Knowledge-Level Fusion: A Novel Information Fusion Mode From the Perspective of Granular Computing
In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource info...
Saved in:
| Published in | IEEE transactions on cybernetics Vol. 55; no. 4; pp. 1758 - 1771 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2267 2168-2275 2168-2275 |
| DOI | 10.1109/TCYB.2025.3538646 |
Cover
| Abstract | In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource information fusion. However, on one hand, the existing information fusion studies in GrC all focus on feature-level fusion and decision-level fusion based on multisource data, neglecting the basic characteristics and advantages of GrC: granulation. On the other hand, the existing methods for fusing the knowledge spaces in GrC suffer from losing the necessary information or artificially adding information. In order to address these issues, a novel information fusion mode from the perspective of GrC is proposed in this article, named knowledge-level fusion. First, by introducing a new step, that is, granulate data to construct the knowledge space, into the multisource information fusion process, the knowledge-level fusion mode is proposed. Second, the optimistic core quotient space is proposed to characterize the information consensus and information gap of multisource knowledge spaces in the static data environment. The pessimistic core quotient space is proposed to characterize the information consensus in the dynamic data environment. Related theorems are given to describe the characteristics of the core quotient spaces. Then, the knowledge-level fusion method driven jointly by the data space and the knowledge space is introduced based on the principle of extracting the core quotient space first and then allocating other objects in the candidate set. On the basis, the superiority of the proposed method over the existing methods is demonstrated through theoretical analysis. Finally, experiments on 12 UCI datasets and three UKB datasets are carried out to verify the promoting effect on classification and clustering algorithms, the effectiveness compared to feature-level and decision-level fusion modes, efficiency and statistical significance of the proposed knowledge-level fusion method and mode. |
|---|---|
| AbstractList | In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource information fusion. However, on one hand, the existing information fusion studies in GrC all focus on feature-level fusion and decision-level fusion based on multisource data, neglecting the basic characteristics and advantages of GrC: granulation. On the other hand, the existing methods for fusing the knowledge spaces in GrC suffer from losing the necessary information or artificially adding information. In order to address these issues, a novel information fusion mode from the perspective of GrC is proposed in this article, named knowledge-level fusion. First, by introducing a new step, that is, granulate data to construct the knowledge space, into the multisource information fusion process, the knowledge-level fusion mode is proposed. Second, the optimistic core quotient space is proposed to characterize the information consensus and information gap of multisource knowledge spaces in the static data environment. The pessimistic core quotient space is proposed to characterize the information consensus in the dynamic data environment. Related theorems are given to describe the characteristics of the core quotient spaces. Then, the knowledge-level fusion method driven jointly by the data space and the knowledge space is introduced based on the principle of extracting the core quotient space first and then allocating other objects in the candidate set. On the basis, the superiority of