Enhanced Emotion Recognition Using a Hybrid Autoencoder-LSTM Model Optimized with a Hybrid ACO-WOA Algorithm for Hyperparameter Tuning

Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion recognition regarding the Hybrid Autoencoder-Long Short-Term Memory (LSTM) model and the newly developed hybrid approach of the Ant Colony Opt...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 16; no. 4
Main Authors Waiker, Vinod, Ramesh, Janjhyam Venkata Naga, Bala, Kiran, Krishnaiah, V. V. Jaya Rama, Jackulin, T., Muniyandy, Elangovan, Shahin, Osama R.
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2025
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
2156-5570
DOI10.14569/IJACSA.2025.0160486

Cover

Abstract Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion recognition regarding the Hybrid Autoencoder-Long Short-Term Memory (LSTM) model and the newly developed hybrid approach of the Ant Colony Optimization (ACO) and Whale Optimization Algorithm (WOA) for hyperparameters tuning. In this case, Autoencoder can reduce input data dimensionality for input data and find the features relevant for the model’s work. In addition, LSTM is able to work with temporal structures of sequential inputs like speech and videos. The contribution of this research lies in the novel combination method of ACO-WOA which aims at tweaking hyperparameters of Autoencoder-LSTM model. Global aspect of ACO and WOA thereby improve the search efficiency and the accuracy of the proposed emotion recognition system and its generalization capacity. In context with the benchmark dataset for the experimentations of emotion recognition, it has established the efficiency of the proposed model in terms of the conventional methods. Recall rates in recognitive intended various emotions and different modalities were also higher in the hybrid Autoencoder-LSTM model. The optimization algorithms like the ACO-WOA also supported in reducing the computational cost which arose due to hyperparameters tuning. The implementation of this paper is done through Python Software. This implementation shows a high accuracy of 94.12% and 95.94% for audio datasets and image datasets respectively when compared with other deep learning models of Conv LSTM and VGG16. Therefore, the research shows that the presented hybrid approach can be a useful solution for successfully employing emotion recognition for enhancing the creation of the empathetic AI systems and for improving user interactions within various fields including healthcare, entertainment, and customer support.
AbstractList Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion recognition regarding the Hybrid Autoencoder-Long Short-Term Memory (LSTM) model and the newly developed hybrid approach of the Ant Colony Optimization (ACO) and Whale Optimization Algorithm (WOA) for hyperparameters tuning. In this case, Autoencoder can reduce input data dimensionality for input data and find the features relevant for the model’s work. In addition, LSTM is able to work with temporal structures of sequential inputs like speech and videos. The contribution of this research lies in the novel combination method of ACO-WOA which aims at tweaking hyperparameters of Autoencoder-LSTM model. Global aspect of ACO and WOA thereby improve the search efficiency and the accuracy of the proposed emotion recognition system and its generalization capacity. In context with the benchmark dataset for the experimentations of emotion recognition, it has established the efficiency of the proposed model in terms of the conventional methods. Recall rates in recognitive intended various emotions and different modalities were also higher in the hybrid Autoencoder-LSTM model. The optimization algorithms like the ACO-WOA also supported in reducing the computational cost which arose due to hyperparameters tuning. The implementation of this paper is done through Python Software. This implementation shows a high accuracy of 94.12% and 95.94% for audio datasets and image datasets respectively when compared with other deep learning models of Conv LSTM and VGG16. Therefore, the research shows that the presented hybrid approach can be a useful solution for successfully employing emotion recognition for enhancing the creation of the empathetic AI systems and for improving user interactions within various fields including healthcare, entertainment, and customer support.
Author Bala, Kiran
Waiker, Vinod
Jackulin, T.
Muniyandy, Elangovan
Krishnaiah, V. V. Jaya Rama
Ramesh, Janjhyam Venkata Naga
Shahin, Osama R.
Author_xml – sequence: 1
  givenname: Vinod
  surname: Waiker
  fullname: Waiker, Vinod
– sequence: 2
  givenname: Janjhyam Venkata Naga
  surname: Ramesh
  fullname: Ramesh, Janjhyam Venkata Naga
– sequence: 3
  givenname: Kiran
  surname: Bala
  fullname: Bala, Kiran
– sequence: 4
  givenname: V. V. Jaya Rama
  surname: Krishnaiah
  fullname: Krishnaiah, V. V. Jaya Rama
– sequence: 5
  givenname: T.
  surname: Jackulin
  fullname: Jackulin, T.
– sequence: 6
  givenname: Elangovan
  surname: Muniyandy
  fullname: Muniyandy, Elangovan
– sequence: 7
  givenname: Osama R.
  surname: Shahin
  fullname: Shahin, Osama R.
BookMark eNplkd9KwzAUxoNMcP55Ay8CXncmTZsml2VMN5kMdKJ3JU2TmdEmNW2R-QA-t3HzQvHcnA_Od34nfDkFI-usAuASowlOUsqvF3f59DGfxChOJwhTlDB6BMYxTmmUphka7TWLMMpeTsBF121RKMJjysgYfM7sq7BSVXDWuN44Cx-UdBtr9vqpM3YDBZzvSm8qmA-9U1a6Svlo-bi-h_dB1nDV9qYxH4HxbvrXX_bpKnpe5TCvN86HSQO182HYKt8KLxrVKw_Xgw03zsGxFnWnLn76GXi6ma2n82i5ul1M82Uk44z2UYV0KjhThGeEcB1jnKBKZ5xQyYjWTCgklJRllpas1JUQipWIZIrqBHPOODkD6YE72Fbs3kVdF603jfC7AqNin2dhtkJ2ovjOs_jJM-xdHfZa794G1fXF1g3ehqcWJEY0JoGOgis5uKR3XeeV_g8_fNZf-BdKpYkt
ContentType Journal Article
Copyright 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.14569/IJACSA.2025.0160486
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 2156-5570
ExternalDocumentID 10.14569/ijacsa.2025.0160486
10_14569_IJACSA_2025_0160486
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c276t-d0f5a98e397339f21140df7936c83ff8ae0aeccb75b8bfdaae8b037e6f4199893
IEDL.DBID UNPAY
ISSN 2158-107X
2156-5570
IngestDate Tue Aug 19 23:43:33 EDT 2025
Fri Jul 25 09:47:28 EDT 2025
Wed Oct 01 06:33:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-d0f5a98e397339f21140df7936c83ff8ae0aeccb75b8bfdaae8b037e6f4199893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=http://thesai.org/Downloads/Volume16No4/Paper_86-Enhanced_Emotion_Recognition_Using_a_Hybrid_Autoencoder.pdf
PQID 3206239980
PQPubID 5444811
ParticipantIDs unpaywall_primary_10_14569_ijacsa_2025_0160486
proquest_journals_3206239980
crossref_primary_10_14569_IJACSA_2025_0160486
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2025
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2810562
Snippet Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Accuracy
Algorithms
Ant colony optimization
Automation
College professors
Computer science
Datasets
Deep learning
Emotion recognition
Emotions
Engineering
Machine learning
Optimization algorithms
Social networks
Tuning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZKeoAeChRQAwX5wNXU2YcfB4SWKFWoaILaVOS28pO2SjZpulFVfgC_G88-2lRI3FZaaw7-xuOZ8cw3CH3sMaZMnAjijQwBipWaqKAnxErnGdcy4RJ6h09GbHieHE_T6RYatb0wUFbZ2sTKUNuFgRz5YRxRBn2Ygn5ZXhOYGgWvq-0IDdWMVrCfK4qxJ2g7AmasDtr-Ohj9OL3PutDgDrCKmzNcdcBryqdNP11wJOTht-Osf5aFqDECMk8GdHSP76sHJ_Tpuliqu1s1m23cR0cv0G7jSOKsRv4l2nLFHnreDmnAzZndQzsbjIOv0J9BcVG9-eNBPb8Hn7YVROG7qh_ACg_voI8LZ-tyATyX1q3I97PJCYbBaTM8DlZmfvk7yIAk7sby_pj8HGc4m_0KG1dezHFwiMPPpVsBwfgcCm_wZA2JmNfo_Ggw6Q9JM4qBmIizkljqUyWFC95LHEsfosaEWh_ONjMi9l4oR1VQBs1TLbS3Sjmhacwd8wk08cn4DeoUi8LtI-xjw7lxWkbBFPSMElqnKbfCaKqkpb0uIu2G58uacSOHSAUAymuAcgAobwDqooMWlbw5fzf5g7Z00ad7pP6Vd3mlzI16JO_t_-W9Q89gdZ2FOUCdcrV274NfUuoPjbL9Bfv-4F8
  priority: 102
  providerName: ProQuest
Title Enhanced Emotion Recognition Using a Hybrid Autoencoder-LSTM Model Optimized with a Hybrid ACO-WOA Algorithm for Hyperparameter Tuning
URI https://www.proquest.com/docview/3206239980
http://thesai.org/Downloads/Volume16No4/Paper_86-Enhanced_Emotion_Recognition_Using_a_Hybrid_Autoencoder.pdf
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: ADMLS
  dateStart: 20231101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Nj9MwELV22wMnlk9RtFQ-cHWbNqljH0NpKSu2rXZbKCfLdmJYaJtqmwjt_gBu_Gdm8gFd7YkLN0tOPEryMn5je94Q8rrHubZ-IJizEgKUWBqmAScslonjoZFBKDF3-HzKJ8vgbDVYHZH6WBGQnr0ud_Dfolh8quN992Pxn_b4NA26c72D2F1wNtp-LbbI1agsd6Mu6gM30C6225VWkxtMe1JRnqUoC1nktcXumDT5AJh7gzSX03n0GevPQRjDUI2qbKPiabiqMu2AYsju1Tdt96hT1EeZT45CdXdnsr_09EG-3embH3q9PpipxifkV53vUx5Q-d7JM9Oxt_flH__LS3hEHlaUl0YlRh-To2T7hJzU5SRo5V2ekp-1HVrZoQd2aGGHalraoQd22IfLxTnFom5rOgMPuLm6hTFwgfng8uGMfZpFNFp_Sa-hZ0OBrEMnPCGKn2_wUBBd5LhI9Iwsx6PFcMKqMhHM9kOesdhzAy1FAszK96WDiDbwYgd-h1vhOyd04mkAqgkHRhgXa50I4_lhwl2ACYbSf04a23SbvCDU-TYMbWJkH9xUz2phDIAiFtZ4WsZer0VY_cnVrlQDURhFIUTU-7NoeBkphIiqINIipzUuVOUb9srvexwzioXXIp0_WLk_Xgm5O-O9_NcbTkkju86TV0CcMtMmx2L8rk2ab0bT-UW7Qv9vIdIkLQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NQEH6q2kPhwFJABAq8AxxNHS_PfocKmZAqabOgNhW5uW-lRYkTEkdV-AH8LH4bM17aVEjcerNkeyT7G8_mmW8Ied9kTCg_iB2rOCQomktHgJ44mhvLIsmDiOPscH_AOufB8Tgcb5E_9SwMtlXWNrEw1HqmsEZ-4HsuwznM2P00_-ng1ij8u1qv0BDVagV9WFCMVYMdJ2Z9DSnc8rD7BfD-4HlH7VGr41RbBhzlRSx3tGtDwWMDjtn3uYWEKHC1BbVlKvatjYVxBTynjEIZS6uFMLF0_cgwG-B8GpIxgQvYCfyAQ_K387k9-Hp6U-VxIfxgBRcouFbkUY3G1fweBC78oHuctM4SyFI9JA9lSH931z_eBr27q2wu1tdiMtnwf0dPyKMqcKVJqWlPyZbJ9sjjeikErWzEHnm4wXD4jPxuZ5dFjwFtl_uC6GndsQTHRb8CFbSzxrkxmqzyGfJqarNwemejPsVFbRM6BKs2vfoFMrBovHF5a-h8GyY0mXwHoPLLKYUAHE7OzQIJzafY6ENHKyz8PCfn9wLKC7KdzTLzklDrqyhSRnIPTE9TiVjKMIx0rKQruHabDeLULzydlwwfKWZGCFBaApQiQGkFUIPs16ik1fe-TG-1s0E-3iD1r7yrH0ItxR15r_4v7x3Z7Yz6vbTXHZy8Jg_wzrICtE-288XKvIGYKJdvK8Wj5OK-df0ve8wekg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3Nb9MwFLdGd-DE-BRFA_nA1W3apI59jEqnMrF2Yi2Uk-WPeAzapFoToe0P4Mb_zHv5gE47ceFmyYmfkvzy_Hu23-8R8nbAubZhJJi3EgIUJw3TgBPmZOp5bGQUS8wdPpvx6TI6XY1WB6Q9VgSkZ6frHfx3KBafa7frf6r-0wGf5VH_XG8hdhecTbKv1Ra5mtTlbtTH9sANtKvtdqXV9AbTnlRSFjnKQlZ5bc4_IId8BMy9Qw6Xs_PkC9afgzCGoRpV3UbF03jVZNoBxZD9q2_a7lCnaIgynxyF6u7OZH_p6cMy2-qbH3q93pupTo7Irzbfpz6g8r1XFqZnb-_LP_6Xl_CYPGooL01qjD4hB2n2lBy15SRo412ekZ-tHdrYoXt2aGWHalrboXt22IeLxRnFom5rOgcPuLm6hTFwgXnv8vGcfZ4nNFlf5tfQs6FA1qETnhDFzzd4KIguSlwkek6WJ5PFeMqaMhHMDmNeMBf4kZYiBWYVhtJDRBsFzoPf4VaE3gudBhqAauKREcY7rVNhgjBOuY8wwVCGL0gny7P0JaE-tHFsUyOH4KYGVgtjABROWBNo6YJBl7D2k6ttrQaiMIpCiKj3p8n4IlEIEdVApEuOW1yoxjfsVDgMOGYUi6BLen-wcn-8GnJ3xnv1rzcck05xXaavgTgV5k2D998_KyGt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Emotion+Recognition+Using+a+Hybrid+Autoencoder-LSTM+Model+Optimized+with+a+Hybrid+ACO-WOA+Algorithm+for+Hyperparameter+Tuning&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Waiker%2C+Vinod&rft.au=Ramesh%2C+Janjhyam+Venkata+Naga&rft.au=Bala%2C+Kiran&rft.au=Krishnaiah%2C+V.+V.+Jaya+Rama&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=4&rft_id=info:doi/10.14569%2FIJACSA.2025.0160486&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_0160486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon