Experimental investigation of the polarity-switching process with different bipolar ionic liquid thruster operating frequencies

The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current (AC) power source, effectively suppressing electrochemical reaction and ensuring charge neutrality. Determining an optimal AC suppl...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 26; no. 6; pp. 64001 - 64013
Main Authors WU, Xiangbei, YANG, Cheng, LUO, Jiawei, SHEN, Yan
Format Journal Article
LanguageEnglish
Published Plasma Science and Technology 01.06.2024
Subjects
Online AccessGet full text
ISSN1009-0630
DOI10.1088/2058-6272/ad18d0

Cover

Abstract The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current (AC) power source, effectively suppressing electrochemical reaction and ensuring charge neutrality. Determining an optimal AC supply power source frequency is critical for sustained stable thruster operation. This study focuses on the emission characteristics of the ionic liquid thruster under varied AC conditions. The AC power supply was set within the frequency range of 0.5–64 Hz, with eight specific frequency conditions selected for experimentation. The experimental results indicate that the thruster operates steadily within a voltage range of ±1470 to ±1920 V, with corresponding positive polarity current ranging from 0.41 to 4.91 μA and negative polarity current ranging from −0.49 to −4.10 μA. During voltage polarity switching, an emission delay occurs, manifested as a prominent peak signal caused by circuit capacitance characteristics and a minor peak signal resulting from liquid droplets. Extended emission test was conducted at 16 Hz, demonstrating approximately 1 h and 50 min of consistent emission before intermittent discharge. These findings underscore the favorable impact of AC conditions within the 8–16 Hz range on the self-neutralization capability of the ionic liquid thruster.
AbstractList The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current (AC) power source, effectively suppressing electrochemical reaction and ensuring charge neutrality. Determining an optimal AC supply power source frequency is critical for sustained stable thruster operation. This study focuses on the emission characteristics of the ionic liquid thruster under varied AC conditions. The AC power supply was set within the frequency range of 0.5–64 Hz, with eight specific frequency conditions selected for experimentation. The experimental results indicate that the thruster operates steadily within a voltage range of ±1470 to ±1920 V, with corresponding positive polarity current ranging from 0.41 to 4.91 μA and negative polarity current ranging from −0.49 to −4.10 μA. During voltage polarity switching, an emission delay occurs, manifested as a prominent peak signal caused by circuit capacitance characteristics and a minor peak signal resulting from liquid droplets. Extended emission test was conducted at 16 Hz, demonstrating approximately 1 h and 50 min of consistent emission before intermittent discharge. These findings underscore the favorable impact of AC conditions within the 8–16 Hz range on the self-neutralization capability of the ionic liquid thruster.
Author WU, Xiangbei
SHEN, Yan
LUO, Jiawei
YANG, Cheng
Author_xml – sequence: 1
  givenname: Xiangbei
  surname: WU
  fullname: WU, Xiangbei
  organization: School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, People’s Republic of China
– sequence: 2
  givenname: Cheng
  surname: YANG
  fullname: YANG, Cheng
  organization: School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, People’s Republic of China
– sequence: 3
  givenname: Jiawei
  surname: LUO
  fullname: LUO, Jiawei
  organization: School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, People’s Republic of China
– sequence: 4
  givenname: Yan
  surname: SHEN
  fullname: SHEN, Yan
  organization: Shenzhen Key Laboratory of Intelligent Microsatellite Constellation, Shenzhen 518107, People’s Republic of China
BookMark eNp1kD1PwzAQhj0UibawM_oHEHp26tYZUVU-pEosMEeOfW5dhTi1HaATfx2XsjKddLrnvbtnQkad75CQGwZ3DKSccRCyWPAlnynDpIERGTOAqoBFCZdkEuMeQMwrWY7J9_qrx-DesUuqpa77wJjcViXnO-otTTukvW9VcOlYxE-X9M51W9oHrzFGmhs7apy1GHIAbdzvLM2w07R1h8GZHBGGmDBQnxfl4IzbgIcBO-0wXpELq9qI1391St4e1q-rp2Lz8vi8ut8Umi9FKqxkGiorrEClcGGEkigrkPOyWRpbaqOF5npugTPgSjRGNbKsdAmMIa8MllMC51wdfIwBbd3nr1U41gzqk7T6JK0-SavP0jJye0ac7-u9H0KXD_x__Af_eHcU
Cites_doi 10.1029/RG019i004p00577
10.1016/j.actaastro.2021.03.014
10.1088/0022-3727/35/12/315
10.2514/1.B35836
10.7567/JJAP.56.06GN18
10.1109/JMEMS.2014.2320509
10.2514/1.B37878
10.1063/1.4766293
10.3390/mi14061189
10.1063/5.0072630
10.1088/0022-3727/38/14/011
10.1016/j.jcis.2004.07.037
10.1016/j.jcis.2004.08.132
10.2514/1.A33531
10.1063/1.2899658
10.13675/j.cnki.tjjs.2207024
10.1016/j.cja.2022.09.007
10.1002/1096-9888(200008)35:8<939::AID-JMS36>3.0.CO;2-V
10.1016/j.actaastro.2023.12.021
10.7567/1347-4065/ab0fee
10.1063/1.3073873
10.1021/jp0604903
ContentType Journal Article
Copyright 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved
Copyright_xml – notice: 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved
DBID AAYXX
CITATION
DOI 10.1088/2058-6272/ad18d0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1088_2058_6272_ad18d0
pstad18d0
GroupedDBID -SA
-S~
123
1JI
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
W28
AAYXX
ADEQX
CITATION
Q--
ID FETCH-LOGICAL-c275t-f81c09f5f5eaae6d5a8e890843b7df3cdc5c2c4f02102a5bdab839c3011e29de3
IEDL.DBID IOP
ISSN 1009-0630
IngestDate Tue Jul 01 03:44:44 EDT 2025
Wed Sep 25 08:11:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-f81c09f5f5eaae6d5a8e890843b7df3cdc5c2c4f02102a5bdab839c3011e29de3
OpenAccessLink https://doi.org/10.1088/2058-6272/ad18d0
PageCount 13
ParticipantIDs crossref_primary_10_1088_2058_6272_ad18d0
iop_journals_10_1088_2058_6272_ad18d0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240601
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240601
  day: 01
PublicationDecade 2020
PublicationTitle Plasma science & technology
PublicationTitleAlternate Plasma Sci. Technol
PublicationYear 2024
Publisher Plasma Science and Technology
Publisher_xml – name: Plasma Science and Technology
References Garrett (pst_26_6_064001_bib7) 1981; 19
Lozano (pst_26_6_064001_bib8) 2004; 280
Gamero-Castaño (pst_26_6_064001_bib22) 2008; 20
Huang (pst_26_6_064001_bib20) 2022; 38
pst_26_6_064001_bib21
Brikner (pst_26_6_064001_bib9) 2012; 101
Daguenet (pst_26_6_064001_bib23) 2006; 110
Inoue (pst_26_6_064001_bib15) 2019; 58
pst_26_6_064001_bib29
Liu (pst_26_6_064001_bib1) 2019; 40
Lozano (pst_26_6_064001_bib11) 2005; 282
pst_26_6_064001_bib28
Luo (pst_26_6_064001_bib26) 2023; 14
Sun (pst_26_6_064001_bib6) 2022; 43
Castro (pst_26_6_064001_bib18) 2009; 105
Courtney (pst_26_6_064001_bib12) 2016; 32
Yang (pst_26_6_064001_bib25) 2023; 44
Mair (pst_26_6_064001_bib30) 2002; 35
Guo (pst_26_6_064001_bib31) 2023; 36
pst_26_6_064001_bib4
Nakagawa (pst_26_6_064001_bib14) 2017; 56
pst_26_6_064001_bib2
Huang (pst_26_6_064001_bib16) 2021; 183
Yang (pst_26_6_064001_bib27) 2024; 215
Hu (pst_26_6_064001_bib5) 2022; 31
Hill (pst_26_6_064001_bib24) 2014; 23
Lozano (pst_26_6_064001_bib13) 2005; 38
Krejci (pst_26_6_064001_bib19) 2017; 54
Xue (pst_26_6_064001_bib3) 2021; 11
de la Mora (pst_26_6_064001_bib10) 2000; 35
pst_26_6_064001_bib17
References_xml – volume: 19
  start-page: 577
  year: 1981
  ident: pst_26_6_064001_bib7
  publication-title: Rev. Geophys.
  doi: 10.1029/RG019i004p00577
– volume: 183
  start-page: 286
  year: 2021
  ident: pst_26_6_064001_bib16
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2021.03.014
– volume: 35
  start-page: 1392
  year: 2002
  ident: pst_26_6_064001_bib30
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/35/12/315
– volume: 32
  start-page: 392
  year: 2016
  ident: pst_26_6_064001_bib12
  publication-title: J. Propul. Power
  doi: 10.2514/1.B35836
– volume: 56
  start-page: 06GN18
  year: 2017
  ident: pst_26_6_064001_bib14
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.56.06GN18
– volume: 23
  start-page: 1237
  year: 2014
  ident: pst_26_6_064001_bib24
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2014.2320509
– ident: pst_26_6_064001_bib2
– ident: pst_26_6_064001_bib17
– ident: pst_26_6_064001_bib4
– volume: 38
  start-page: 212
  year: 2022
  ident: pst_26_6_064001_bib20
  publication-title: J. Propul. Power
  doi: 10.2514/1.B37878
– volume: 101
  start-page: 193504
  year: 2012
  ident: pst_26_6_064001_bib9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4766293
– ident: pst_26_6_064001_bib28
– volume: 14
  start-page: 1189
  year: 2023
  ident: pst_26_6_064001_bib26
  publication-title: Micromachines
  doi: 10.3390/mi14061189
– volume: 11
  start-page: 115023
  year: 2021
  ident: pst_26_6_064001_bib3
  publication-title: AIP Adv.
  doi: 10.1063/5.0072630
– volume: 40
  start-page: 977
  year: 2019
  ident: pst_26_6_064001_bib1
  publication-title: J. Astronaut.
– volume: 38
  start-page: 2371
  year: 2005
  ident: pst_26_6_064001_bib13
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/38/14/011
– volume: 280
  start-page: 149
  year: 2004
  ident: pst_26_6_064001_bib8
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.07.037
– volume: 282
  start-page: 415
  year: 2005
  ident: pst_26_6_064001_bib11
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.08.132
– volume: 54
  start-page: 447
  year: 2017
  ident: pst_26_6_064001_bib19
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/1.A33531
– volume: 20
  start-page: 032103
  year: 2008
  ident: pst_26_6_064001_bib22
  publication-title: Phys. Fluids
  doi: 10.1063/1.2899658
– volume: 44
  start-page: 128
  year: 2023
  ident: pst_26_6_064001_bib25
  publication-title: J. Propul. Technol.
  doi: 10.13675/j.cnki.tjjs.2207024
– volume: 31
  start-page: 1
  year: 2022
  ident: pst_26_6_064001_bib5
  publication-title: Spacecr. Eng.
– ident: pst_26_6_064001_bib29
– volume: 36
  start-page: 120
  year: 2023
  ident: pst_26_6_064001_bib31
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2022.09.007
– volume: 43
  start-page: 427
  year: 2022
  ident: pst_26_6_064001_bib6
  publication-title: J. Propul. Technol.