the proposed method over the existing methods is demonstrated through theoretical analysis. Finally, experiments on 12 UCI datasets and three UKB datasets are carried out to verify the promoting effect on classification and clustering algorithms, the effectiveness compared to feature-level and decision-level fusion modes, efficiency and statistical significance of the proposed knowledge-level fusion method and mode.In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource information fusion. However, on one hand, the existing information fusion studies in GrC all focus on feature-level fusion and decision-level fusion based on multisource data, neglecting the basic characteristics and advantages of GrC: granulation. On the other hand, the existing methods for fusing the knowledge spaces in GrC suffer from losing the necessary information or artificially adding information. In order to address these issues, a novel information fusion mode from the perspective of GrC is proposed in this article, named knowledge-level fusion. First, by introducing a new step, that is, granulate data to construct the knowledge space, into the multisource information fusion process, the knowledge-level fusion mode is proposed. Second, the optimistic core quotient space is proposed to characterize the information consensus and information gap of multisource knowledge spaces in the static data environment. The pessimistic core quotient space is proposed to characterize the information consensus in the dynamic data environment. Related theorems are given to describe the characteristics of the core quotient spaces. Then, the knowledge-level fusion method driven jointly by the data space and the knowledge space is introduced based on the principle of extracting the core quotient space first and then allocating other objects in the candidate set. On the basis, the superiority of the proposed method over the existing methods is demonstrated through theoretical analysis. Finally, experiments on 12 UCI datasets and three UKB datasets are carried out to verify the promoting effect on classification and clustering algorithms, the effectiveness compared to feature-level and decision-level fusion modes, efficiency and statistical significance of the proposed knowledge-level fusion method and mode. In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource information fusion. However, on one hand, the existing information fusion studies in GrC all focus on feature-level fusion and decision-level fusion based on multisource data, neglecting the basic characteristics and advantages of GrC: granulation. On the other hand, the existing methods for fusing the knowledge spaces in GrC suffer from losing the necessary information or artificially adding information. In order to address these issues, a novel information fusion mode from the perspective of GrC is proposed in this article, named knowledge-level fusion. First, by introducing a new step, that is, granulate data to construct the knowledge space, into the multisource information fusion process, the knowledge-level fusion mode is proposed. Second, the optimistic core quotient space is proposed to characterize the information consensus and information gap of multisource knowledge spaces in the static data environment. The pessimistic core quotient space is proposed to characterize the information consensus in the dynamic data environment. Related theorems are given to describe the characteristics of the core quotient spaces. Then, the knowledge-level fusion method driven jointly by the data space and the knowledge space is introduced based on the principle of extracting the core quotient space first and then allocating other objects in the candidate set. On the basis, the superiority of the proposed method over the existing methods is demonstrated through theoretical analysis. Finally, experiments on 12 UCI datasets and three UKB datasets are carried out to verify the promoting effect on classification and clustering algorithms, the effectiveness compared to feature-level and decision-level fusion modes, efficiency and statistical significance of the proposed knowledge-level fusion method and mode. |
