Enhanced Emotion Recognition Using a Hybrid Autoencoder-LSTM Model Optimized with a Hybrid ACO-WOA Algorithm for Hyperparameter Tuning
Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion recognition regarding the Hybrid Autoencoder-Long Short-Term Memory (LSTM) model and the newly developed hybrid approach of the Ant Colony Opt...
Saved in:
| Published in | International journal of advanced computer science & applications Vol. 16; no. 4 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
West Yorkshire
Science and Information (SAI) Organization Limited
2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2158-107X 2156-5570 2156-5570 |
| DOI | 10.14569/IJACSA.2025.0160486 |
Cover
| Abstract | Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion recognition regarding the Hybrid Autoencoder-Long Short-Term Memory (LSTM) model and the newly developed hybrid approach of the Ant Colony Optimization (ACO) and Whale Optimization Algorithm (WOA) for hyperparameters tuning. In this case, Autoencoder can reduce input data dimensionality for input data and find the features relevant for the model’s work. In addition, LSTM is able to work with temporal structures of sequential inputs like speech and videos. The contribution of this research lies in the novel combination method of ACO-WOA which aims at tweaking hyperparameters of Autoencoder-LSTM model. Global aspect of ACO and WOA thereby improve the search efficiency and the accuracy of the proposed emotion recognition system and its generalization capacity. In context with the benchmark dataset for the experimentations of emotion recognition, it has established the efficiency of the proposed model in terms of the conventional methods. Recall rates in recognitive intended various emotions and different modalities were also higher in the hybrid Autoencoder-LSTM model. The optimization algorithms like the ACO-WOA also supported in reducing the computational cost which arose due to hyperparameters tuning. The implementation of this paper is done through Python Software. This implementation shows a high accuracy of 94.12% and 95.94% for audio datasets and image datasets respectively when compared with other deep learning models of Conv LSTM and VGG16. Therefore, the research shows that the presented hybrid approach can be a useful solution for successfully employing emotion recognition for enhancing the creation of the empathetic AI systems and for improving user interactions within various fields including healthcare, entertainment, and customer support. |
|---|---|
| AbstractList | Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion recognition regarding the Hybrid Autoencoder-Long Short-Term Memory (LSTM) model and the newly developed hybrid approach of the Ant Colony Optimization (ACO) and Whale Optimization Algorithm (WOA) for hyperparameters tuning. In this case, Autoencoder can reduce input data dimensionality for input data and find the features relevant for the model’s work. In addition, LSTM is able to work with temporal structures of sequential inputs like speech and videos. The contribution of this research lies in the novel combination method of ACO-WOA which aims at tweaking hyperparameters of Autoencoder-LSTM model. Global aspect of ACO and WOA thereby improve the search efficiency and the accuracy of the proposed emotion recognition system and its generalization capacity. In context with the benchmark dataset for the experimentations of emotion recognition, it has established the efficiency of the proposed model in terms of the conventional methods. Recall rates in recognitive intended various emotions and different modalities were also higher in the hybrid Autoencoder-LSTM model. The optimization algorithms like the ACO-WOA also supported in reducing the computational cost which arose due to hyperparameters tuning. The implementation of this paper is done through Python Software. This implementation shows a high accuracy of 94.12% and 95.94% for audio datasets and image datasets respectively when compared with other deep learning models of Conv LSTM and VGG16. Therefore, the research shows that the presented hybrid approach can be a useful solution for successfully employing emotion recognition for enhancing the creation of the empathetic AI systems and for improving user interactions within various fields including healthcare, entertainment, and customer support. |
| Author | Bala, Kiran Waiker, Vinod Jackulin, T. Muniyandy, Elangovan Krishnaiah, V. V. Jaya Rama Ramesh, Janjhyam Venkata Naga Shahin, Osama R. |
| Author_xml | – sequence: 1 givenname: Vinod surname: Waiker fullname: Waiker, Vinod – sequence: 2 givenname: Janjhyam Venkata Naga surname: Ramesh fullname: Ramesh, Janjhyam Venkata Naga – sequence: 3 givenname: Kiran surname: Bala fullname: Bala, Kiran – sequence: 4 givenname: V. V. Jaya Rama surname: Krishnaiah fullname: Krishnaiah, V. V. Jaya Rama – sequence: 5 givenname: T. surname: Jackulin fullname: Jackulin, T. – sequence: 6 givenname: Elangovan surname: Muniyandy fullname: Muniyandy, Elangovan – sequence: 7 givenname: Osama R. surname: Shahin fullname: Shahin, Osama R. |
| BookMark | eNplkd9KwzAUxoNMcP55Ay8CXncmTZsml2VMN5kMdKJ3JU2TmdEmNW2R-QA-t3HzQvHcnA_Od34nfDkFI-usAuASowlOUsqvF3f59DGfxChOJwhTlDB6BMYxTmmUphka7TWLMMpeTsBF121RKMJjysgYfM7sq7BSVXDWuN44Cx-UdBtr9vqpM3YDBZzvSm8qmA-9U1a6Svlo-bi-h_dB1nDV9qYxH4HxbvrXX_bpKnpe5TCvN86HSQO182HYKt8KLxrVKw_Xgw03zsGxFnWnLn76GXi6ma2n82i5ul1M82Uk44z2UYV0KjhThGeEcB1jnKBKZ5xQyYjWTCgklJRllpas1JUQipWIZIrqBHPOODkD6YE72Fbs3kVdF603jfC7AqNin2dhtkJ2ovjOs_jJM-xdHfZa794G1fXF1g3ehqcWJEY0JoGOgis5uKR3XeeV_g8_fNZf-BdKpYkt |
| ContentType | Journal Article |
| Copyright | 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.14569/IJACSA.2025.0160486 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Engineering |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10.14569/ijacsa.2025.0160486 10_14569_IJACSA_2025_0160486 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB PUEGO RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c276t-d0f5a98e397339f21140df7936c83ff8ae0aeccb75b8bfdaae8b037e6f4199893 |
| IEDL.DBID | UNPAY |
| ISSN | 2158-107X 2156-5570 |
| IngestDate | Tue Aug 19 23:43:33 EDT 2025 Fri Jul 25 09:47:28 EDT 2025 Wed Oct 01 06:33:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c276t-d0f5a98e397339f21140df7936c83ff8ae0aeccb75b8bfdaae8b037e6f4199893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://thesai.org/Downloads/Volume16No4/Paper_86-Enhanced_Emotion_Recognition_Using_a_Hybrid_Autoencoder.pdf |
| PQID | 3206239980 |
| PQPubID | 5444811 |
| ParticipantIDs | unpaywall_primary_10_14569_ijacsa_2025_0160486 proquest_journals_3206239980 crossref_primary_10_14569_IJACSA_2025_0160486 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2025 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.2810562 |
| Snippet | Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| SubjectTerms | Accuracy Algorithms Ant colony optimization Automation College professors Computer science Datasets Deep learning Emotion recognition Emotions Engineering Machine learning Optimization algorithms Social networks Tuning |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZKeoAeChRQAwX5wNXU2YcfB4SWKFWoaILaVOS28pO2SjZpulFVfgC_G88-2lRI3FZaaw7-xuOZ8cw3CH3sMaZMnAjijQwBipWaqKAnxErnGdcy4RJ6h09GbHieHE_T6RYatb0wUFbZ2sTKUNuFgRz5YRxRBn2Ygn5ZXhOYGgWvq-0IDdWMVrCfK4qxJ2g7AmasDtr-Ohj9OL3PutDgDrCKmzNcdcBryqdNP11wJOTht-Osf5aFqDECMk8GdHSP76sHJ_Tpuliqu1s1m23cR0cv0G7jSOKsRv4l2nLFHnreDmnAzZndQzsbjIOv0J9BcVG9-eNBPb8Hn7YVROG7qh_ACg_voI8LZ-tyATyX1q3I97PJCYbBaTM8DlZmfvk7yIAk7sby_pj8HGc4m_0KG1dezHFwiMPPpVsBwfgcCm_wZA2JmNfo_Ggw6Q9JM4qBmIizkljqUyWFC95LHEsfosaEWh_ONjMi9l4oR1VQBs1TLbS3Sjmhacwd8wk08cn4DeoUi8LtI-xjw7lxWkbBFPSMElqnKbfCaKqkpb0uIu2G58uacSOHSAUAymuAcgAobwDqooMWlbw5fzf5g7Z00ad7pP6Vd3mlzI16JO_t_-W9Q89gdZ2FOUCdcrV274NfUuoPjbL9Bfv-4F8 priority: 102 providerName: ProQuest |
| Title | Enhanced Emotion Recognition Using a Hybrid Autoencoder-LSTM Model Optimized with a Hybrid ACO-WOA Algorithm for Hyperparameter Tuning |
| URI | https://www.proquest.com/docview/3206239980 http://thesai.org/Downloads/Volume16No4/Paper_86-Enhanced_Emotion_Recognition_Using_a_Hybrid_Autoencoder.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: ADMLS dateStart: 20231101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Nj9MwELV22wMnlk9RtFQ-cHWbNqljH0NpKSu2rXZbKCfLdmJYaJtqmwjt_gBu_Gdm8gFd7YkLN0tOPEryMn5je94Q8rrHubZ-IJizEgKUWBqmAScslonjoZFBKDF3-HzKJ8vgbDVYHZH6WBGQnr0ud_Dfolh8quN992Pxn_b4NA26c72D2F1wNtp-LbbI1agsd6Mu6gM30C6225VWkxtMe1JRnqUoC1nktcXumDT5AJh7gzSX03n0GevPQRjDUI2qbKPiabiqMu2AYsju1Tdt96hT1EeZT45CdXdnsr_09EG-3embH3q9PpipxifkV53vUx5Q-d7JM9Oxt_flH__LS3hEHlaUl0YlRh-To2T7hJzU5SRo5V2ekp-1HVrZoQd2aGGHalraoQd22IfLxTnFom5rOgMPuLm6hTFwgfng8uGMfZpFNFp_Sa-hZ0OBrEMnPCGKn2_wUBBd5LhI9Iwsx6PFcMKqMhHM9kOesdhzAy1FAszK96WDiDbwYgd-h1vhOyd04mkAqgkHRhgXa50I4_lhwl2ACYbSf04a23SbvCDU-TYMbWJkH9xUz2phDIAiFtZ4WsZer0VY_cnVrlQDURhFIUTU-7NoeBkphIiqINIipzUuVOUb9srvexwzioXXIp0_WLk_Xgm5O-O9_NcbTkkju86TV0CcMtMmx2L8rk2ab0bT-UW7Qv9vIdIkLQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NQEH6q2kPhwFJABAq8AxxNHS_PfocKmZAqabOgNhW5uW-lRYkTEkdV-AH8LH4bM17aVEjcerNkeyT7G8_mmW8Ied9kTCg_iB2rOCQomktHgJ44mhvLIsmDiOPscH_AOufB8Tgcb5E_9SwMtlXWNrEw1HqmsEZ-4HsuwznM2P00_-ng1ij8u1qv0BDVagV9WFCMVYMdJ2Z9DSnc8rD7BfD-4HlH7VGr41RbBhzlRSx3tGtDwWMDjtn3uYWEKHC1BbVlKvatjYVxBTynjEIZS6uFMLF0_cgwG-B8GpIxgQvYCfyAQ_K387k9-Hp6U-VxIfxgBRcouFbkUY3G1fweBC78oHuctM4SyFI9JA9lSH931z_eBr27q2wu1tdiMtnwf0dPyKMqcKVJqWlPyZbJ9sjjeikErWzEHnm4wXD4jPxuZ5dFjwFtl_uC6GndsQTHRb8CFbSzxrkxmqzyGfJqarNwemejPsVFbRM6BKs2vfoFMrBovHF5a-h8GyY0mXwHoPLLKYUAHE7OzQIJzafY6ENHKyz8PCfn9wLKC7KdzTLzklDrqyhSRnIPTE9TiVjKMIx0rKQruHabDeLULzydlwwfKWZGCFBaApQiQGkFUIPs16ik1fe-TG-1s0E-3iD1r7yrH0ItxR15r_4v7x3Z7Yz6vbTXHZy8Jg_wzrICtE-288XKvIGYKJdvK8Wj5OK-df0ve8wekg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3Nb9MwFLdGd-DE-BRFA_nA1W3apI59jEqnMrF2Yi2Uk-WPeAzapFoToe0P4Mb_zHv5gE47ceFmyYmfkvzy_Hu23-8R8nbAubZhJJi3EgIUJw3TgBPmZOp5bGQUS8wdPpvx6TI6XY1WB6Q9VgSkZ6frHfx3KBafa7frf6r-0wGf5VH_XG8hdhecTbKv1Ra5mtTlbtTH9sANtKvtdqXV9AbTnlRSFjnKQlZ5bc4_IId8BMy9Qw6Xs_PkC9afgzCGoRpV3UbF03jVZNoBxZD9q2_a7lCnaIgynxyF6u7OZH_p6cMy2-qbH3q93pupTo7Irzbfpz6g8r1XFqZnb-_LP_6Xl_CYPGooL01qjD4hB2n2lBy15SRo412ekZ-tHdrYoXt2aGWHalrboXt22IeLxRnFom5rOgcPuLm6hTFwgXnv8vGcfZ4nNFlf5tfQs6FA1qETnhDFzzd4KIguSlwkek6WJ5PFeMqaMhHMDmNeMBf4kZYiBWYVhtJDRBsFzoPf4VaE3gudBhqAauKREcY7rVNhgjBOuY8wwVCGL0gny7P0JaE-tHFsUyOH4KYGVgtjABROWBNo6YJBl7D2k6ttrQaiMIpCiKj3p8n4IlEIEdVApEuOW1yoxjfsVDgMOGYUi6BLen-wcn-8GnJ3xnv1rzcck05xXaavgTgV5k2D998_KyGt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Emotion+Recognition+Using+a+Hybrid+Autoencoder-LSTM+Model+Optimized+with+a+Hybrid+ACO-WOA+Algorithm+for+Hyperparameter+Tuning&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Waiker%2C+Vinod&rft.au=Ramesh%2C+Janjhyam+Venkata+Naga&rft.au=Bala%2C+Kiran&rft.au=Krishnaiah%2C+V.+V.+Jaya+Rama&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=4&rft_id=info:doi/10.14569%2FIJACSA.2025.0160486&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_0160486 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |