Domain decomposition solvers for nonlinear multiharmonic finite element equations

In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This...

Full description

Saved in:
Bibliographic Details
Published inJournal of numerical mathematics Vol. 18; no. 3; pp. 157 - 175
Main Authors Copeland, D. M., Langer, U.
Format Journal Article
LanguageEnglish
Published Walter de Gruyter GmbH & Co. KG 01.10.2010
Subjects
Online AccessGet full text
ISSN1570-2820
1569-3953
DOI10.1515/jnum.2010.008

Cover

Abstract In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure.
AbstractList In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure.
Author Copeland, D. M.
Langer, U.
Author_xml – sequence: 1
  givenname: D. M.
  surname: Copeland
  fullname: Copeland, D. M.
  email: *The Institute for Applied Mathematics and Computational Science, Texas A&M University College Station, TX 77843-3368, USA. copeland@math.tamu.edu, copeland@math.tamu.edu
  organization: The Institute for Applied Mathematics and Computational Science, Texas A&M University College Station, TX 77843-3368, USA. E-mail: copeland@math.tamu.edu
– sequence: 2
  givenname: U.
  surname: Langer
  fullname: Langer, U.
  email: Institute for Computational Mathematics, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria. ulanger@numa.uni-linz.ac.at, ulanger@numa.uni-linz.ac.at
  organization: Institute for Computational Mathematics, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria. E-mail: ulanger@numa.uni-linz.ac.at
BookMark eNp1kEFLAzEQhYNUsK0evecPbE02m272KNWqWJFiPYdsdoKpu0lNUtF_764WD4KHYWbgvXnDN0Ej5x0gdE7JjHLKL7Zu381y0q-EiCM0pnxeZazibDTMJclykZMTNIlxSwgtOWNjtL7ynbION6B9t_PRJusdjr59hxCx8QH3Ia11oALu9m2yLyp03lmNjXU2AYYWOnAJw9teDd54io6NaiOcHfoUPS-vN4vbbPV4c7e4XGU6L3nKakU1E2WljeYNV1BoQYRpiropuBK80roGwyrBTSOMYbQu8rofRU11XwBsirKfuzr4GAMYuQu2U-FTUiIHHnLgIQcesufR69kfvbbp--UUlG3_dR1SbEzw8Ruhwqucl6zkcr0p5KJ8Whb3D0Ru2BdcAXoF
CitedBy_id crossref_primary_10_1016_j_camwa_2020_04_021
crossref_primary_10_1137_110842533
crossref_primary_10_1109_TASC_2023_3242619
crossref_primary_10_1109_TMAG_2015_2476599
crossref_primary_10_1109_LMWC_2012_2192420
crossref_primary_10_1080_01630563_2016_1200077
crossref_primary_10_1515_cmam_2023_0119
crossref_primary_10_1007_s00366_017_0560_8
crossref_primary_10_1080_02726343_2014_877756
Cites_doi 10.1007/BF02253432
10.1137/060660977
10.1007/BF01385722
10.1080/00207169208804106
10.1007/s00791-006-0023-z
10.1090/S0025-5718-1992-1134741-1
10.1007/BF02253431
10.1137/0731086
10.1109/20.717607
10.1137/0720023
10.1108/03321640110383852
10.1109/20.92182
10.1007/s00211-005-0597-2
10.1016/j.cam.2005.08.021
10.1109/20.996137
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
DOI 10.1515/jnum.2010.008
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1569-3953
EndPage 175
ExternalDocumentID 10_1515_jnum_2010_008
ark_67375_QT4_C7SF4KM0_T
GroupedDBID 0R~
0~D
4.4
5GY
5VS
9-L
AAAEU
AADQG
AAFNC
AAFPC
AAGVJ
AAJBH
AALGR
AAONY
AAOTM
AAPJK
AAQCX
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABPLS
ABRQL
ABSOE
ABUBZ
ABUVI
ABVMU
ABWLS
ABXMZ
ABYKJ
ACEFL
ACGFS
ACIWK
ACMKP
ACPMA
ACXLN
ACZBO
ADALX
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
ADUQZ
AEGVQ
AEGXH
AEICA
AEJTT
AEKEB
AENEX
AEQDQ
AERZL
AEUFC
AEXIE
AFAUI
AFBAA
AFCXV
AFGNR
AFQUK
AFYRI
AGBEV
AGGNV
AHGBP
AHVWV
AHXUK
AIERV
AIKXB
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMAVY
ASPBG
ASYPN
AVWKF
AZFZN
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
BSCLL
CAG
CFGNV
COF
CS3
DA2
DBYYV
DU5
EBS
EJD
FEDTE
FSTRU
HVGLF
HZ~
IL9
IY9
KDIRW
O9-
PQQKQ
QD8
RDG
ROL
SA.
SLJYH
UK5
WTRAM
~Z8
AAOUV
AARVR
AAYXX
ABMBZ
ACDEB
ACRPL
ACUND
ADNMO
ADNPR
AECWL
AFBDD
AFSHE
AGQPQ
AIWOI
AMVHM
CITATION
DSRVY
LVMAB
ID FETCH-LOGICAL-c275t-ba1c3879cfc5d5ae4c808fd4bd45a859ccbef3985fd8ff31b42bfd88b1c8b1ee3
ISSN 1570-2820
IngestDate Wed Oct 01 03:24:08 EDT 2025
Thu Apr 24 23:09:22 EDT 2025
Wed Oct 30 09:29:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c275t-ba1c3879cfc5d5ae4c808fd4bd45a859ccbef3985fd8ff31b42bfd88b1c8b1ee3
Notes ark:/67375/QT4-C7SF4KM0-T
istex:63335DFCD82A8DDA5D8A053A0488EE4C92BAEDFD
jnum.2010.008.pdf
ArticleID:jnma.18.3.157
PageCount 19
ParticipantIDs crossref_primary_10_1515_jnum_2010_008
crossref_citationtrail_10_1515_jnum_2010_008
istex_primary_ark_67375_QT4_C7SF4KM0_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of numerical mathematics
PublicationTitleAlternate Journal of Numerical Mathematics
PublicationYear 2010
Publisher Walter de Gruyter GmbH & Co. KG
Publisher_xml – name: Walter de Gruyter GmbH & Co. KG
References Haase G. (p_12) 1997; 5
p_16
p_2
p_18
p_19
p_4
p_3
Xu J. (p_21) 1992; 59
p_14
p_5
Jung M. (p_13) 1991; 1
p_8
p_7
de Gersem H. (p_6) 2001; 20
p_9
Haase G. (p_11) 1994; 2
p_10
p_22
References_xml – volume: 1
  start-page: 217
  year: 1991
  ident: p_13
  publication-title: Surveys Math. Indust.
– ident: p_10
  doi: 10.1007/BF02253432
– ident: p_18
  doi: 10.1137/060660977
– ident: p_19
  doi: 10.1007/BF01385722
– ident: p_8
  doi: 10.1080/00207169208804106
– ident: p_3
  doi: 10.1007/s00791-006-0023-z
– volume: 59
  start-page: 311
  year: 1992
  ident: p_21
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1992-1134741-1
– ident: p_9
  doi: 10.1007/BF02253431
– volume: 5
  start-page: 231
  issue: 4
  year: 1997
  ident: p_12
  publication-title: East-West J. Numer. Math.
– ident: p_4
  doi: 10.1137/0731086
– volume: 2
  start-page: 173
  issue: 3
  year: 1994
  ident: p_11
  publication-title: East-West J. Numer. Math.
– ident: p_14
  doi: 10.1109/20.717607
– ident: p_5
  doi: 10.1137/0720023
– volume: 20
  start-page: 535
  year: 2001
  ident: p_6
  publication-title: COMPEL
  doi: 10.1108/03321640110383852
– ident: p_22
  doi: 10.1109/20.92182
– ident: p_2
  doi: 10.1007/s00211-005-0597-2
– ident: p_16
  doi: 10.1016/j.cam.2005.08.021
– ident: p_7
  doi: 10.1109/20.996137
SSID ssj0017533
Score 1.917847
Snippet In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the...
SourceID crossref
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 157
SubjectTerms domain decomposition
finite element method
Nonlinear parabolic problems
time-harmonic excitation
Title Domain decomposition solvers for nonlinear multiharmonic finite element equations
URI https://api.istex.fr/ark:/67375/QT4-C7SF4KM0-T/fulltext.pdf
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAZK
  databaseName: De Gruyter Complete Journal Package 2023
  customDbUrl:
  eissn: 1569-3953
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017533
  issn: 1570-2820
  databaseCode: AGBEV
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKe-EC40tsfMgHxCUkOIk9J8fRba2YhjTRwm5R7NoSbG1HaSXGgb-d54-4KWXS4BDLsqzEfu8X-z3752eEXgnBcw2WAfgmREOSp3EpUx3D5GPCj2c805Zt8WF_OKbvz9l5p_OrfbpkKRL586_nSv5Hq1AGejWnZP9Bs-GlUAB50C-koGFIb6Xjw_m0tmxWQwz37KsIPmmoFpY_OHOBMOqFIw6aMNX2xhv9xZiakXLc8Uh9W7UW7rZN1dnK7etcRtMQ5TXY4v35lWrokYdJdJoEjo89UmyKx0l7ccEQNUh7ceGz3bKHbkSDxeraZAdTMbSg7M-T6GTQHjk5icF_c5ssypftl3FeumjA28Pt2hu3Y2fqIlX7aTh1F6psjfDMBsP4Ch1veHnFeiprtu__mOEC77BeXBgiG2fV2YhWff7xmJ6ckmp0B_UymBVIF_UOBu-OPoV9KHDm7BGNpnM-Sis04u1GEzasmp75QX-0zJTRDrrnlYYPHFgeoI6aPUT3va-B_Uj-_RE6c9jBG9jBHjsYsIMDdvAGdrDDDvbYwQE7j9H4-GjUH8b-eo1YZpwtY1GnMi94KbVkE1YrKgtS6AkVE8rqgpVSCqXzsmB6Umidp4JmArKFSCU8SuVPUBeaop4iLIjg5jpErnJJaU5LsAq15kSJmpQ6ZbvoTSOeSvrY8-YKlMvK-KAgzcpIszLSrECau-h1qH7lgq7cWNHKOtS6ScF7t634DN1d_wfPUXe5WKkXYHYuxUuPjd_i7YaB
linkProvider Walter de Gruyter
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+decomposition+solvers+for+nonlinear+multiharmonic+finite+element+equations&rft.jtitle=Journal+of+numerical+mathematics&rft.au=Copeland%2C+D.+M.&rft.au=Langer%2C+U.&rft.date=2010-10-01&rft.pub=Walter+de+Gruyter+GmbH+%26+Co.+KG&rft.issn=1570-2820&rft.eissn=1569-3953&rft.volume=18&rft.issue=3&rft.spage=157&rft.epage=175&rft_id=info:doi/10.1515%2Fjnum.2010.008&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_QT4_C7SF4KM0_T
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-2820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-2820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-2820&client=summon