| Author | Zhao, Fan Zhang, Qinghua Wang, Guoyin Ding, Weiping Yin, Longjun Yang, Ying |
| Author_xml | – sequence: 1 givenname: Fan orcidid: 0009-0008-4437-844X surname: Zhao fullname: Zhao, Fan organization: Key Laboratory of Intelligent Analysis and Decision on Complex Systems and the Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 2 givenname: Qinghua orcidid: 0000-0002-6154-4656 surname: Zhang fullname: Zhang, Qinghua email: zhangqh@cqupt.edu.cn organization: Key Laboratory of Big Data Intelligent Computing and the Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 3 givenname: Ying surname: Yang fullname: Yang, Ying organization: Key Laboratory of Big Data Intelligent Computing and the Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 4 givenname: Longjun surname: Yin fullname: Yin, Longjun organization: Key Laboratory of Intelligent Analysis and Decision on Complex Systems and the Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 5 givenname: Guoyin orcidid: 0000-0002-8521-5232 surname: Wang fullname: Wang, Guoyin organization: National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing, China – sequence: 6 givenname: Weiping orcidid: 0000-0002-3180-7347 surname: Ding fullname: Ding, Weiping organization: School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40036463$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAQRS1UREvhA5AQ8pJNih952OxKRAFRHgtYsIpSe1yCkrjYSRF_j6sWxGw8njl3FucQDVrbAkInlEwoJfLiJX-7mjDCkglPuEjjdA-NGE1FxFiWDP76NBuiY-8_SCgRRlIcoGFMCA8JPkKL-9Z-1aCXEM1hDTWe9b6y7SWe4ke7-d-1xrqm7MJwt8MPVgOeOdvg7h3wMzi_AtVVa8DW4BtXtn1dOpzbZtV3Vbs8QvumrD0c794xep1dv-S30fzp5i6fziPFsrSLlIBkQYkWMVVCGsaIyuIs1kxRykVCjMwI15oakxhOMxkWUnCdxiEhhFZ8jM63d1fOfvbgu6KpvIK6LluwvS9CKCYyDV4CerZD-0UDuli5qindd_HrJQB0CyhnvXdg_hBKio3-YqO_2OgvdvpD5nSbqQDgHy8kI5LwH3QSfyg |
| CODEN | ITCEB8 |
| Cites_doi | 10.1016/j.inffus.2023.101948 10.1109/TCYB.2022.3184977 10.1109/TSMCA.2009.2035436 10.1016/j.knosys.2023.110257 10.1016/j.inffus.2023.101954 10.1016/j.ins.2010.11.019 10.1016/j.ins.2011.07.010 10.1109/TSMC.2018.2812156 10.1016/j.ijar.2013.03.017 10.1016/j.ins.2021.08.076 10.1016/S0019-9958(65)90241-X 10.1109/TSMC.2018.2854630 10.1016/0165-0114(89)90077-8 10.1016/j.neucom.2022.08.055 10.1109/TSMCC.2012.2236648 10.1109/TCYB.2022.3208130 10.1109/TEVC.2021.3079320 10.1126/science.1127647 10.1109/TNNLS.2021.3054063 10.1109/TCYB.2019.2923430 10.1109/tfuzz.2024.3352615 10.1016/j.asoc.2013.06.017 10.1007/BF01001956 10.1016/j.knosys.2023.111055 10.1109/TFUZZ.2023.3335965 10.1016/j.inffus.2023.01.015 10.1016/s0031-3203(01)00103-0 10.1109/TFUZZ.2020.2965864 10.1007/978-3-031-43075-6_38 10.1109/TCYB.2015.2508024 10.1109/TSMC.2021.3093467 10.1016/j.ins.2019.09.003 10.1155/2021/5556378 10.1111/rssc.12399 10.1109/JAS.2022.106061 10.1016/j.neucom.2018.12.026 10.1016/j.knosys.2017.04.005 10.1109/TCYB.2023.3295852 10.1016/j.ijar.2019.11.002 10.1109/TFUZZ.2018.2889020 10.1016/j.knosys.2024.111425 10.1109/TFUZZ.2024.3399769 10.1016/j.asoc.2022.109270 10.1016/j.inffus.2022.12.027 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TCYB.2025.3538646 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 1771 |
| ExternalDocumentID | 40036463 10_1109_TCYB_2025_3538646 10892090 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62276038; 62221005 funderid: 10.13039/501100001809 – fundername: Joint Fund of Chongqing Natural Science Foundation for Innovation and Development grantid: CSTB2023NSCQ-LZX0164 funderid: 10.13039/501100011002 – fundername: Chongqing Talent Program grantid: CQYC20210202215 – fundername: Graduate Scientific Research Innovation Project of Chongqing grantid: CYB240236 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c276t-c8e5b10d841c89f220c7474d2c113850f9703dd1ff5f3179d2c983d64d8488dc3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sat Sep 27 21:28:21 EDT 2025 Wed Mar 26 04:38:46 EDT 2025 Wed Oct 01 06:40:46 EDT 2025 Wed Aug 27 01:38:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c276t-c8e5b10d841c89f220c7474d2c113850f9703dd1ff5f3179d2c983d64d8488dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8521-5232 0000-0002-3180-7347 0000-0002-6154-4656 0009-0008-4437-844X |
| PMID | 40036463 |
| PQID | 3174096216 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TCYB_2025_3538646 ieee_primary_10892090 proquest_miscellaneous_3174096216 pubmed_primary_40036463 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 Chao (ref49) ref12 ref15 ref14 ref53 ref10 ref17 ref16 ref19 ref18 Zhang (ref40) 1992 Xu (ref37) 2011; 13 ref51 ref50 Hozumi (ref11) 2022 ref46 ref48 ref47 ref41 ref44 Liu (ref45) 2005; 28 ref8 ref7 ref9 ref4 ref6 Pan (ref2) 2013 Hall (ref3) 2004 ref5 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 ref24 ref23 Zhang (ref42) 2003; 14 ref26 ref25 ref20 ref22 Li (ref43) 2024; 286 ref21 Zhang (ref52) 2008; 21 ref28 ref27 ref29 |
| References_xml | – ident: ref34 doi: 10.1016/j.inffus.2023.101948 – ident: ref12 doi: 10.1109/TCYB.2022.3184977 – volume: 28 start-page: 1680 issue: 10 year: 2005 ident: ref45 article-title: The granular theorem of quotient space in image segmentation publication-title: Chin. J. Comput. – ident: ref36 doi: 10.1109/TSMCA.2009.2035436 – volume-title: Mathematical Techniques in Multisensor Data Fusion year: 2004 ident: ref3 – ident: ref6 doi: 10.1016/j.knosys.2023.110257 – ident: ref30 doi: 10.1016/j.inffus.2023.101954 – ident: ref38 doi: 10.1016/j.ins.2010.11.019 – ident: ref29 doi: 10.1016/j.ins.2011.07.010 – ident: ref48 doi: 10.1109/TSMC.2018.2812156 – ident: ref31 doi: 10.1016/j.ijar.2013.03.017 – ident: ref35 doi: 10.1016/j.ins.2021.08.076 – ident: ref39 doi: 10.1016/S0019-9958(65)90241-X – ident: ref50 doi: 10.1109/TSMC.2018.2854630 – ident: ref53 doi: 10.1016/0165-0114(89)90077-8 – ident: ref16 doi: 10.1016/j.neucom.2022.08.055 – ident: ref23 doi: 10.1109/TSMCC.2012.2236648 – ident: ref28 doi: 10.1109/TCYB.2022.3208130 – ident: ref13 doi: 10.1109/TEVC.2021.3079320 – ident: ref10 doi: 10.1126/science.1127647 – ident: ref32 doi: 10.1109/TNNLS.2021.3054063 – ident: ref27 doi: 10.1109/TCYB.2019.2923430 – ident: ref17 doi: 10.1109/tfuzz.2024.3352615 – ident: ref21 doi: 10.1016/j.asoc.2013.06.017 – start-page: 585 volume-title: Proc. Int. Conf. Rough Sets Knowl. Technol. ident: ref49 article-title: Audio signal blind deconvolution based on the quotient space hierarchical theory – volume-title: Theory and Applications of Problem Solving year: 1992 ident: ref40 – ident: ref41 doi: 10.1007/BF01001956 – ident: ref18 doi: 10.1016/j.knosys.2023.111055 – ident: ref19 doi: 10.1109/TFUZZ.2023.3335965 – volume: 14 start-page: 770 issue: 4 year: 2003 ident: ref42 article-title: Theory of fuzzy quotient space (methods of fuzzy granular computing) publication-title: J. Softw. – ident: ref7 doi: 10.1016/j.inffus.2023.01.015 – volume: 13 start-page: 246 issue: 4 year: 2011 ident: ref37 article-title: Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space publication-title: Int. J. Fuzzy Syst. – volume-title: Multi-Source Information Fusion Theory and Its Application year: 2013 ident: ref2 – ident: ref14 doi: 10.1016/s0031-3203(01)00103-0 – ident: ref44 doi: 10.1109/TFUZZ.2020.2965864 – ident: ref15 doi: 10.1007/978-3-031-43075-6_38 – ident: ref4 doi: 10.1109/TCYB.2015.2508024 – volume: 21 start-page: 627 issue: 5 year: 2008 ident: ref52 article-title: Analysis on hierarchical fuzzy quotient space structure publication-title: Pattern Recognit. Artif. Intell. – ident: ref25 doi: 10.1109/TSMC.2021.3093467 – ident: ref22 doi: 10.1016/j.ins.2019.09.003 – ident: ref24 doi: 10.1155/2021/5556378 – ident: ref47 doi: 10.1111/rssc.12399 – ident: ref1 doi: 10.1109/JAS.2022.106061 – ident: ref46 doi: 10.1016/j.neucom.2018.12.026 – ident: ref33 doi: 10.1016/j.knosys.2017.04.005 – ident: ref5 doi: 10.1109/TCYB.2023.3295852 – volume-title: arXiv:2206.04189 year: 2022 ident: ref11 article-title: CCP: Correlated clustering and projection for dimensionality reduction – ident: ref20 doi: 10.1016/j.ijar.2019.11.002 – ident: ref26 doi: 10.1109/TFUZZ.2018.2889020 – volume: 286 year: 2024 ident: ref43 article-title: Boosted stochastic fuzzy granular hypersurface classifier publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2024.111425 – ident: ref51 doi: 10.1109/TFUZZ.2024.3399769 – ident: ref8 doi: 10.1016/j.asoc.2022.109270 – ident: ref9 doi: 10.1016/j.inffus.2022.12.027 |
| SSID | ssj0000816898 |
| Score | 2.3994222 |
| Snippet | In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1758 |
| SubjectTerms | Aerospace electronics Data mining Data models Decision making Feature extraction Granular computing Granular computing (GrC) granulation information fusion knowledge-level fusion Machine learning algorithms Problem-solving quotient space Rough sets Semantics |
| Title | Knowledge-Level Fusion: A Novel Information Fusion Mode From the Perspective of Granular Computing |
| URI | https://ieeexplore.ieee.org/document/10892090 https://www.ncbi.nlm.nih.gov/pubmed/40036463 https://www.proquest.com/docview/3174096216 |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR27TsMw0IJOLEChQHnJSAyAlOI4jmuzlYpS8agYWqlMUWM7C6JBbbPw9ZwdpzykSiyRI8eO47vLPXwPhM5B5gBGx3SQKsMCZqQJZMo56DyCi5gqolwS1-cB74_Ywzge-2B1FwtjjHHOZ6Zlm-4sX-eqsKYyoHAhKZGgoa-3BS-DtZYGFVdBwtW-pdAIQKxo-1PMkMjrYff1FrRBGrciIHHObOkiZpOxMB79YkmuxspqcdOxnd4WGlQLLr1N3lrFIm2pzz-5HP_9Rdto0wuguFNiTB2tmekOqnsSn-MLn4f6chelj5W9LXiyrkW4V1jT2g3u4EFu730okwWt78O2tBruzfJ3DIIlfvmO5MR5hu-BL1qvV1yWkgCm2UCj3t2w2w98SYZA0TZfBEqYOA2JFixUQmaUEgX6CNNUhWEkYpJJ-INoHWZZnIFkIqFDikhzBiOE0CraQ7VpPjUHCFNN08gwklK4tkk8MaAdcUNCQ2GWMGuiqwoqyUeZeSNxGguRiYVmYqGZeGg2UcNu7o8Hy31torMKkAnQjT0MmUxNXswTWB2othxwpYn2SwgvR1eIcbhi1iO0YV9eOvAco9piVpgTkE0W6anDyS_EV9tS |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NT9sw9AnBYbuMdeu2MhiexIFNSuc4tmtzA0ToRhvtUCR2iojtXKY1CJoLv55nxyljEtIukSPHlu33Xt6H3wfAAcocyOi4TSrjeMKddomupESdR0klmKEmJHGdF3J6yX9ciasYrB5iYZxzwfnMjX0z3OXbxrTeVIYUrjSjGjX0LcE5F1241tqkEmpIhOq3DBsJChaTeI-ZUv1tcfrrBPVBJsYZErnkvngR9-lYuMyeMKVQZeV5gTMwnnwbin7Jnb_J73G7qsbm_p9sjv-9p9fwKoqg5LjDmQFsuOUbGEQivyOHMRP1l7dQXfQWt2TmnYtI3nrj2hE5JkXj32Mwkwdu7CO-uBrJb5s_BEVL8vMxlpM0NTlHzuj9XklXTALZ5hAu87PF6TSJRRkSwyZylRjlRJVSq3hqlK4ZowY1Em6ZSdNMCVpr_IdYm9a1qFE20dihVWYlxxFKWZO9g81ls3QfgDDLqsxxWjF8Tqi4dqgfSUdTx3CWtB7B1x4q5U2Xe6MMOgvVpYdm6aFZRmiOYOgP968Pu3MdwecekCVSjr8OuV66pr0rcXWo3ErElRG87yC8Ht0jxs4zs-7Di-liPitn34uLj_DSL6Rz59mFzdVt6_ZQUllVnwJ-PgBtMt6f |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-Level+Fusion%3A+A+Novel+Information+Fusion+Mode+From+the+Perspective+of+Granular+Computing&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhao%2C+Fan&rft.au=Zhang%2C+Qinghua&rft.au=Yang%2C+Ying&rft.au=Yin%2C+Longjun&rft.date=2025-04-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=55&rft.issue=4&rft.spage=1758&rft.epage=1771&rft_id=info:doi/10.1109%2FTCYB.2025.3538646&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2025_3538646 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |