Nonparametric matrix regression function estimation over symmetric positive definite matrices

Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to develop a nonparametric estimation method for a symmetric positive definite matrix regression function given covariates. By obtaining a suitab...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Statistical Society Vol. 50; no. 3; pp. 795 - 817
Main Authors Bak, Kwan-Young, Kim, Kwang-Rae, Kim, Peter T., Koo, Ja-Yong, Park, Changyi, Zhu, Hongtu
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.09.2021
한국통계학회
Subjects
Online AccessGet full text
ISSN1226-3192
2005-2863
DOI10.1007/s42952-020-00082-5

Cover

Abstract Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to develop a nonparametric estimation method for a symmetric positive definite matrix regression function given covariates. By obtaining a suitable parametrization based on the Cholesky decomposition, we make it possible to apply univariate smoothing methods to the matrix regression problem. The parametrization also guarantees that the proposed estimator is symmetric positive definite over the entire domain. We adopt the Wishart log-likelihood and a smoothing technique using the basis methodology to define our estimator. The rate of convergence of the proposed estimator is obtained under some regularity conditions. Simulations are performed to investigate the finite sample properties of our proposed method using natural splines. Moreover, we present the results of an analysis of real diffusion tensor imaging data where the estimated fractional anisotropy is provided using 3 × 3 symmetric positive definite matrices measured at consecutive positions along a fiber tract in the brain of subjects.
AbstractList Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to develop a nonparametric estimation method for a symmetric positive definite matrix regression function given covariates. By obtaining a suitable parametrization based on the Cholesky decomposition, we make it possible to apply univariate smoothing methods to the matrix regression problem. The parametrization also guarantees that the proposed estimator is symmetric positive definite over the entire domain. We adopt the Wishart log-likelihood and a smoothing technique using the basis methodology to define our estimator. The rate of convergence of the proposed estimator is obtained under some regularity conditions. Simulations are performed to investigate the finite sample properties of our proposed method using natural splines. Moreover, we present the results of an analysis of real diffusion tensor imaging data where the estimated fractional anisotropy is provided using 3 × 3 symmetric positive definite matrices measured at consecutive positions along a fiber tract in the brain of subjects. KCI Citation Count: 0
Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to develop a nonparametric estimation method for a symmetric positive definite matrix regression function given covariates. By obtaining a suitable parametrization based on the Cholesky decomposition, we make it possible to apply univariate smoothing methods to the matrix regression problem. The parametrization also guarantees that the proposed estimator is symmetric positive definite over the entire domain. We adopt the Wishart log-likelihood and a smoothing technique using the basis methodology to define our estimator. The rate of convergence of the proposed estimator is obtained under some regularity conditions. Simulations are performed to investigate the finite sample properties of our proposed method using natural splines. Moreover, we present the results of an analysis of real diffusion tensor imaging data where the estimated fractional anisotropy is provided using 3 × 3 symmetric positive definite matrices measured at consecutive positions along a fiber tract in the brain of subjects.
Author Bak, Kwan-Young
Koo, Ja-Yong
Kim, Kwang-Rae
Kim, Peter T.
Zhu, Hongtu
Park, Changyi
Author_xml – sequence: 1
  givenname: Kwan-Young
  surname: Bak
  fullname: Bak, Kwan-Young
  organization: Department of Statistics, Korea University
– sequence: 2
  givenname: Kwang-Rae
  surname: Kim
  fullname: Kim, Kwang-Rae
  organization: SAS Software Korea Ltd
– sequence: 3
  givenname: Peter T.
  surname: Kim
  fullname: Kim, Peter T.
  organization: Department of Mathematics and Statistics, University of Guelph
– sequence: 4
  givenname: Ja-Yong
  orcidid: 0000-0002-1035-6102
  surname: Koo
  fullname: Koo, Ja-Yong
  email: jykoo@korea.ac.kr
  organization: Department of Statistics, Korea University
– sequence: 5
  givenname: Changyi
  surname: Park
  fullname: Park, Changyi
  organization: Department of Statistics, University of Seoul
– sequence: 6
  givenname: Hongtu
  surname: Zhu
  fullname: Zhu, Hongtu
  organization: Gillings School of Global Public Health, University of North Carolina at Chapel Hill
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002762882$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UE1rAjEUDMVC1fYP9LTXHtK-JJvs5ijSD0FaKPZYQsxmJVoTSVap_77R9dzTDO_NDMyM0MAHbxG6J_BIAKqnVFLJKQYKGABqivkVGlIAjmkt2AANCaUCMyLpDRqltAYQJaEwRN_vwe901FvbRWeKrc7wW0S7ijYlF3zR7r3pTsSmzuX3iYaDjUU6bi-mXUiucwdbNLZ13nW2jzE23aLrVv8ke3fBMfp6eV5M3_D843U2ncyxoZXoMGe8LHVJKi1oSZghTU2tbMiSyEbIigE0tmGcSMJsVRpN6nzlS8KWtFrWoNkYPfS5PrZqY5wK2p1xFdQmqsnnYqZkLWopqqylvdbEkFK0rdrFXCweFQF1GlP1Y6o8pjqPqXg2sd6UstivbFTrsI8-d_rP9QcQX3o_
Cites_doi 10.1214/aos/1176350954
10.1109/TIT.2017.2653803
10.1198/jasa.2009.tm08096
10.1214/08-AOS628
10.1111/j.1467-9868.2011.01022.x
10.1093/biomet/86.3.677
10.1214/12-AOS998
10.1038/nrn1119
10.1007/b13794
10.1016/j.neuroimage.2011.01.075
10.1080/01621459.2019.1700129
10.1214/aos/1032894451
10.1016/0167-7152(95)00020-8
10.1214/aos/1176344136
10.1109/ICCV.2007.4408977
10.1214/09-AOAS249
10.1006/jmre.2001.2400
10.1002/mrm.1910360612
10.1093/biomet/87.2.425
10.1090/S0002-9947-1988-0920166-3
10.1007/BF01404687
10.1016/j.mri.2006.01.004
10.1006/jmrb.1996.0086
10.1002/mrm.10552
10.1109/TMI.2007.903195
10.1109/IROS.2017.8202138
10.1142/9789814340564_0010
10.1016/j.jmva.2013.04.006
10.1002/nbm.783
10.1007/978-1-4612-2222-4
10.1214/aos/1176349940
ContentType Journal Article
Copyright Korean Statistical Society 2020
Copyright_xml – notice: Korean Statistical Society 2020
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42952-020-00082-5
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2005-2863
EndPage 817
ExternalDocumentID oai_kci_go_kr_ARTI_9868967
10_1007_s42952_020_00082_5
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2018R1D1A1B07049972
  funderid: http://dx.doi.org/10.13039/501100003725
GroupedDBID --K
--M
.UV
.~1
0R~
1B1
1~.
1~5
2JY
4.4
406
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AAAKF
AACDK
AACTN
AAEDT
AAHNG
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AAQFI
AASML
AATNV
AAXUO
ABAKF
ABAOU
ABECU
ABMQK
ABTEG
ABTKH
ABTMW
ABUCO
ABWVN
ABXDB
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACOKC
ACPIV
ACRPL
ACZOJ
ADBBV
ADEZE
ADMUD
ADNMO
ADTPH
ADYFF
AEFQL
AEKER
AEMSY
AENEX
AESKC
AFTJW
AGHFR
AGMZJ
AGQEE
AGUBO
AGYEJ
AIGIU
AIGVJ
AILAN
AITUG
AJOXV
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMXSW
ARUGR
BGNMA
BLXMC
CS3
DPUIP
DU5
EBLON
EBS
EJD
EO9
EP2
EP3
F5P
FDB
FIGPU
FIRID
FNLPD
FNPLU
GBLVA
HAMUX
HZ~
IKXTQ
IWAJR
J1W
JZLTJ
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q38
RIG
ROL
RPZ
RSV
SDF
SDG
SES
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
SSZ
T5K
UOJIU
UTJUX
ZMTXR
~G-
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AAFGU
AAYFA
ABFGW
ABKAS
ABYKQ
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJBFU
AJDOV
AKQUC
ID FETCH-LOGICAL-c276t-53544a417a62413c1d82e9d1b19d697300ded351913e74ca186975b13b27b80a3
ISSN 1226-3192
IngestDate Tue Nov 21 21:04:29 EST 2023
Tue Jul 01 01:27:35 EDT 2025
Fri Feb 21 02:48:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Matrix regression function
Stein loss
Minimaxity
Cholesky factorization
Wishart distribution
Diffusion tensor imaging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c276t-53544a417a62413c1d82e9d1b19d697300ded351913e74ca186975b13b27b80a3
ORCID 0000-0002-1035-6102
PageCount 23
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9868967
crossref_primary_10_1007_s42952_020_00082_5
springer_journals_10_1007_s42952_020_00082_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
2021-09
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of the Korean Statistical Society
PublicationTitleAbbrev J. Korean Stat. Soc
PublicationYear 2021
Publisher Springer Singapore
한국통계학회
Publisher_xml – name: Springer Singapore
– name: 한국통계학회
References GrenanderUMillerMIPattern theory from representation to inference2007OxfordOxford University Press1259.62089
AndersonTWAn introduction to multivariate statistical analysis20033HobokenWiley1039.62044
OsborneDPatrangenaruVEllingsonLGroisserDSchwartzmanANonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and diffusion tensor image analysisJournal of Multivariate Analysis2013119163175306142110.1016/j.jmva.2013.04.006
YatracosYGA lower bound on the error in nonparametric regression type problemsAnnals of Statistics1988161180118795919510.1214/aos/1176350954
ZhuHTKongLLiRStynerMGerigGLinWGilmoreJHFadtts: Functional analysis of diffusion tensor tract statisticsNeuroImage2011561412142510.1016/j.neuroimage.2011.01.075
SchwarzGEstimating the dimension of a modelAnnals of Statistics1978646146446801410.1214/aos/1176344136
James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proceedings of the fourth Berkeley symposium on mathematical statistics and probability. Contributions to the theory of statistics (Vol. 1, pp. 361–379). Berkeley, Calif.: University of California Press.
KooJ-YKimW-CWavelet density estimation by approximation of log-densitiesStatistics & Probability Letters199626271278139490310.1016/0167-7152(95)00020-8
PourahmadiMJoint mean-covariance models with applications to longitudinal data: unconstrained parameterisationBiometrika199986677690172378610.1093/biomet/86.3.677
GolubGHLoanCFMatrix computations19892BaltimoreThe Johns Hopkins University Press0733.65016
SchwartzmanAMascarenhasWFTaylorJEInference for eigenvalues and eigenvectors of Gaussian symmetric matricesAnnals of Statistics20083614231431248501610.1214/08-AOS628
CaiTTZhouHHOptimal rates of convergence for sparse covariance matrix estimationAnnals of Statistics201240523892420309760710.1214/12-AOS998
PourahmadiMMaximum likelihood estimation of generalized linear models for multivariate normal covariance matrixBiometrika200087425435178248810.1093/biomet/87.2.425
StoneCJThe dimensionality reduction principle for generalized additive modelsAnnals of Statistics19861459060684051610.1214/aos/1176349940
BasserPJJonesDKDiffusion-tensor MRI: theory, experimental design and data analysis—a technical reviewNMR in Biomedicine20021545646710.1002/nbm.783
ZhuHTChenYSIbrahimJGLiYMLinWLIntrinsic regression models for positive-definite matrices with applications to diffusion tensor imagingJournal of the American Statistical Association200910412031212275024510.1198/jasa.2009.tm08096
HasanKMNarayanaPAComputation of the fractional anisotropy and mean diffusivity maps without tensor decoding and diagonalization: theoretical analysis and validationMagnetic Resonance in Medicine20035058959810.1002/mrm.10552
Jaquier, N., & Calinon, S. (2017). Gaussian mixture regression on symmetric positive definite matrices manifolds: Application to wrist motion estimation with sEMG. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 59–64), Vancouver, BC.
HärdleWKerkyacharianGPicardDTsybakovAWavelets, approximation and statistical applications. Lecture notes in statistics1998New YorkSpringer10.1007/978-1-4612-2222-4
SaidSBombrunLBerthoumieuYMantonJHRiemannian gaussian distributions on the space of symmetric positive definite matricesIEEE Transactions on Information Theory201763421532170362686210.1109/TIT.2017.2653803
DonohoDLJohnstoneIMKerkyacharianGPicardDDensity estimation by wavelet thresholdingAnnals of Statistics199624508539139497410.1214/aos/1032894451
Davis, B. C., Bullitt, E., Fletcher, P. T., & Joshi, S. (2007). Population shape regression from random design data. In IEEE 11th international conference on computer vision (pp 1–7). Rio de Janeiro
Kim, P. T., & Richards, D. S. P. (2011). Deconvolution density estimation on the space of positive definite symmetric matrices. In Nonparametric statistics and mixture models: A Festschrift in honor of Thomas P Hettmansperger (pp 147-168).
ChauJvon SachsRIntrinsic wavelet regression for curves of Hermitian positive definite matricesJournal of the American Statistical Association202010.1080/01621459.2019.17001291464.62377
HasanKMBasserPJParkerDLAlexanderALAnalytical computation of the eigenvalues and eigenvectors in DT-MRIJournal of Magnetic Resonance2001152414710.1006/jmre.2001.2400
ZhuHXuDRazAHaoXZhangHKangarluABansalRPetersonBSA statistical framework for the classification of tensor morphologies in diffusion tensor imagesMagnetic Resonance Imaging20062456958210.1016/j.mri.2006.01.004
de BoorCA practical guide to splines2001New YorkSpringer0987.65015
BasserPPierpaoliCMicrostructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRIJournal of Magnetic Resonance199611120921910.1006/jmrb.1996.0086
DrydenILKoloydenkoAZhouDNon-Euclidean statistics for covariance matrices with applications to diffusion tensor imagingAnnals of Applied Statistics2009311021123275038810.1214/09-AOAS249
PietrzykowskiTA generalization of the potential method for conditional maxima on Banach, reflexive spacesNumerische Mathematik19721836737230518110.1007/BF01404687
PierpaoliCBasserPToward a quantitative assessment of diffusion anisotropyMagnetic Resonance in Medicine19963689390610.1002/mrm.1910360612
YuanYZhuHLinWMarronJSLocal polynomial regression for symmetric positive definite matricesJournal of the Royal Statistical Society: Series B201274697719296595610.1111/j.1467-9868.2011.01022.x
BarmpoutisAVemuriBCShepherdTMForderJRTensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampiIEEE Transactions on Medical Imaging2007261537154610.1109/TMI.2007.903195
DeVoreRAPopovVAInterpolation of Besov spacesTransactions of the American Mathematical Society198830539741492016610.1090/S0002-9947-1988-0920166-3
StoneCJThe use of polynomial splines and their tensor products in multivariate function estimationAnnals of Statistics19942211818312720790827.62038
BihanDLLooking into the functional architecture of the brain with diffusion MRINature Reviews Neuroscience2003446948010.1038/nrn1119
SchottJRMatrix analysis for statistics2005HobokenWiley1076.15002
TsybakovABIntroduction to nonparametric estimation2009New YorkSpringer10.1007/b13794
PJ Basser (82_CR3) 2002; 15
D Osborne (82_CR22) 2013; 119
T Pietrzykowski (82_CR24) 1972; 18
GH Golub (82_CR13) 1989
CJ Stone (82_CR31) 1986; 14
Y Yuan (82_CR35) 2012; 74
M Pourahmadi (82_CR26) 2000; 87
W Härdle (82_CR15) 1998
KM Hasan (82_CR16) 2003; 50
J-Y Koo (82_CR21) 1996; 26
C Pierpaoli (82_CR23) 1996; 36
TW Anderson (82_CR1) 2003
S Said (82_CR27) 2017; 63
J Chau (82_CR7) 2020
HT Zhu (82_CR37) 2009; 104
RA DeVore (82_CR10) 1988; 305
TT Cai (82_CR6) 2012; 40
82_CR8
82_CR20
C de Boor (82_CR9) 2001
JR Schott (82_CR28) 2005
A Schwartzman (82_CR29) 2008; 36
AB Tsybakov (82_CR33) 2009
H Zhu (82_CR36) 2006; 24
M Pourahmadi (82_CR25) 1999; 86
A Barmpoutis (82_CR2) 2007; 26
DL Bihan (82_CR5) 2003; 4
KM Hasan (82_CR17) 2001; 152
YG Yatracos (82_CR34) 1988; 16
IL Dryden (82_CR12) 2009; 3
82_CR18
U Grenander (82_CR14) 2007
82_CR19
P Basser (82_CR4) 1996; 111
G Schwarz (82_CR30) 1978; 6
DL Donoho (82_CR11) 1996; 24
CJ Stone (82_CR32) 1994; 22
HT Zhu (82_CR38) 2011; 56
References_xml – reference: GolubGHLoanCFMatrix computations19892BaltimoreThe Johns Hopkins University Press0733.65016
– reference: PourahmadiMJoint mean-covariance models with applications to longitudinal data: unconstrained parameterisationBiometrika199986677690172378610.1093/biomet/86.3.677
– reference: Davis, B. C., Bullitt, E., Fletcher, P. T., & Joshi, S. (2007). Population shape regression from random design data. In IEEE 11th international conference on computer vision (pp 1–7). Rio de Janeiro
– reference: de BoorCA practical guide to splines2001New YorkSpringer0987.65015
– reference: TsybakovABIntroduction to nonparametric estimation2009New YorkSpringer10.1007/b13794
– reference: SchottJRMatrix analysis for statistics2005HobokenWiley1076.15002
– reference: Kim, P. T., & Richards, D. S. P. (2011). Deconvolution density estimation on the space of positive definite symmetric matrices. In Nonparametric statistics and mixture models: A Festschrift in honor of Thomas P Hettmansperger (pp 147-168).
– reference: BasserPJJonesDKDiffusion-tensor MRI: theory, experimental design and data analysis—a technical reviewNMR in Biomedicine20021545646710.1002/nbm.783
– reference: ZhuHTKongLLiRStynerMGerigGLinWGilmoreJHFadtts: Functional analysis of diffusion tensor tract statisticsNeuroImage2011561412142510.1016/j.neuroimage.2011.01.075
– reference: AndersonTWAn introduction to multivariate statistical analysis20033HobokenWiley1039.62044
– reference: HasanKMBasserPJParkerDLAlexanderALAnalytical computation of the eigenvalues and eigenvectors in DT-MRIJournal of Magnetic Resonance2001152414710.1006/jmre.2001.2400
– reference: SchwartzmanAMascarenhasWFTaylorJEInference for eigenvalues and eigenvectors of Gaussian symmetric matricesAnnals of Statistics20083614231431248501610.1214/08-AOS628
– reference: YuanYZhuHLinWMarronJSLocal polynomial regression for symmetric positive definite matricesJournal of the Royal Statistical Society: Series B201274697719296595610.1111/j.1467-9868.2011.01022.x
– reference: ChauJvon SachsRIntrinsic wavelet regression for curves of Hermitian positive definite matricesJournal of the American Statistical Association202010.1080/01621459.2019.17001291464.62377
– reference: ZhuHTChenYSIbrahimJGLiYMLinWLIntrinsic regression models for positive-definite matrices with applications to diffusion tensor imagingJournal of the American Statistical Association200910412031212275024510.1198/jasa.2009.tm08096
– reference: SaidSBombrunLBerthoumieuYMantonJHRiemannian gaussian distributions on the space of symmetric positive definite matricesIEEE Transactions on Information Theory201763421532170362686210.1109/TIT.2017.2653803
– reference: StoneCJThe use of polynomial splines and their tensor products in multivariate function estimationAnnals of Statistics19942211818312720790827.62038
– reference: GrenanderUMillerMIPattern theory from representation to inference2007OxfordOxford University Press1259.62089
– reference: BasserPPierpaoliCMicrostructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRIJournal of Magnetic Resonance199611120921910.1006/jmrb.1996.0086
– reference: PietrzykowskiTA generalization of the potential method for conditional maxima on Banach, reflexive spacesNumerische Mathematik19721836737230518110.1007/BF01404687
– reference: KooJ-YKimW-CWavelet density estimation by approximation of log-densitiesStatistics & Probability Letters199626271278139490310.1016/0167-7152(95)00020-8
– reference: ZhuHXuDRazAHaoXZhangHKangarluABansalRPetersonBSA statistical framework for the classification of tensor morphologies in diffusion tensor imagesMagnetic Resonance Imaging20062456958210.1016/j.mri.2006.01.004
– reference: DeVoreRAPopovVAInterpolation of Besov spacesTransactions of the American Mathematical Society198830539741492016610.1090/S0002-9947-1988-0920166-3
– reference: SchwarzGEstimating the dimension of a modelAnnals of Statistics1978646146446801410.1214/aos/1176344136
– reference: BihanDLLooking into the functional architecture of the brain with diffusion MRINature Reviews Neuroscience2003446948010.1038/nrn1119
– reference: HärdleWKerkyacharianGPicardDTsybakovAWavelets, approximation and statistical applications. Lecture notes in statistics1998New YorkSpringer10.1007/978-1-4612-2222-4
– reference: Jaquier, N., & Calinon, S. (2017). Gaussian mixture regression on symmetric positive definite matrices manifolds: Application to wrist motion estimation with sEMG. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 59–64), Vancouver, BC.
– reference: DonohoDLJohnstoneIMKerkyacharianGPicardDDensity estimation by wavelet thresholdingAnnals of Statistics199624508539139497410.1214/aos/1032894451
– reference: OsborneDPatrangenaruVEllingsonLGroisserDSchwartzmanANonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and diffusion tensor image analysisJournal of Multivariate Analysis2013119163175306142110.1016/j.jmva.2013.04.006
– reference: James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proceedings of the fourth Berkeley symposium on mathematical statistics and probability. Contributions to the theory of statistics (Vol. 1, pp. 361–379). Berkeley, Calif.: University of California Press.
– reference: PourahmadiMMaximum likelihood estimation of generalized linear models for multivariate normal covariance matrixBiometrika200087425435178248810.1093/biomet/87.2.425
– reference: BarmpoutisAVemuriBCShepherdTMForderJRTensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampiIEEE Transactions on Medical Imaging2007261537154610.1109/TMI.2007.903195
– reference: CaiTTZhouHHOptimal rates of convergence for sparse covariance matrix estimationAnnals of Statistics201240523892420309760710.1214/12-AOS998
– reference: DrydenILKoloydenkoAZhouDNon-Euclidean statistics for covariance matrices with applications to diffusion tensor imagingAnnals of Applied Statistics2009311021123275038810.1214/09-AOAS249
– reference: PierpaoliCBasserPToward a quantitative assessment of diffusion anisotropyMagnetic Resonance in Medicine19963689390610.1002/mrm.1910360612
– reference: StoneCJThe dimensionality reduction principle for generalized additive modelsAnnals of Statistics19861459060684051610.1214/aos/1176349940
– reference: HasanKMNarayanaPAComputation of the fractional anisotropy and mean diffusivity maps without tensor decoding and diagonalization: theoretical analysis and validationMagnetic Resonance in Medicine20035058959810.1002/mrm.10552
– reference: YatracosYGA lower bound on the error in nonparametric regression type problemsAnnals of Statistics1988161180118795919510.1214/aos/1176350954
– ident: 82_CR18
– volume: 16
  start-page: 1180
  year: 1988
  ident: 82_CR34
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176350954
– volume-title: Pattern theory from representation to inference
  year: 2007
  ident: 82_CR14
– volume: 63
  start-page: 2153
  issue: 4
  year: 2017
  ident: 82_CR27
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2017.2653803
– volume: 104
  start-page: 1203
  year: 2009
  ident: 82_CR37
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2009.tm08096
– volume: 36
  start-page: 1423
  year: 2008
  ident: 82_CR29
  publication-title: Annals of Statistics
  doi: 10.1214/08-AOS628
– volume: 74
  start-page: 697
  year: 2012
  ident: 82_CR35
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.1467-9868.2011.01022.x
– volume-title: Matrix analysis for statistics
  year: 2005
  ident: 82_CR28
– volume: 22
  start-page: 118
  year: 1994
  ident: 82_CR32
  publication-title: Annals of Statistics
– volume: 86
  start-page: 677
  year: 1999
  ident: 82_CR25
  publication-title: Biometrika
  doi: 10.1093/biomet/86.3.677
– volume: 40
  start-page: 2389
  issue: 5
  year: 2012
  ident: 82_CR6
  publication-title: Annals of Statistics
  doi: 10.1214/12-AOS998
– volume-title: A practical guide to splines
  year: 2001
  ident: 82_CR9
– volume: 4
  start-page: 469
  year: 2003
  ident: 82_CR5
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn1119
– volume-title: Introduction to nonparametric estimation
  year: 2009
  ident: 82_CR33
  doi: 10.1007/b13794
– volume: 56
  start-page: 1412
  year: 2011
  ident: 82_CR38
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.075
– year: 2020
  ident: 82_CR7
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2019.1700129
– volume: 24
  start-page: 508
  year: 1996
  ident: 82_CR11
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1032894451
– volume: 26
  start-page: 271
  year: 1996
  ident: 82_CR21
  publication-title: Statistics & Probability Letters
  doi: 10.1016/0167-7152(95)00020-8
– volume: 6
  start-page: 461
  year: 1978
  ident: 82_CR30
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176344136
– ident: 82_CR8
  doi: 10.1109/ICCV.2007.4408977
– volume-title: An introduction to multivariate statistical analysis
  year: 2003
  ident: 82_CR1
– volume: 3
  start-page: 1102
  year: 2009
  ident: 82_CR12
  publication-title: Annals of Applied Statistics
  doi: 10.1214/09-AOAS249
– volume: 152
  start-page: 41
  year: 2001
  ident: 82_CR17
  publication-title: Journal of Magnetic Resonance
  doi: 10.1006/jmre.2001.2400
– volume: 36
  start-page: 893
  year: 1996
  ident: 82_CR23
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.1910360612
– volume: 87
  start-page: 425
  year: 2000
  ident: 82_CR26
  publication-title: Biometrika
  doi: 10.1093/biomet/87.2.425
– volume: 305
  start-page: 397
  year: 1988
  ident: 82_CR10
  publication-title: Transactions of the American Mathematical Society
  doi: 10.1090/S0002-9947-1988-0920166-3
– volume: 18
  start-page: 367
  year: 1972
  ident: 82_CR24
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01404687
– volume: 24
  start-page: 569
  year: 2006
  ident: 82_CR36
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2006.01.004
– volume: 111
  start-page: 209
  year: 1996
  ident: 82_CR4
  publication-title: Journal of Magnetic Resonance
  doi: 10.1006/jmrb.1996.0086
– volume: 50
  start-page: 589
  year: 2003
  ident: 82_CR16
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.10552
– volume: 26
  start-page: 1537
  year: 2007
  ident: 82_CR2
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2007.903195
– ident: 82_CR19
  doi: 10.1109/IROS.2017.8202138
– ident: 82_CR20
  doi: 10.1142/9789814340564_0010
– volume: 119
  start-page: 163
  year: 2013
  ident: 82_CR22
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2013.04.006
– volume: 15
  start-page: 456
  year: 2002
  ident: 82_CR3
  publication-title: NMR in Biomedicine
  doi: 10.1002/nbm.783
– volume-title: Matrix computations
  year: 1989
  ident: 82_CR13
– volume-title: Wavelets, approximation and statistical applications. Lecture notes in statistics
  year: 1998
  ident: 82_CR15
  doi: 10.1007/978-1-4612-2222-4
– volume: 14
  start-page: 590
  year: 1986
  ident: 82_CR31
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176349940
SSID ssj0064120
ssib023362471
Score 2.2041068
Snippet Symmetric positive definite matrix data commonly appear in computer vision and medical imaging, such as diffusion tensor imaging. The aim of this paper is to...
SourceID nrf
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 795
SubjectTerms Applied Statistics
Bayesian Inference
Mathematics and Statistics
Research Article
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
통계학
Title Nonparametric matrix regression function estimation over symmetric positive definite matrices
URI https://link.springer.com/article/10.1007/s42952-020-00082-5
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002762882
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Korean Statistical Society, 2021, 50(3), , pp.795-817
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25dIL4imWlyzELXjVJHYeR4RAhYoe0FbqBVmJ7ayqKgnKbgviwH_hnzJjO07bBUS57K682lHW83n8JZ75hpCXuU7KpqwaVsNCYtyknJVZoVhq9qs4NbpRBouTPx5lB8f8w4k4mc1-XspaOt_UC_X9t3Ul_-NVGAO_YpXsDTwbjMIAfAb_wit4GF7_ycdHfYfS3S12xVJRi2r736LBrFxuaxfhpmX9i1IarSeHF1a_ufU_cklbF1g91Zwi_3RmlE8t3KatSFQP-wEf4CNRtTrPqCjSB0kR92DURtnDr1XHbECZzvrb8YsV-1SZa-M2XThaLsJw706GKrDijfhHFEkccrDGqAocD4K9a3q3MHbMSqAmhY9uPhQ7DVoPufRSXM1dJ85xi3blnlvR3yV8rGGLFQnD-2LLcJiY9rrxfP_aFhgSE4OIs7UhwYa0NqTYIbeSHOgZhMzFjxASkxQIAM9DVlHGnRJo-Me-TstWa25d1xUutNMNzdZxvGU5yzvktvczfe2wdpfMTHeP7AVHr--Tz1dARx3o6AQ6OoKOTqCjCDoaQEdH0NERdHQE3QNy_O7t8s0B8z06mILp2DCRCs4rHudVhie0KtZFYkod13GpsxKbIWijsQkkLPycqwo7oOWijtM6yetiv0ofkt2u78wjQoXKNaovVhnX3PCsVkJzncRK1HWqSz0n0Thb8ouTYpF_9tecvIAJlWfqVKKCOr6venk2SLhPfC_LIivKLJ-TV-N8S7-u13-x-fhGV_CE7E2L4SnZ3Qzn5hkw2E393GLoF2hAl1U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+matrix+regression+function+estimation+over+symmetric+positive+definite+matrices&rft.jtitle=Journal+of+the+Korean+Statistical+Society&rft.au=Bak%2C+Kwan-Young&rft.au=Kim%2C+Kwang-Rae&rft.au=Kim%2C+Peter+T.&rft.au=Koo%2C+Ja-Yong&rft.date=2021-09-01&rft.issn=1226-3192&rft.eissn=2005-2863&rft.volume=50&rft.issue=3&rft.spage=795&rft.epage=817&rft_id=info:doi/10.1007%2Fs42952-020-00082-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42952_020_00082_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3192&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3192&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3192&client=summon