Domain decomposition solvers for nonlinear multiharmonic finite element equations
In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This...
Saved in:
| Published in | Journal of numerical mathematics Vol. 18; no. 3; pp. 157 - 175 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Walter de Gruyter GmbH & Co. KG
01.10.2010
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1570-2820 1569-3953 |
| DOI | 10.1515/jnum.2010.008 |
Cover
| Abstract | In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. |
|---|---|
| AbstractList | In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. |
| Author | Copeland, D. M. Langer, U. |
| Author_xml | – sequence: 1 givenname: D. M. surname: Copeland fullname: Copeland, D. M. email: *The Institute for Applied Mathematics and Computational Science, Texas A&M University College Station, TX 77843-3368, USA. copeland@math.tamu.edu, copeland@math.tamu.edu organization: The Institute for Applied Mathematics and Computational Science, Texas A&M University College Station, TX 77843-3368, USA. E-mail: copeland@math.tamu.edu – sequence: 2 givenname: U. surname: Langer fullname: Langer, U. email: Institute for Computational Mathematics, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria. ulanger@numa.uni-linz.ac.at, ulanger@numa.uni-linz.ac.at organization: Institute for Computational Mathematics, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria. E-mail: ulanger@numa.uni-linz.ac.at |
| BookMark | eNp1kEFLAzEQhYNUsK0evecPbE02m272KNWqWJFiPYdsdoKpu0lNUtF_764WD4KHYWbgvXnDN0Ej5x0gdE7JjHLKL7Zu381y0q-EiCM0pnxeZazibDTMJclykZMTNIlxSwgtOWNjtL7ynbION6B9t_PRJusdjr59hxCx8QH3Ia11oALu9m2yLyp03lmNjXU2AYYWOnAJw9teDd54io6NaiOcHfoUPS-vN4vbbPV4c7e4XGU6L3nKakU1E2WljeYNV1BoQYRpiropuBK80roGwyrBTSOMYbQu8rofRU11XwBsirKfuzr4GAMYuQu2U-FTUiIHHnLgIQcesufR69kfvbbp--UUlG3_dR1SbEzw8Ruhwqucl6zkcr0p5KJ8Whb3D0Ru2BdcAXoF |
| CitedBy_id | crossref_primary_10_1016_j_camwa_2020_04_021 crossref_primary_10_1137_110842533 crossref_primary_10_1109_TASC_2023_3242619 crossref_primary_10_1109_TMAG_2015_2476599 crossref_primary_10_1109_LMWC_2012_2192420 crossref_primary_10_1080_01630563_2016_1200077 crossref_primary_10_1515_cmam_2023_0119 crossref_primary_10_1007_s00366_017_0560_8 crossref_primary_10_1080_02726343_2014_877756 |
| Cites_doi | 10.1007/BF02253432 10.1137/060660977 10.1007/BF01385722 10.1080/00207169208804106 10.1007/s00791-006-0023-z 10.1090/S0025-5718-1992-1134741-1 10.1007/BF02253431 10.1137/0731086 10.1109/20.717607 10.1137/0720023 10.1108/03321640110383852 10.1109/20.92182 10.1007/s00211-005-0597-2 10.1016/j.cam.2005.08.021 10.1109/20.996137 |
| ContentType | Journal Article |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1515/jnum.2010.008 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1569-3953 |
| EndPage | 175 |
| ExternalDocumentID | 10_1515_jnum_2010_008 ark_67375_QT4_C7SF4KM0_T |
| GroupedDBID | 0R~ 0~D 4.4 5GY 5VS 9-L AAAEU AADQG AAFNC AAFPC AAGVJ AAJBH AALGR AAONY AAOTM AAPJK AAQCX AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABPLS ABRQL ABSOE ABUBZ ABUVI ABVMU ABWLS ABXMZ ABYKJ ACEFL ACGFS ACIWK ACMKP ACPMA ACXLN ACZBO ADALX ADEQT ADGQD ADGYE ADJVZ ADOZN ADUQZ AEGVQ AEGXH AEICA AEJTT AEKEB AENEX AEQDQ AERZL AEUFC AEXIE AFAUI AFBAA AFCXV AFGNR AFQUK AFYRI AGBEV AGGNV AHGBP AHVWV AHXUK AIERV AIKXB AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMAVY ASPBG ASYPN AVWKF AZFZN AZMOX BAKPI BBCWN BCIFA BLHJL BSCLL CAG CFGNV COF CS3 DA2 DBYYV DU5 EBS EJD FEDTE FSTRU HVGLF HZ~ IL9 IY9 KDIRW O9- PQQKQ QD8 RDG ROL SA. SLJYH UK5 WTRAM ~Z8 AAOUV AARVR AAYXX ABMBZ ACDEB ACRPL ACUND ADNMO ADNPR AECWL AFBDD AFSHE AGQPQ AIWOI AMVHM CITATION DSRVY LVMAB |
| ID | FETCH-LOGICAL-c275t-ba1c3879cfc5d5ae4c808fd4bd45a859ccbef3985fd8ff31b42bfd88b1c8b1ee3 |
| ISSN | 1570-2820 |
| IngestDate | Wed Oct 01 03:24:08 EDT 2025 Thu Apr 24 23:09:22 EDT 2025 Wed Oct 30 09:29:40 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c275t-ba1c3879cfc5d5ae4c808fd4bd45a859ccbef3985fd8ff31b42bfd88b1c8b1ee3 |
| Notes | ark:/67375/QT4-C7SF4KM0-T istex:63335DFCD82A8DDA5D8A053A0488EE4C92BAEDFD jnum.2010.008.pdf ArticleID:jnma.18.3.157 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1515_jnum_2010_008 crossref_citationtrail_10_1515_jnum_2010_008 istex_primary_ark_67375_QT4_C7SF4KM0_T |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-10-01 |
| PublicationDateYYYYMMDD | 2010-10-01 |
| PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of numerical mathematics |
| PublicationTitleAlternate | Journal of Numerical Mathematics |
| PublicationYear | 2010 |
| Publisher | Walter de Gruyter GmbH & Co. KG |
| Publisher_xml | – name: Walter de Gruyter GmbH & Co. KG |
| References | Haase G. (p_12) 1997; 5 p_16 p_2 p_18 p_19 p_4 p_3 Xu J. (p_21) 1992; 59 p_14 p_5 Jung M. (p_13) 1991; 1 p_8 p_7 de Gersem H. (p_6) 2001; 20 p_9 Haase G. (p_11) 1994; 2 p_10 p_22 |
| References_xml | – volume: 1 start-page: 217 year: 1991 ident: p_13 publication-title: Surveys Math. Indust. – ident: p_10 doi: 10.1007/BF02253432 – ident: p_18 doi: 10.1137/060660977 – ident: p_19 doi: 10.1007/BF01385722 – ident: p_8 doi: 10.1080/00207169208804106 – ident: p_3 doi: 10.1007/s00791-006-0023-z – volume: 59 start-page: 311 year: 1992 ident: p_21 publication-title: Math. Comp. doi: 10.1090/S0025-5718-1992-1134741-1 – ident: p_9 doi: 10.1007/BF02253431 – volume: 5 start-page: 231 issue: 4 year: 1997 ident: p_12 publication-title: East-West J. Numer. Math. – ident: p_4 doi: 10.1137/0731086 – volume: 2 start-page: 173 issue: 3 year: 1994 ident: p_11 publication-title: East-West J. Numer. Math. – ident: p_14 doi: 10.1109/20.717607 – ident: p_5 doi: 10.1137/0720023 – volume: 20 start-page: 535 year: 2001 ident: p_6 publication-title: COMPEL doi: 10.1108/03321640110383852 – ident: p_22 doi: 10.1109/20.92182 – ident: p_2 doi: 10.1007/s00211-005-0597-2 – ident: p_16 doi: 10.1016/j.cam.2005.08.021 – ident: p_7 doi: 10.1109/20.996137 |
| SSID | ssj0017533 |
| Score | 1.917847 |
| Snippet | In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the... |
| SourceID | crossref istex |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 157 |
| SubjectTerms | domain decomposition finite element method Nonlinear parabolic problems time-harmonic excitation |
| Title | Domain decomposition solvers for nonlinear multiharmonic finite element equations |
| URI | https://api.istex.fr/ark:/67375/QT4-C7SF4KM0-T/fulltext.pdf |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAZK databaseName: De Gruyter Complete Journal Package 2023 customDbUrl: eissn: 1569-3953 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017533 issn: 1570-2820 databaseCode: AGBEV dateStart: 20010301 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKe-EC40tsfMgHxCUkOIk9J8fRba2YhjTRwm5R7NoSbG1HaSXGgb-d54-4KWXS4BDLsqzEfu8X-z3752eEXgnBcw2WAfgmREOSp3EpUx3D5GPCj2c805Zt8WF_OKbvz9l5p_OrfbpkKRL586_nSv5Hq1AGejWnZP9Bs-GlUAB50C-koGFIb6Xjw_m0tmxWQwz37KsIPmmoFpY_OHOBMOqFIw6aMNX2xhv9xZiakXLc8Uh9W7UW7rZN1dnK7etcRtMQ5TXY4v35lWrokYdJdJoEjo89UmyKx0l7ccEQNUh7ceGz3bKHbkSDxeraZAdTMbSg7M-T6GTQHjk5icF_c5ssypftl3FeumjA28Pt2hu3Y2fqIlX7aTh1F6psjfDMBsP4Ch1veHnFeiprtu__mOEC77BeXBgiG2fV2YhWff7xmJ6ckmp0B_UymBVIF_UOBu-OPoV9KHDm7BGNpnM-Sis04u1GEzasmp75QX-0zJTRDrrnlYYPHFgeoI6aPUT3va-B_Uj-_RE6c9jBG9jBHjsYsIMDdvAGdrDDDvbYwQE7j9H4-GjUH8b-eo1YZpwtY1GnMi94KbVkE1YrKgtS6AkVE8rqgpVSCqXzsmB6Umidp4JmArKFSCU8SuVPUBeaop4iLIjg5jpErnJJaU5LsAq15kSJmpQ6ZbvoTSOeSvrY8-YKlMvK-KAgzcpIszLSrECau-h1qH7lgq7cWNHKOtS6ScF7t634DN1d_wfPUXe5WKkXYHYuxUuPjd_i7YaB |
| linkProvider | Walter de Gruyter |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+decomposition+solvers+for+nonlinear+multiharmonic+finite+element+equations&rft.jtitle=Journal+of+numerical+mathematics&rft.au=Copeland%2C+D.+M.&rft.au=Langer%2C+U.&rft.date=2010-10-01&rft.pub=Walter+de+Gruyter+GmbH+%26+Co.+KG&rft.issn=1570-2820&rft.eissn=1569-3953&rft.volume=18&rft.issue=3&rft.spage=157&rft.epage=175&rft_id=info:doi/10.1515%2Fjnum.2010.008&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_QT4_C7SF4KM0_T |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-2820&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-2820&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-2820&client=summon |