Nonparametric matrix regression function estimation over symmetric positive definite matrices
Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to develop a nonparametric estimation method for a symmetric positive definite matrix regression function given covariates. By obtaining a suitab...
Saved in:
Published in | Journal of the Korean Statistical Society Vol. 50; no. 3; pp. 795 - 817 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.09.2021
한국통계학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-3192 2005-2863 |
DOI | 10.1007/s42952-020-00082-5 |
Cover
Abstract | Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to develop a nonparametric estimation method for a symmetric positive definite matrix regression function given covariates. By obtaining a suitable parametrization based on the Cholesky decomposition, we make it possible to apply univariate smoothing methods to the matrix regression problem. The parametrization also guarantees that the proposed estimator is symmetric positive definite over the entire domain. We adopt the Wishart log-likelihood and a smoothing technique using the basis methodology to define our estimator. The rate of convergence of the proposed estimator is obtained under some regularity conditions. Simulations are performed to investigate the finite sample properties of our proposed method using natural splines. Moreover, we present the results of an analysis of real diffusion tensor imaging data where the estimated fractional anisotropy is provided using
3
×
3
symmetric positive definite matrices measured at consecutive positions along a fiber tract in the brain of subjects. |
---|---|
AbstractList | Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to develop a nonparametric estimation method for a symmetric positive definite matrix regression function given covariates. By obtaining a suitable parametrization based on the Cholesky decomposition, we make it possible to apply univariate smoothing methods to the matrix regression problem. The parametrization also guarantees that the proposed estimator is symmetric positive definite over the entire domain. We adopt the Wishart log-likelihood and a smoothing technique using the basis methodology to define our estimator. The rate of convergence of the proposed estimator is obtained under some regularity conditions. Simulations are performed to investigate the finite sample properties of our proposed method using natural splines. Moreover, we present the results of an analysis of real diffusion tensor imaging data where the estimated fractional anisotropy is provided using 3 × 3 symmetric positive definite matrices measured at consecutive positions along a fiber tract in the brain of subjects. KCI Citation Count: 0 Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to develop a nonparametric estimation method for a symmetric positive definite matrix regression function given covariates. By obtaining a suitable parametrization based on the Cholesky decomposition, we make it possible to apply univariate smoothing methods to the matrix regression problem. The parametrization also guarantees that the proposed estimator is symmetric positive definite over the entire domain. We adopt the Wishart log-likelihood and a smoothing technique using the basis methodology to define our estimator. The rate of convergence of the proposed estimator is obtained under some regularity conditions. Simulations are performed to investigate the finite sample properties of our proposed method using natural splines. Moreover, we present the results of an analysis of real diffusion tensor imaging data where the estimated fractional anisotropy is provided using 3 × 3 symmetric positive definite matrices measured at consecutive positions along a fiber tract in the brain of subjects. |
Author | Bak, Kwan-Young Koo, Ja-Yong Kim, Kwang-Rae Kim, Peter T. Zhu, Hongtu Park, Changyi |
Author_xml | – sequence: 1 givenname: Kwan-Young surname: Bak fullname: Bak, Kwan-Young organization: Department of Statistics, Korea University – sequence: 2 givenname: Kwang-Rae surname: Kim fullname: Kim, Kwang-Rae organization: SAS Software Korea Ltd – sequence: 3 givenname: Peter T. surname: Kim fullname: Kim, Peter T. organization: Department of Mathematics and Statistics, University of Guelph – sequence: 4 givenname: Ja-Yong orcidid: 0000-0002-1035-6102 surname: Koo fullname: Koo, Ja-Yong email: jykoo@korea.ac.kr organization: Department of Statistics, Korea University – sequence: 5 givenname: Changyi surname: Park fullname: Park, Changyi organization: Department of Statistics, University of Seoul – sequence: 6 givenname: Hongtu surname: Zhu fullname: Zhu, Hongtu organization: Gillings School of Global Public Health, University of North Carolina at Chapel Hill |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002762882$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UE1rAjEUDMVC1fYP9LTXHtK-JJvs5ijSD0FaKPZYQsxmJVoTSVap_77R9dzTDO_NDMyM0MAHbxG6J_BIAKqnVFLJKQYKGABqivkVGlIAjmkt2AANCaUCMyLpDRqltAYQJaEwRN_vwe901FvbRWeKrc7wW0S7ijYlF3zR7r3pTsSmzuX3iYaDjUU6bi-mXUiucwdbNLZ13nW2jzE23aLrVv8ke3fBMfp6eV5M3_D843U2ncyxoZXoMGe8LHVJKi1oSZghTU2tbMiSyEbIigE0tmGcSMJsVRpN6nzlS8KWtFrWoNkYPfS5PrZqY5wK2p1xFdQmqsnnYqZkLWopqqylvdbEkFK0rdrFXCweFQF1GlP1Y6o8pjqPqXg2sd6UstivbFTrsI8-d_rP9QcQX3o_ |
Cites_doi | 10.1214/aos/1176350954 10.1109/TIT.2017.2653803 10.1198/jasa.2009.tm08096 10.1214/08-AOS628 10.1111/j.1467-9868.2011.01022.x 10.1093/biomet/86.3.677 10.1214/12-AOS998 10.1038/nrn1119 10.1007/b13794 10.1016/j.neuroimage.2011.01.075 10.1080/01621459.2019.1700129 10.1214/aos/1032894451 10.1016/0167-7152(95)00020-8 10.1214/aos/1176344136 10.1109/ICCV.2007.4408977 10.1214/09-AOAS249 10.1006/jmre.2001.2400 10.1002/mrm.1910360612 10.1093/biomet/87.2.425 10.1090/S0002-9947-1988-0920166-3 10.1007/BF01404687 10.1016/j.mri.2006.01.004 10.1006/jmrb.1996.0086 10.1002/mrm.10552 10.1109/TMI.2007.903195 10.1109/IROS.2017.8202138 10.1142/9789814340564_0010 10.1016/j.jmva.2013.04.006 10.1002/nbm.783 10.1007/978-1-4612-2222-4 10.1214/aos/1176349940 |
ContentType | Journal Article |
Copyright | Korean Statistical Society 2020 |
Copyright_xml | – notice: Korean Statistical Society 2020 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s42952-020-00082-5 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2005-2863 |
EndPage | 817 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9868967 10_1007_s42952_020_00082_5 |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2018R1D1A1B07049972 funderid: http://dx.doi.org/10.13039/501100003725 |
GroupedDBID | --K --M .UV .~1 0R~ 1B1 1~. 1~5 2JY 4.4 406 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AAAKF AACDK AACTN AAEDT AAHNG AAIKJ AAJBT AAKOC AALRI AAOAW AAQFI AASML AATNV AAXUO ABAKF ABAOU ABECU ABMQK ABTEG ABTKH ABTMW ABUCO ABWVN ABXDB ACAOD ACDAQ ACDTI ACGFS ACHSB ACOKC ACPIV ACRPL ACZOJ ADBBV ADEZE ADMUD ADNMO ADTPH ADYFF AEFQL AEKER AEMSY AENEX AESKC AFTJW AGHFR AGMZJ AGQEE AGUBO AGYEJ AIGIU AIGVJ AILAN AITUG AJOXV AJZVZ ALMA_UNASSIGNED_HOLDINGS AMFUW AMXSW ARUGR BGNMA BLXMC CS3 DPUIP DU5 EBLON EBS EJD EO9 EP2 EP3 F5P FDB FIGPU FIRID FNLPD FNPLU GBLVA HAMUX HZ~ IKXTQ IWAJR J1W JZLTJ LLZTM M41 M4Y MHUIS MO0 N9A NPVJJ NQJWS NU0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. PT4 Q38 RIG ROL RPZ RSV SDF SDG SES SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ T5K UOJIU UTJUX ZMTXR ~G- AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AAFGU AAYFA ABFGW ABKAS ABYKQ ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJBFU AJDOV AKQUC |
ID | FETCH-LOGICAL-c276t-53544a417a62413c1d82e9d1b19d697300ded351913e74ca186975b13b27b80a3 |
ISSN | 1226-3192 |
IngestDate | Tue Nov 21 21:04:29 EST 2023 Tue Jul 01 01:27:35 EDT 2025 Fri Feb 21 02:48:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Matrix regression function Stein loss Minimaxity Cholesky factorization Wishart distribution Diffusion tensor imaging |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c276t-53544a417a62413c1d82e9d1b19d697300ded351913e74ca186975b13b27b80a3 |
ORCID | 0000-0002-1035-6102 |
PageCount | 23 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9868967 crossref_primary_10_1007_s42952_020_00082_5 springer_journals_10_1007_s42952_020_00082_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 2021-09-00 2021-09 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of the Korean Statistical Society |
PublicationTitleAbbrev | J. Korean Stat. Soc |
PublicationYear | 2021 |
Publisher | Springer Singapore 한국통계학회 |
Publisher_xml | – name: Springer Singapore – name: 한국통계학회 |
References | GrenanderUMillerMIPattern theory from representation to inference2007OxfordOxford University Press1259.62089 AndersonTWAn introduction to multivariate statistical analysis20033HobokenWiley1039.62044 OsborneDPatrangenaruVEllingsonLGroisserDSchwartzmanANonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and diffusion tensor image analysisJournal of Multivariate Analysis2013119163175306142110.1016/j.jmva.2013.04.006 YatracosYGA lower bound on the error in nonparametric regression type problemsAnnals of Statistics1988161180118795919510.1214/aos/1176350954 ZhuHTKongLLiRStynerMGerigGLinWGilmoreJHFadtts: Functional analysis of diffusion tensor tract statisticsNeuroImage2011561412142510.1016/j.neuroimage.2011.01.075 SchwarzGEstimating the dimension of a modelAnnals of Statistics1978646146446801410.1214/aos/1176344136 James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proceedings of the fourth Berkeley symposium on mathematical statistics and probability. Contributions to the theory of statistics (Vol. 1, pp. 361–379). Berkeley, Calif.: University of California Press. KooJ-YKimW-CWavelet density estimation by approximation of log-densitiesStatistics & Probability Letters199626271278139490310.1016/0167-7152(95)00020-8 PourahmadiMJoint mean-covariance models with applications to longitudinal data: unconstrained parameterisationBiometrika199986677690172378610.1093/biomet/86.3.677 GolubGHLoanCFMatrix computations19892BaltimoreThe Johns Hopkins University Press0733.65016 SchwartzmanAMascarenhasWFTaylorJEInference for eigenvalues and eigenvectors of Gaussian symmetric matricesAnnals of Statistics20083614231431248501610.1214/08-AOS628 CaiTTZhouHHOptimal rates of convergence for sparse covariance matrix estimationAnnals of Statistics201240523892420309760710.1214/12-AOS998 PourahmadiMMaximum likelihood estimation of generalized linear models for multivariate normal covariance matrixBiometrika200087425435178248810.1093/biomet/87.2.425 StoneCJThe dimensionality reduction principle for generalized additive modelsAnnals of Statistics19861459060684051610.1214/aos/1176349940 BasserPJJonesDKDiffusion-tensor MRI: theory, experimental design and data analysis—a technical reviewNMR in Biomedicine20021545646710.1002/nbm.783 ZhuHTChenYSIbrahimJGLiYMLinWLIntrinsic regression models for positive-definite matrices with applications to diffusion tensor imagingJournal of the American Statistical Association200910412031212275024510.1198/jasa.2009.tm08096 HasanKMNarayanaPAComputation of the fractional anisotropy and mean diffusivity maps without tensor decoding and diagonalization: theoretical analysis and validationMagnetic Resonance in Medicine20035058959810.1002/mrm.10552 Jaquier, N., & Calinon, S. (2017). Gaussian mixture regression on symmetric positive definite matrices manifolds: Application to wrist motion estimation with sEMG. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 59–64), Vancouver, BC. HärdleWKerkyacharianGPicardDTsybakovAWavelets, approximation and statistical applications. Lecture notes in statistics1998New YorkSpringer10.1007/978-1-4612-2222-4 SaidSBombrunLBerthoumieuYMantonJHRiemannian gaussian distributions on the space of symmetric positive definite matricesIEEE Transactions on Information Theory201763421532170362686210.1109/TIT.2017.2653803 DonohoDLJohnstoneIMKerkyacharianGPicardDDensity estimation by wavelet thresholdingAnnals of Statistics199624508539139497410.1214/aos/1032894451 Davis, B. C., Bullitt, E., Fletcher, P. T., & Joshi, S. (2007). Population shape regression from random design data. In IEEE 11th international conference on computer vision (pp 1–7). Rio de Janeiro Kim, P. T., & Richards, D. S. P. (2011). Deconvolution density estimation on the space of positive definite symmetric matrices. In Nonparametric statistics and mixture models: A Festschrift in honor of Thomas P Hettmansperger (pp 147-168). ChauJvon SachsRIntrinsic wavelet regression for curves of Hermitian positive definite matricesJournal of the American Statistical Association202010.1080/01621459.2019.17001291464.62377 HasanKMBasserPJParkerDLAlexanderALAnalytical computation of the eigenvalues and eigenvectors in DT-MRIJournal of Magnetic Resonance2001152414710.1006/jmre.2001.2400 ZhuHXuDRazAHaoXZhangHKangarluABansalRPetersonBSA statistical framework for the classification of tensor morphologies in diffusion tensor imagesMagnetic Resonance Imaging20062456958210.1016/j.mri.2006.01.004 de BoorCA practical guide to splines2001New YorkSpringer0987.65015 BasserPPierpaoliCMicrostructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRIJournal of Magnetic Resonance199611120921910.1006/jmrb.1996.0086 DrydenILKoloydenkoAZhouDNon-Euclidean statistics for covariance matrices with applications to diffusion tensor imagingAnnals of Applied Statistics2009311021123275038810.1214/09-AOAS249 PietrzykowskiTA generalization of the potential method for conditional maxima on Banach, reflexive spacesNumerische Mathematik19721836737230518110.1007/BF01404687 PierpaoliCBasserPToward a quantitative assessment of diffusion anisotropyMagnetic Resonance in Medicine19963689390610.1002/mrm.1910360612 YuanYZhuHLinWMarronJSLocal polynomial regression for symmetric positive definite matricesJournal of the Royal Statistical Society: Series B201274697719296595610.1111/j.1467-9868.2011.01022.x BarmpoutisAVemuriBCShepherdTMForderJRTensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampiIEEE Transactions on Medical Imaging2007261537154610.1109/TMI.2007.903195 DeVoreRAPopovVAInterpolation of Besov spacesTransactions of the American Mathematical Society198830539741492016610.1090/S0002-9947-1988-0920166-3 StoneCJThe use of polynomial splines and their tensor products in multivariate function estimationAnnals of Statistics19942211818312720790827.62038 BihanDLLooking into the functional architecture of the brain with diffusion MRINature Reviews Neuroscience2003446948010.1038/nrn1119 SchottJRMatrix analysis for statistics2005HobokenWiley1076.15002 TsybakovABIntroduction to nonparametric estimation2009New YorkSpringer10.1007/b13794 PJ Basser (82_CR3) 2002; 15 D Osborne (82_CR22) 2013; 119 T Pietrzykowski (82_CR24) 1972; 18 GH Golub (82_CR13) 1989 CJ Stone (82_CR31) 1986; 14 Y Yuan (82_CR35) 2012; 74 M Pourahmadi (82_CR26) 2000; 87 W Härdle (82_CR15) 1998 KM Hasan (82_CR16) 2003; 50 J-Y Koo (82_CR21) 1996; 26 C Pierpaoli (82_CR23) 1996; 36 TW Anderson (82_CR1) 2003 S Said (82_CR27) 2017; 63 J Chau (82_CR7) 2020 HT Zhu (82_CR37) 2009; 104 RA DeVore (82_CR10) 1988; 305 TT Cai (82_CR6) 2012; 40 82_CR8 82_CR20 C de Boor (82_CR9) 2001 JR Schott (82_CR28) 2005 A Schwartzman (82_CR29) 2008; 36 AB Tsybakov (82_CR33) 2009 H Zhu (82_CR36) 2006; 24 M Pourahmadi (82_CR25) 1999; 86 A Barmpoutis (82_CR2) 2007; 26 DL Bihan (82_CR5) 2003; 4 KM Hasan (82_CR17) 2001; 152 YG Yatracos (82_CR34) 1988; 16 IL Dryden (82_CR12) 2009; 3 82_CR18 U Grenander (82_CR14) 2007 82_CR19 P Basser (82_CR4) 1996; 111 G Schwarz (82_CR30) 1978; 6 DL Donoho (82_CR11) 1996; 24 CJ Stone (82_CR32) 1994; 22 HT Zhu (82_CR38) 2011; 56 |
References_xml | – reference: GolubGHLoanCFMatrix computations19892BaltimoreThe Johns Hopkins University Press0733.65016 – reference: PourahmadiMJoint mean-covariance models with applications to longitudinal data: unconstrained parameterisationBiometrika199986677690172378610.1093/biomet/86.3.677 – reference: Davis, B. C., Bullitt, E., Fletcher, P. T., & Joshi, S. (2007). Population shape regression from random design data. In IEEE 11th international conference on computer vision (pp 1–7). Rio de Janeiro – reference: de BoorCA practical guide to splines2001New YorkSpringer0987.65015 – reference: TsybakovABIntroduction to nonparametric estimation2009New YorkSpringer10.1007/b13794 – reference: SchottJRMatrix analysis for statistics2005HobokenWiley1076.15002 – reference: Kim, P. T., & Richards, D. S. P. (2011). Deconvolution density estimation on the space of positive definite symmetric matrices. In Nonparametric statistics and mixture models: A Festschrift in honor of Thomas P Hettmansperger (pp 147-168). – reference: BasserPJJonesDKDiffusion-tensor MRI: theory, experimental design and data analysis—a technical reviewNMR in Biomedicine20021545646710.1002/nbm.783 – reference: ZhuHTKongLLiRStynerMGerigGLinWGilmoreJHFadtts: Functional analysis of diffusion tensor tract statisticsNeuroImage2011561412142510.1016/j.neuroimage.2011.01.075 – reference: AndersonTWAn introduction to multivariate statistical analysis20033HobokenWiley1039.62044 – reference: HasanKMBasserPJParkerDLAlexanderALAnalytical computation of the eigenvalues and eigenvectors in DT-MRIJournal of Magnetic Resonance2001152414710.1006/jmre.2001.2400 – reference: SchwartzmanAMascarenhasWFTaylorJEInference for eigenvalues and eigenvectors of Gaussian symmetric matricesAnnals of Statistics20083614231431248501610.1214/08-AOS628 – reference: YuanYZhuHLinWMarronJSLocal polynomial regression for symmetric positive definite matricesJournal of the Royal Statistical Society: Series B201274697719296595610.1111/j.1467-9868.2011.01022.x – reference: ChauJvon SachsRIntrinsic wavelet regression for curves of Hermitian positive definite matricesJournal of the American Statistical Association202010.1080/01621459.2019.17001291464.62377 – reference: ZhuHTChenYSIbrahimJGLiYMLinWLIntrinsic regression models for positive-definite matrices with applications to diffusion tensor imagingJournal of the American Statistical Association200910412031212275024510.1198/jasa.2009.tm08096 – reference: SaidSBombrunLBerthoumieuYMantonJHRiemannian gaussian distributions on the space of symmetric positive definite matricesIEEE Transactions on Information Theory201763421532170362686210.1109/TIT.2017.2653803 – reference: StoneCJThe use of polynomial splines and their tensor products in multivariate function estimationAnnals of Statistics19942211818312720790827.62038 – reference: GrenanderUMillerMIPattern theory from representation to inference2007OxfordOxford University Press1259.62089 – reference: BasserPPierpaoliCMicrostructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRIJournal of Magnetic Resonance199611120921910.1006/jmrb.1996.0086 – reference: PietrzykowskiTA generalization of the potential method for conditional maxima on Banach, reflexive spacesNumerische Mathematik19721836737230518110.1007/BF01404687 – reference: KooJ-YKimW-CWavelet density estimation by approximation of log-densitiesStatistics & Probability Letters199626271278139490310.1016/0167-7152(95)00020-8 – reference: ZhuHXuDRazAHaoXZhangHKangarluABansalRPetersonBSA statistical framework for the classification of tensor morphologies in diffusion tensor imagesMagnetic Resonance Imaging20062456958210.1016/j.mri.2006.01.004 – reference: DeVoreRAPopovVAInterpolation of Besov spacesTransactions of the American Mathematical Society198830539741492016610.1090/S0002-9947-1988-0920166-3 – reference: SchwarzGEstimating the dimension of a modelAnnals of Statistics1978646146446801410.1214/aos/1176344136 – reference: BihanDLLooking into the functional architecture of the brain with diffusion MRINature Reviews Neuroscience2003446948010.1038/nrn1119 – reference: HärdleWKerkyacharianGPicardDTsybakovAWavelets, approximation and statistical applications. Lecture notes in statistics1998New YorkSpringer10.1007/978-1-4612-2222-4 – reference: Jaquier, N., & Calinon, S. (2017). Gaussian mixture regression on symmetric positive definite matrices manifolds: Application to wrist motion estimation with sEMG. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 59–64), Vancouver, BC. – reference: DonohoDLJohnstoneIMKerkyacharianGPicardDDensity estimation by wavelet thresholdingAnnals of Statistics199624508539139497410.1214/aos/1032894451 – reference: OsborneDPatrangenaruVEllingsonLGroisserDSchwartzmanANonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and diffusion tensor image analysisJournal of Multivariate Analysis2013119163175306142110.1016/j.jmva.2013.04.006 – reference: James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proceedings of the fourth Berkeley symposium on mathematical statistics and probability. Contributions to the theory of statistics (Vol. 1, pp. 361–379). Berkeley, Calif.: University of California Press. – reference: PourahmadiMMaximum likelihood estimation of generalized linear models for multivariate normal covariance matrixBiometrika200087425435178248810.1093/biomet/87.2.425 – reference: BarmpoutisAVemuriBCShepherdTMForderJRTensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampiIEEE Transactions on Medical Imaging2007261537154610.1109/TMI.2007.903195 – reference: CaiTTZhouHHOptimal rates of convergence for sparse covariance matrix estimationAnnals of Statistics201240523892420309760710.1214/12-AOS998 – reference: DrydenILKoloydenkoAZhouDNon-Euclidean statistics for covariance matrices with applications to diffusion tensor imagingAnnals of Applied Statistics2009311021123275038810.1214/09-AOAS249 – reference: PierpaoliCBasserPToward a quantitative assessment of diffusion anisotropyMagnetic Resonance in Medicine19963689390610.1002/mrm.1910360612 – reference: StoneCJThe dimensionality reduction principle for generalized additive modelsAnnals of Statistics19861459060684051610.1214/aos/1176349940 – reference: HasanKMNarayanaPAComputation of the fractional anisotropy and mean diffusivity maps without tensor decoding and diagonalization: theoretical analysis and validationMagnetic Resonance in Medicine20035058959810.1002/mrm.10552 – reference: YatracosYGA lower bound on the error in nonparametric regression type problemsAnnals of Statistics1988161180118795919510.1214/aos/1176350954 – ident: 82_CR18 – volume: 16 start-page: 1180 year: 1988 ident: 82_CR34 publication-title: Annals of Statistics doi: 10.1214/aos/1176350954 – volume-title: Pattern theory from representation to inference year: 2007 ident: 82_CR14 – volume: 63 start-page: 2153 issue: 4 year: 2017 ident: 82_CR27 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2017.2653803 – volume: 104 start-page: 1203 year: 2009 ident: 82_CR37 publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2009.tm08096 – volume: 36 start-page: 1423 year: 2008 ident: 82_CR29 publication-title: Annals of Statistics doi: 10.1214/08-AOS628 – volume: 74 start-page: 697 year: 2012 ident: 82_CR35 publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.1467-9868.2011.01022.x – volume-title: Matrix analysis for statistics year: 2005 ident: 82_CR28 – volume: 22 start-page: 118 year: 1994 ident: 82_CR32 publication-title: Annals of Statistics – volume: 86 start-page: 677 year: 1999 ident: 82_CR25 publication-title: Biometrika doi: 10.1093/biomet/86.3.677 – volume: 40 start-page: 2389 issue: 5 year: 2012 ident: 82_CR6 publication-title: Annals of Statistics doi: 10.1214/12-AOS998 – volume-title: A practical guide to splines year: 2001 ident: 82_CR9 – volume: 4 start-page: 469 year: 2003 ident: 82_CR5 publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn1119 – volume-title: Introduction to nonparametric estimation year: 2009 ident: 82_CR33 doi: 10.1007/b13794 – volume: 56 start-page: 1412 year: 2011 ident: 82_CR38 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.075 – year: 2020 ident: 82_CR7 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2019.1700129 – volume: 24 start-page: 508 year: 1996 ident: 82_CR11 publication-title: Annals of Statistics doi: 10.1214/aos/1032894451 – volume: 26 start-page: 271 year: 1996 ident: 82_CR21 publication-title: Statistics & Probability Letters doi: 10.1016/0167-7152(95)00020-8 – volume: 6 start-page: 461 year: 1978 ident: 82_CR30 publication-title: Annals of Statistics doi: 10.1214/aos/1176344136 – ident: 82_CR8 doi: 10.1109/ICCV.2007.4408977 – volume-title: An introduction to multivariate statistical analysis year: 2003 ident: 82_CR1 – volume: 3 start-page: 1102 year: 2009 ident: 82_CR12 publication-title: Annals of Applied Statistics doi: 10.1214/09-AOAS249 – volume: 152 start-page: 41 year: 2001 ident: 82_CR17 publication-title: Journal of Magnetic Resonance doi: 10.1006/jmre.2001.2400 – volume: 36 start-page: 893 year: 1996 ident: 82_CR23 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.1910360612 – volume: 87 start-page: 425 year: 2000 ident: 82_CR26 publication-title: Biometrika doi: 10.1093/biomet/87.2.425 – volume: 305 start-page: 397 year: 1988 ident: 82_CR10 publication-title: Transactions of the American Mathematical Society doi: 10.1090/S0002-9947-1988-0920166-3 – volume: 18 start-page: 367 year: 1972 ident: 82_CR24 publication-title: Numerische Mathematik doi: 10.1007/BF01404687 – volume: 24 start-page: 569 year: 2006 ident: 82_CR36 publication-title: Magnetic Resonance Imaging doi: 10.1016/j.mri.2006.01.004 – volume: 111 start-page: 209 year: 1996 ident: 82_CR4 publication-title: Journal of Magnetic Resonance doi: 10.1006/jmrb.1996.0086 – volume: 50 start-page: 589 year: 2003 ident: 82_CR16 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.10552 – volume: 26 start-page: 1537 year: 2007 ident: 82_CR2 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2007.903195 – ident: 82_CR19 doi: 10.1109/IROS.2017.8202138 – ident: 82_CR20 doi: 10.1142/9789814340564_0010 – volume: 119 start-page: 163 year: 2013 ident: 82_CR22 publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2013.04.006 – volume: 15 start-page: 456 year: 2002 ident: 82_CR3 publication-title: NMR in Biomedicine doi: 10.1002/nbm.783 – volume-title: Matrix computations year: 1989 ident: 82_CR13 – volume-title: Wavelets, approximation and statistical applications. Lecture notes in statistics year: 1998 ident: 82_CR15 doi: 10.1007/978-1-4612-2222-4 – volume: 14 start-page: 590 year: 1986 ident: 82_CR31 publication-title: Annals of Statistics doi: 10.1214/aos/1176349940 |
SSID | ssj0064120 ssib023362471 |
Score | 2.2041068 |
Snippet | Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to... |
SourceID | nrf crossref springer |
SourceType | Open Website Index Database Publisher |
StartPage | 795 |
SubjectTerms | Applied Statistics Bayesian Inference Mathematics and Statistics Research Article Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs 통계학 |
Title | Nonparametric matrix regression function estimation over symmetric positive definite matrices |
URI | https://link.springer.com/article/10.1007/s42952-020-00082-5 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002762882 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of the Korean Statistical Society, 2021, 50(3), , pp.795-817 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25dIL4imWlyzELXjVJHYeR4RAhYoe0FbqBVmJ7ayqKgnKbgviwH_hnzJjO07bBUS57K682lHW83n8JZ75hpCXuU7KpqwaVsNCYtyknJVZoVhq9qs4NbpRBouTPx5lB8f8w4k4mc1-XspaOt_UC_X9t3Ul_-NVGAO_YpXsDTwbjMIAfAb_wit4GF7_ycdHfYfS3S12xVJRi2r736LBrFxuaxfhpmX9i1IarSeHF1a_ufU_cklbF1g91Zwi_3RmlE8t3KatSFQP-wEf4CNRtTrPqCjSB0kR92DURtnDr1XHbECZzvrb8YsV-1SZa-M2XThaLsJw706GKrDijfhHFEkccrDGqAocD4K9a3q3MHbMSqAmhY9uPhQ7DVoPufRSXM1dJ85xi3blnlvR3yV8rGGLFQnD-2LLcJiY9rrxfP_aFhgSE4OIs7UhwYa0NqTYIbeSHOgZhMzFjxASkxQIAM9DVlHGnRJo-Me-TstWa25d1xUutNMNzdZxvGU5yzvktvczfe2wdpfMTHeP7AVHr--Tz1dARx3o6AQ6OoKOTqCjCDoaQEdH0NERdHQE3QNy_O7t8s0B8z06mILp2DCRCs4rHudVhie0KtZFYkod13GpsxKbIWijsQkkLPycqwo7oOWijtM6yetiv0ofkt2u78wjQoXKNaovVhnX3PCsVkJzncRK1HWqSz0n0Thb8ouTYpF_9tecvIAJlWfqVKKCOr6venk2SLhPfC_LIivKLJ-TV-N8S7-u13-x-fhGV_CE7E2L4SnZ3Qzn5hkw2E393GLoF2hAl1U |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+matrix+regression+function+estimation+over+symmetric+positive+definite+matrices&rft.jtitle=Journal+of+the+Korean+Statistical+Society&rft.au=Bak%2C+Kwan-Young&rft.au=Kim%2C+Kwang-Rae&rft.au=Kim%2C+Peter+T.&rft.au=Koo%2C+Ja-Yong&rft.date=2021-09-01&rft.issn=1226-3192&rft.eissn=2005-2863&rft.volume=50&rft.issue=3&rft.spage=795&rft.epage=817&rft_id=info:doi/10.1007%2Fs42952-020-00082-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42952_020_00082_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3192&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3192&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3192&client=summon |