– volume: 35
  start-page: 939
  year: 2000
  ident: pst_26_6_064001_bib10
  publication-title: J. Mass Spectrom.
  doi: 10.1002/1096-9888(200008)35:8<939::AID-JMS36>3.0.CO;2-V
– volume: 215
  start-page: 415
  year: 2024
  ident: pst_26_6_064001_bib27
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2023.12.021
– volume: 58
  start-page: SEEG04
  year: 2019
  ident: pst_26_6_064001_bib15
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/1347-4065/ab0fee
– ident: pst_26_6_064001_bib21
– volume: 105
  start-page: 034903
  year: 2009
  ident: pst_26_6_064001_bib18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3073873
– volume: 110
  start-page: 12682
  year: 2006
  ident: pst_26_6_064001_bib23
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0604903
SSID ssj0054983
Score 2.3161323
Snippet The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 64001
SubjectTerms bipolar operation mode
frequency
ionic liquid thruster
space electric propulsion
Title Experimental investigation of the polarity-switching process with different bipolar ionic liquid thruster operating frequencies
URI https://iopscience.iop.org/article/10.1088/2058-6272/ad18d0
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  issn: 1009-0630
  databaseCode: IOP
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://iopscience.iop.org/
  omitProxy: false
  ssIdentifier: ssj0054983
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7riuDFt7i-yEEPHrr2lTTFk8jKIvg4uLAHoSRpAkVp624XwYt_3UnT6ioK4q2HaRomTWa-mW8mCB1JLogEO-dIN3ad0GxFEUcmXehRGlMlWJ3Rvb6hw1F4NSbjDjr7qIUpyubo78OjbRRsVdgQ4hjAdcIc6kf-KU89lgJeXwwY4ApTvXd71x7DgHuYZdeb6D8N3CZH-dMIX2zSAnx3zsRcrqKHdnKWWfLYn1WiL1-_9W385-zX0ErjeuJzK7qOOirfQEs1BVRON9HbYK7ZP84--28UOS40BkcRlwYHg9vuTF-yqiZh4tIWGmATz8XtbSsVFlkti020V-Kn7HmWpTCEKfBQE1yUppWzeV1PLJUb8PoWGl0O7i-GTnM9gyP9iFSOZh4ssCaaKM4VTQlnisUuCwMRpTqQqSTSl6GuUSUnIuUCvDFpThTlx6kKtlE3L3K1gzAHmCoC7kUyBHjGqbkKjXtKU5dzP_Z0D520C5SUtgtHUmfPGUuMQhOj0MQqtIeOQfdJsxWnv8rt_lFuDy374MhYetg-6laTmToAR6QSh_UP9w5ao9k0
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoEYiFN6I8PcDAkJKXHWdE0KrlUTpQqVvwU4pATWhTIbHw17HjVBQEEhJbhouTnOPzfb7v7gA44ZQhrvc5h7ux64RmKbI4MuFCD-MYS0bKiO5dD3cG4fUQDas-p2UuTJZXpr-pL22hYKvCihBHNFxHxMF-5J9T4RHhnudC1cAiClBkejd07_szU6yxD7EMexMBwIFbxSl_GuXLvlTTz57bZtpr4HH2gpZd8tScFqzJ377VbvzHF6yD1coFhRdWfAMsyNEmWCqpoHyyBd5bc0X_YfpZhyMbwUxB7TDC3OBh7b47k9e0KMmYMLcJB9Cc68JZ15UCsrSUhebUl8Pn9GWaCj2ESfSQY5jlpqSzuV2NLaVb4_ZtMGi3Hi47TtWmweF-hApHEU9PtEIKSUolFogSSWKXhAGLhAq44Ij7PFQluqSICcq0V8aNZZF-LGSwA-qjbCR3AaQarrKAehEPNUyj2LREo55U2KXUjz3VAGezSUpyW40jKaPohCRGqYlRamKV2gCnWv9JtSQnv8rt_VHuGCz3r9rJbbd3sw9WfO3bWMbYAagX46k81L5JwY7K_-8DwTzeng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+the+polarity-switching+process+with+different+bipolar+ionic+liquid+thruster+operating+frequencies&rft.jtitle=Plasma+science+%26+technology&rft.au=WU%2C+Xiangbei&rft.au=YANG%2C+Cheng&rft.au=LUO%2C+Jiawei&rft.au=SHEN%2C+Yan&rft.date=2024-06-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=26&rft.issue=6&rft_id=info:doi/10.1088%2F2058-6272%2Fad18d0&rft.externalDocID=pstad18d0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon