-3192&rft.eissn=2005-2863&rft.volume=50&rft.issue=3&rft.spage=756&rft.epage=772&rft_id=info:doi/10.1007%2Fs42952-021-00122-8&rft.externalDocID=10_1007_s42952_021_00122_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3192&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3192&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3192&client=summon