Knowledge-Level Fusion: A Novel Information Fusion Mode From the Perspective of Granular Computing

In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource info...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 55; no. 4; pp. 1758 - 1771
Main Authors Zhao, Fan, Zhang, Qinghua, Yang, Ying, Yin, Longjun, Wang, Guoyin, Ding, Weiping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2025
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2025.3538646

Cover

Abstract In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource information fusion. However, on one hand, the existing information fusion studies in GrC all focus on feature-level fusion and decision-level fusion based on multisource data, neglecting the basic characteristics and advantages of GrC: granulation. On the other hand, the existing methods for fusing the knowledge spaces in GrC suffer from losing the necessary information or artificially adding information. In order to address these issues, a novel information fusion mode from the perspective of GrC is proposed in this article, named knowledge-level fusion. First, by introducing a new step, that is, granulate data to construct the knowledge space, into the multisource information fusion process, the knowledge-level fusion mode is proposed. Second, the optimistic core quotient space is proposed to characterize the information consensus and information gap of multisource knowledge spaces in the static data environment. The pessimistic core quotient space is proposed to characterize the information consensus in the dynamic data environment. Related theorems are given to describe the characteristics of the core quotient spaces. Then, the knowledge-level fusion method driven jointly by the data space and the knowledge space is introduced based on the principle of extracting the core quotient space first and then allocating other objects in the candidate set. On the basis, the superiority of the proposed method over the existing methods is demonstrated through theoretical analysis. Finally, experiments on 12 UCI datasets and three UKB datasets are carried out to verify the promoting effect on classification and clustering algorithms, the effectiveness compared to feature-level and decision-level fusion modes, efficiency and statistical significance of the proposed knowledge-level fusion method and mode.
AbstractList In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource information fusion. However, on one hand, the existing information fusion studies in GrC all focus on feature-level fusion and decision-level fusion based on multisource data, neglecting the basic characteristics and advantages of GrC: granulation. On the other hand, the existing methods for fusing the knowledge spaces in GrC suffer from losing the necessary information or artificially adding information. In order to address these issues, a novel information fusion mode from the perspective of GrC is proposed in this article, named knowledge-level fusion. First, by introducing a new step, that is, granulate data to construct the knowledge space, into the multisource information fusion process, the knowledge-level fusion mode is proposed. Second, the optimistic core quotient space is proposed to characterize the information consensus and information gap of multisource knowledge spaces in the static data environment. The pessimistic core quotient space is proposed to characterize the information consensus in the dynamic data environment. Related theorems are given to describe the characteristics of the core quotient spaces. Then, the knowledge-level fusion method driven jointly by the data space and the knowledge space is introduced based on the principle of extracting the core quotient space first and then allocating other objects in the candidate set. On the basis, the superiority of the proposed method over the existing methods is demonstrated through theoretical analysis. Finally, experiments on 12 UCI datasets and three UKB datasets are carried out to verify the promoting effect on classification and clustering algorithms, the effectiveness compared to feature-level and decision-level fusion modes, efficiency and statistical significance of the proposed knowledge-level fusion method and mode.In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource information fusion. However, on one hand, the existing information fusion studies in GrC all focus on feature-level fusion and decision-level fusion based on multisource data, neglecting the basic characteristics and advantages of GrC: granulation. On the other hand, the existing methods for fusing the knowledge spaces in GrC suffer from losing the necessary information or artificially adding information. In order to address these issues, a novel information fusion mode from the perspective of GrC is proposed in this article, named knowledge-level fusion. First, by introducing a new step, that is, granulate data to construct the knowledge space, into the multisource information fusion process, the knowledge-level fusion mode is proposed. Second, the optimistic core quotient space is proposed to characterize the information consensus and information gap of multisource knowledge spaces in the static data environment. The pessimistic core quotient space is proposed to characterize the information consensus in the dynamic data environment. Related theorems are given to describe the characteristics of the core quotient spaces. Then, the knowledge-level fusion method driven jointly by the data space and the knowledge space is introduced based on the principle of extracting the core quotient space first and then allocating other objects in the candidate set. On the basis, the superiority of the proposed method over the existing methods is demonstrated through theoretical analysis. Finally, experiments on 12 UCI datasets and three UKB datasets are carried out to verify the promoting effect on classification and clustering algorithms, the effectiveness compared to feature-level and decision-level fusion modes, efficiency and statistical significance of the proposed knowledge-level fusion method and mode.
In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different information. Granular computing (GrC), as a methodology simulating human hierarchical cognition, provides a new approach for multisource information fusion. However, on one hand, the existing information fusion studies in GrC all focus on feature-level fusion and decision-level fusion based on multisource data, neglecting the basic characteristics and advantages of GrC: granulation. On the other hand, the existing methods for fusing the knowledge spaces in GrC suffer from losing the necessary information or artificially adding information. In order to address these issues, a novel information fusion mode from the perspective of GrC is proposed in this article, named knowledge-level fusion. First, by introducing a new step, that is, granulate data to construct the knowledge space, into the multisource information fusion process, the knowledge-level fusion mode is proposed. Second, the optimistic core quotient space is proposed to characterize the information consensus and information gap of multisource knowledge spaces in the static data environment. The pessimistic core quotient space is proposed to characterize the information consensus in the dynamic data environment. Related theorems are given to describe the characteristics of the core quotient spaces. Then, the knowledge-level fusion method driven jointly by the data space and the knowledge space is introduced based on the principle of extracting the core quotient space first and then allocating other objects in the candidate set. On the basis, the superiority of the proposed method over the existing methods is demonstrated through theoretical analysis. Finally, experiments on 12 UCI datasets and three UKB datasets are carried out to verify the promoting effect on classification and clustering algorithms, the effectiveness compared to feature-level and decision-level fusion modes, efficiency and statistical significance of the proposed knowledge-level fusion method and mode.
Author Zhao, Fan
Zhang, Qinghua
Wang, Guoyin
Ding, Weiping
Yin, Longjun
Yang, Ying
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0009-0008-4437-844X
  surname: Zhao
  fullname: Zhao, Fan
  organization: Key Laboratory of Intelligent Analysis and Decision on Complex Systems and the Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 2
  givenname: Qinghua
  orcidid: 0000-0002-6154-4656
  surname: Zhang
  fullname: Zhang, Qinghua
  email: zhangqh@cqupt.edu.cn
  organization: Key Laboratory of Big Data Intelligent Computing and the Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 3
  givenname: Ying
  surname: Yang
  fullname: Yang, Ying
  organization: Key Laboratory of Big Data Intelligent Computing and the Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 4
  givenname: Longjun
  surname: Yin
  fullname: Yin, Longjun
  organization: Key Laboratory of Intelligent Analysis and Decision on Complex Systems and the Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 5
  givenname: Guoyin
  orcidid: 0000-0002-8521-5232
  surname: Wang
  fullname: Wang, Guoyin
  organization: National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing, China
– sequence: 6
  givenname: Weiping
  orcidid: 0000-0002-3180-7347
  surname: Ding
  fullname: Ding, Weiping
  organization: School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40036463$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRS1UREvhA5AQ8pJNih952OxKRAFRHgtYsIpSe1yCkrjYSRF_j6sWxGw8njl3FucQDVrbAkInlEwoJfLiJX-7mjDCkglPuEjjdA-NGE1FxFiWDP76NBuiY-8_SCgRRlIcoGFMCA8JPkKL-9Z-1aCXEM1hDTWe9b6y7SWe4ke7-d-1xrqm7MJwt8MPVgOeOdvg7h3wMzi_AtVVa8DW4BtXtn1dOpzbZtV3Vbs8QvumrD0c794xep1dv-S30fzp5i6fziPFsrSLlIBkQYkWMVVCGsaIyuIs1kxRykVCjMwI15oakxhOMxkWUnCdxiEhhFZ8jM63d1fOfvbgu6KpvIK6LluwvS9CKCYyDV4CerZD-0UDuli5qindd_HrJQB0CyhnvXdg_hBKio3-YqO_2OgvdvpD5nSbqQDgHy8kI5LwH3QSfyg
CODEN ITCEB8
Cites_doi 10.1016/j.inffus.2023.101948
10.1109/TCYB.2022.3184977
10.1109/TSMCA.2009.2035436
10.1016/j.knosys.2023.110257
10.1016/j.inffus.2023.101954
10.1016/j.ins.2010.11.019
10.1016/j.ins.2011.07.010
10.1109/TSMC.2018.2812156
10.1016/j.ijar.2013.03.017
10.1016/j.ins.2021.08.076
10.1016/S0019-9958(65)90241-X
10.1109/TSMC.2018.2854630
10.1016/0165-0114(89)90077-8
10.1016/j.neucom.2022.08.055
10.1109/TSMCC.2012.2236648
10.1109/TCYB.2022.3208130
10.1109/TEVC.2021.3079320
10.1126/science.1127647
10.1109/TNNLS.2021.3054063
10.1109/TCYB.2019.2923430
10.1109/tfuzz.2024.3352615
10.1016/j.asoc.2013.06.017
10.1007/BF01001956
10.1016/j.knosys.2023.111055
10.1109/TFUZZ.2023.3335965
10.1016/j.inffus.2023.01.015
10.1016/s0031-3203(01)00103-0
10.1109/TFUZZ.2020.2965864
10.1007/978-3-031-43075-6_38
10.1109/TCYB.2015.2508024
10.1109/TSMC.2021.3093467
10.1016/j.ins.2019.09.003
10.1155/2021/5556378
10.1111/rssc.12399
10.1109/JAS.2022.106061
10.1016/j.neucom.2018.12.026
10.1016/j.knosys.2017.04.005
10.1109/TCYB.2023.3295852
10.1016/j.ijar.2019.11.002
10.1109/TFUZZ.2018.2889020
10.1016/j.knosys.2024.111425
10.1109/TFUZZ.2024.3399769
10.1016/j.asoc.2022.109270
10.1016/j.inffus.2022.12.027
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2025.3538646
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1771
ExternalDocumentID 40036463
10_1109_TCYB_2025_3538646
10892090
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62276038; 62221005
  funderid: 10.13039/501100001809
– fundername: Joint Fund of Chongqing Natural Science Foundation for Innovation and Development
  grantid: CSTB2023NSCQ-LZX0164
  funderid: 10.13039/501100011002
– fundername: Chongqing Talent Program
  grantid: CQYC20210202215
– fundername: Graduate Scientific Research Innovation Project of Chongqing
  grantid: CYB240236
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c276t-c8e5b10d841c89f220c7474d2c113850f9703dd1ff5f3179d2c983d64d8488dc3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 21:28:21 EDT 2025
Wed Mar 26 04:38:46 EDT 2025
Wed Oct 01 06:40:46 EDT 2025
Wed Aug 27 01:38:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-c8e5b10d841c89f220c7474d2c113850f9703dd1ff5f3179d2c983d64d8488dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8521-5232
0000-0002-3180-7347
0000-0002-6154-4656
0009-0008-4437-844X
PMID 40036463
PQID 3174096216
PQPubID 23479
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCYB_2025_3538646
ieee_primary_10892090
proquest_miscellaneous_3174096216
pubmed_primary_40036463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Chao (ref49)
ref12
ref15
ref14
ref53
ref10
ref17
ref16
ref19
ref18
Zhang (ref40) 1992
Xu (ref37) 2011; 13
ref51
ref50
Hozumi (ref11) 2022
ref46
ref48
ref47
ref41
ref44
Liu (ref45) 2005; 28
ref8
ref7
ref9
ref4
ref6
Pan (ref2) 2013
Hall (ref3) 2004
ref5
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ref24
ref23
Zhang (ref42) 2003; 14
ref26
ref25
ref20
ref22
Li (ref43) 2024; 286
ref21
Zhang (ref52) 2008; 21
ref28
ref27
ref29
References_xml – ident: ref34
  doi: 10.1016/j.inffus.2023.101948
– ident: ref12
  doi: 10.1109/TCYB.2022.3184977
– volume: 28
  start-page: 1680
  issue: 10
  year: 2005
  ident: ref45
  article-title: The granular theorem of quotient space in image segmentation
  publication-title: Chin. J. Comput.
– ident: ref36
  doi: 10.1109/TSMCA.2009.2035436
– volume-title: Mathematical Techniques in Multisensor Data Fusion
  year: 2004
  ident: ref3
– ident: ref6
  doi: 10.1016/j.knosys.2023.110257
– ident: ref30
  doi: 10.1016/j.inffus.2023.101954
– ident: ref38
  doi: 10.1016/j.ins.2010.11.019
– ident: ref29
  doi: 10.1016/j.ins.2011.07.010
– ident: ref48
  doi: 10.1109/TSMC.2018.2812156
– ident: ref31
  doi: 10.1016/j.ijar.2013.03.017
– ident: ref35
  doi: 10.1016/j.ins.2021.08.076
– ident: ref39
  doi: 10.1016/S0019-9958(65)90241-X
– ident: ref50
  doi: 10.1109/TSMC.2018.2854630
– ident: ref53
  doi: 10.1016/0165-0114(89)90077-8
– ident: ref16
  doi: 10.1016/j.neucom.2022.08.055
– ident: ref23
  doi: 10.1109/TSMCC.2012.2236648
– ident: ref28
  doi: 10.1109/TCYB.2022.3208130
– ident: ref13
  doi: 10.1109/TEVC.2021.3079320
– ident: ref10
  doi: 10.1126/science.1127647
– ident: ref32
  doi: 10.1109/TNNLS.2021.3054063
– ident: ref27
  doi: 10.1109/TCYB.2019.2923430
– ident: ref17
  doi: 10.1109/tfuzz.2024.3352615
– ident: ref21
  doi: 10.1016/j.asoc.2013.06.017
– start-page: 585
  volume-title: Proc. Int. Conf. Rough Sets Knowl. Technol.
  ident: ref49
  article-title: Audio signal blind deconvolution based on the quotient space hierarchical theory
– volume-title: Theory and Applications of Problem Solving
  year: 1992
  ident: ref40
– ident: ref41
  doi: 10.1007/BF01001956
– ident: ref18
  doi: 10.1016/j.knosys.2023.111055
– ident: ref19
  doi: 10.1109/TFUZZ.2023.3335965
– volume: 14
  start-page: 770
  issue: 4
  year: 2003
  ident: ref42
  article-title: Theory of fuzzy quotient space (methods of fuzzy granular computing)
  publication-title: J. Softw.
– ident: ref7
  doi: 10.1016/j.inffus.2023.01.015
– volume: 13
  start-page: 246
  issue: 4
  year: 2011
  ident: ref37
  article-title: Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space
  publication-title: Int. J. Fuzzy Syst.
– volume-title: Multi-Source Information Fusion Theory and Its Application
  year: 2013
  ident: ref2
– ident: ref14
  doi: 10.1016/s0031-3203(01)00103-0
– ident: ref44
  doi: 10.1109/TFUZZ.2020.2965864
– ident: ref15
  doi: 10.1007/978-3-031-43075-6_38
– ident: ref4
  doi: 10.1109/TCYB.2015.2508024
– volume: 21
  start-page: 627
  issue: 5
  year: 2008
  ident: ref52
  article-title: Analysis on hierarchical fuzzy quotient space structure
  publication-title: Pattern Recognit. Artif. Intell.
– ident: ref25
  doi: 10.1109/TSMC.2021.3093467
– ident: ref22
  doi: 10.1016/j.ins.2019.09.003
– ident: ref24
  doi: 10.1155/2021/5556378
– ident: ref47
  doi: 10.1111/rssc.12399
– ident: ref1
  doi: 10.1109/JAS.2022.106061
– ident: ref46
  doi: 10.1016/j.neucom.2018.12.026
– ident: ref33
  doi: 10.1016/j.knosys.2017.04.005
– ident: ref5
  doi: 10.1109/TCYB.2023.3295852
– volume-title: arXiv:2206.04189
  year: 2022
  ident: ref11
  article-title: CCP: Correlated clustering and projection for dimensionality reduction
– ident: ref20
  doi: 10.1016/j.ijar.2019.11.002
– ident: ref26
  doi: 10.1109/TFUZZ.2018.2889020
– volume: 286
  year: 2024
  ident: ref43
  article-title: Boosted stochastic fuzzy granular hypersurface classifier
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.111425
– ident: ref51
  doi: 10.1109/TFUZZ.2024.3399769
– ident: ref8
  doi: 10.1016/j.asoc.2022.109270
– ident: ref9
  doi: 10.1016/j.inffus.2022.12.027
SSID ssj0000816898
Score 2.3994222
Snippet In recent years, with the rapid development of the Internet, multisource information fusion has become a forefront issue due to its ability to merge different...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1758
SubjectTerms Aerospace electronics
Data mining
Data models
Decision making
Feature extraction
Granular computing
Granular computing (GrC)
granulation
information fusion
knowledge-level fusion
Machine learning algorithms
Problem-solving
quotient space
Rough sets
Semantics
Title Knowledge-Level Fusion: A Novel Information Fusion Mode From the Perspective of Granular Computing
URI https://ieeexplore.ieee.org/document/10892090
https://www.ncbi.nlm.nih.gov/pubmed/40036463
https://www.proquest.com/docview/3174096216
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR27TsMw0IJOLEChQHnJSAyAlOI4jmuzlYpS8agYWqlMUWM7C6JBbbPw9ZwdpzykSiyRI8eO47vLPXwPhM5B5gBGx3SQKsMCZqQJZMo56DyCi5gqolwS1-cB74_Ywzge-2B1FwtjjHHOZ6Zlm-4sX-eqsKYyoHAhKZGgoa-3BS-DtZYGFVdBwtW-pdAIQKxo-1PMkMjrYff1FrRBGrciIHHObOkiZpOxMB79YkmuxspqcdOxnd4WGlQLLr1N3lrFIm2pzz-5HP_9Rdto0wuguFNiTB2tmekOqnsSn-MLn4f6chelj5W9LXiyrkW4V1jT2g3u4EFu730okwWt78O2tBruzfJ3DIIlfvmO5MR5hu-BL1qvV1yWkgCm2UCj3t2w2w98SYZA0TZfBEqYOA2JFixUQmaUEgX6CNNUhWEkYpJJ-INoHWZZnIFkIqFDikhzBiOE0CraQ7VpPjUHCFNN08gwklK4tkk8MaAdcUNCQ2GWMGuiqwoqyUeZeSNxGguRiYVmYqGZeGg2UcNu7o8Hy31torMKkAnQjT0MmUxNXswTWB2othxwpYn2SwgvR1eIcbhi1iO0YV9eOvAco9piVpgTkE0W6anDyS_EV9tS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NT9sw9AnBYbuMdeu2MhiexIFNSuc4tmtzA0ToRhvtUCR2iojtXKY1CJoLv55nxyljEtIukSPHlu33Xt6H3wfAAcocyOi4TSrjeMKddomupESdR0klmKEmJHGdF3J6yX9ciasYrB5iYZxzwfnMjX0z3OXbxrTeVIYUrjSjGjX0LcE5F1241tqkEmpIhOq3DBsJChaTeI-ZUv1tcfrrBPVBJsYZErnkvngR9-lYuMyeMKVQZeV5gTMwnnwbin7Jnb_J73G7qsbm_p9sjv-9p9fwKoqg5LjDmQFsuOUbGEQivyOHMRP1l7dQXfQWt2TmnYtI3nrj2hE5JkXj32Mwkwdu7CO-uBrJb5s_BEVL8vMxlpM0NTlHzuj9XklXTALZ5hAu87PF6TSJRRkSwyZylRjlRJVSq3hqlK4ZowY1Em6ZSdNMCVpr_IdYm9a1qFE20dihVWYlxxFKWZO9g81ls3QfgDDLqsxxWjF8Tqi4dqgfSUdTx3CWtB7B1x4q5U2Xe6MMOgvVpYdm6aFZRmiOYOgP968Pu3MdwecekCVSjr8OuV66pr0rcXWo3ErElRG87yC8Ht0jxs4zs-7Di-liPitn34uLj_DSL6Rz59mFzdVt6_ZQUllVnwJ-PgBtMt6f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-Level+Fusion%3A+A+Novel+Information+Fusion+Mode+From+the+Perspective+of+Granular+Computing&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhao%2C+Fan&rft.au=Zhang%2C+Qinghua&rft.au=Yang%2C+Ying&rft.au=Yin%2C+Longjun&rft.date=2025-04-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=55&rft.issue=4&rft.spage=1758&rft.epage=1771&rft_id=info:doi/10.1109%2FTCYB.2025.3538646&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2025_3538646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon