From text to test: AI-generated control software for materials science instruments

Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge...

Full description

Saved in:
Bibliographic Details
Published inDigital discovery Vol. 4; no. 1; pp. 35 - 45
Main Authors Fébba, Davi, Egbo, Kingsley, Callahan, William A, Zakutayev, Andriy
Format Journal Article
LanguageEnglish
Published United States Royal Society of Chemistry 15.01.2025
Subjects
Online AccessGet full text
ISSN2635-098X
2635-098X
DOI10.1039/d4dd00143e

Cover

Abstract Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. However, these AI-driven materials advances are limited to a few laboratories with existing automated instruments and control software, whereas the rest of materials science research remains highly manual. AI-crafted control code for automating scientific instruments would democratize and further accelerate materials research advances, but reports of such AI applications remain scarce. The goal of this manuscript is to demonstrate how to swiftly establish a Python-based control module for a scientific measurement instrument solely through interactions with ChatGPT-4. Through a series of test and correction cycles, we achieved successful management of a common Keithley 2400 electrical source measure unit instrument with minimal human-corrected code, and discussed lessons learned from this development approach for scientific software. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements, and text prompts as well as JSON templates for interaction with ChatGPT are provided for this and other instruments. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current-voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing and parameterizing IV data from a Pt/Cr 2 O 3 :Mg/β-Ga 2 O 3 heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path to further accelerate research progress towards synthesis and characterization in materials science. AI-crafted control software for automating scientific instruments can democratize and further accelerate materials research.
AbstractList Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. However, these AI-driven materials advances are limited to a few laboratories with existing automated instruments and control software, whereas the rest of materials science research remains highly manual. AI-crafted control code for automating scientific instruments would democratize and further accelerate materials research advances, but reports of such AI applications remain scarce. The goal of this manuscript is to demonstrate how to swiftly establish a Python-based control module for a scientific measurement instrument solely through interactions with ChatGPT-4. Through a series of test and correction cycles, we achieved successful management of a common Keithley 2400 electrical source measure unit instrument with minimal human-corrected code, and discussed lessons learned from this development approach for scientific software. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements, and text prompts as well as JSON templates for interaction with ChatGPT are provided for this and other instruments. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current-voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing and parameterizing IV data from a Pt/Cr 2 O 3 :Mg/β-Ga 2 O 3 heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path to further accelerate research progress towards synthesis and characterization in materials science. AI-crafted control software for automating scientific instruments can democratize and further accelerate materials research.
Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. However, these AI-driven materials advances are limited to a few laboratories with existing automated instruments and control software, whereas the rest of materials science research remains highly manual. AI-crafted control code for automating scientific instruments would democratize and further accelerate materials research advances, but reports of such AI applications remain scarce. The goal of this manuscript is to demonstrate how to swiftly establish a Python-based control module for a scientific measurement instrument solely through interactions with ChatGPT-4. Through a series of test and correction cycles, we achieved successful management of a common Keithley 2400 electrical source measure unit instrument with minimal human-corrected code, and discussed lessons learned from this development approach for scientific software. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements, and text prompts as well as JSON templates for interaction with ChatGPT are provided for this and other instruments. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current–voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing and parameterizing IV data from a Pt/Cr 2 O 3 :Mg/β-Ga 2 O 3 heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path to further accelerate research progress towards synthesis and characterization in materials science.
Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. However, these AI-driven materials advances are limited to a few laboratories with existing automated instruments and control software, whereas the rest of materials science research remains highly manual. AI-crafted control code for automating scientific instruments would democratize and further accelerate materials research advances, but reports of such AI applications remain scarce. The goal of this manuscript is to demonstrate how to swiftly establish a Python-based control module for a scientific measurement instrument solely through interactions with ChatGPT-4. Through a series of test and correction cycles, we achieved successful management of a common Keithley 2400 electrical source measure unit instrument with minimal human-corrected code, and discussed lessons learned from this development approach for scientific software. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements, and text prompts as well as JSON templates for interaction with ChatGPT are provided for this and other instruments. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current–voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing and parameterizing IV data from a Pt/Cr2O3:Mg/β-Ga2O3 heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path to further accelerate research progress towards synthesis and characterization in materials science.
Author Fébba, Davi
Callahan, William A
Egbo, Kingsley
Zakutayev, Andriy
AuthorAffiliation National Renewable Energy Laboratory (NREL)
Materials Science Center
AuthorAffiliation_xml – name: National Renewable Energy Laboratory (NREL)
– name: Materials Science Center
Author_xml – sequence: 1
  givenname: Davi
  surname: Fébba
  fullname: Fébba, Davi
– sequence: 2
  givenname: Kingsley
  surname: Egbo
  fullname: Egbo, Kingsley
– sequence: 3
  givenname: William A
  surname: Callahan
  fullname: Callahan, William A
– sequence: 4
  givenname: Andriy
  surname: Zakutayev
  fullname: Zakutayev, Andriy
BackLink https://www.osti.gov/biblio/2476742$$D View this record in Osti.gov
BookMark eNplkM1LAzEQxYNUsNZevAvBo7KazWY3qTfphxYKgih4W9JkoivbpCQptf-90RUteJqB9-O9mXeMetZZQOg0J1c5KUbXmmlNSM4KOEB9WhVlRkbipbe3H6FhCO-EEMp5nhdVHz3OvFvhCB8RR5dmiDf4dp69ggUvI2isnI3etTg4E7fSAzbO41WSfCPbgINqwCrAjQ3Rb1ZgYzhBhyZJMPyZA_Q8mz6N77PFw918fLvIFOVlzGSuOJglKQgzwmgtqioXFS9LQ0xpqABJJeOMcqI5XyqlyhHXjApRaCZAQTFAl53vxq7lbivbtl77ZiX9rs5J_dVI_ddIos872oXY1OnsCOotPWdBxZoyXqWoBF10kPIuBA_mn-OETSbfjtMEn3WwD-qX20v8BCrlec0
Cites_doi 10.21105/joss.02338
10.1038/s41598-023-41111-7
10.1109/JEDS.2020.3024669
10.1016/j.rser.2021.110828
10.1016/j.renene.2016.06.024
10.1021/acs.jcim.3c00285
10.1038/d41586-023-03930-6
10.1109/TEVC.2006.872133
10.1016/j.solener.2017.01.064
10.1063/5.0159406
10.1002/pssa.202300535
10.3390/en15051667
10.1039/D3DD00112A
10.1016/j.snb.2010.04.008
10.1109/JPHOTOV.2021.3109585
10.1116/1.4980042
10.48550/arXiv.2408.02479
10.1016/j.sse.2023.108759
10.1039/D3DD00202K
10.1116/6.0001003
10.48550/arXiv.2409.02977
10.48550/arXiv.2409.09030
10.48550/arXiv.2405.06682
10.1016/j.solener.2018.09.051
10.1039/D3DD00113J
10.1063/5.0185566
10.1038/s41586-023-06792-0
10.1016/j.aichem.2024.100049
10.1016/j.solener.2020.02.093
10.1116/6.0002645
10.1016/j.ceramint.2022.06.066
10.1016/j.mseb.2009.02.013
10.1039/D2DD00087C
10.1109/JPHOTOV.2020.3010105
10.1016/j.enconman.2020.112716
ContentType Journal Article
CorporateAuthor National Renewable Energy Laboratory (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Laboratory (NREL), Golden, CO (United States)
DBID AAYXX
CITATION
OTOTI
ADTOC
UNPAY
DOI 10.1039/d4dd00143e
DatabaseName CrossRef
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2635-098X
EndPage 45
ExternalDocumentID 10.1039/d4dd00143e
2476742
10_1039_D4DD00143E
d4dd00143e
GroupedDBID 0R~
AAFWJ
AARTK
AFPKN
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
C6K
EBS
GROUPED_DOAJ
H13
M~E
RRC
AAYXX
ABIQK
CITATION
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c275t-a1c7efb0304f8fdd866186755f0f5f28ea2a474270d77bccc597d42883d48ece3
IEDL.DBID UNPAY
ISSN 2635-098X
IngestDate Sun Oct 26 03:29:44 EDT 2025
Mon Mar 03 14:50:34 EST 2025
Tue Jul 01 03:36:16 EDT 2025
Tue May 27 12:02:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-a1c7efb0304f8fdd866186755f0f5f28ea2a474270d77bccc597d42883d48ece3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4dd00143e
USDOE Laboratory Directed Research and Development (LDRD) Program
AC36-08GO28308
NREL/JA-5K00-89647
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Materials & Manufacturing Technologies Office (AMMTO)
ORCID 0000-0002-8701-1508
0000-0002-3054-5525
0000-0001-7456-5512
0000000174565512
0000000230545525
0000000287011508
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1039/D4DD00143E
PageCount 11
ParticipantIDs crossref_primary_10_1039_D4DD00143E
unpaywall_primary_10_1039_d4dd00143e
osti_scitechconnect_2476742
rsc_primary_d4dd00143e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Digital discovery
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lin (D4DD00143E/cit30/1) 2017; 144
Callahan (D4DD00143E/cit37/1) 2023; 41
Liu (D4DD00143E/cit18/1) 2024
Renze (D4DD00143E/cit21/1) 2024
White (D4DD00143E/cit1/1) 2023; 2
LangChain (D4DD00143E/cit23/1)
Lam (D4DD00143E/cit28/1) 2015
Zhai (D4DD00143E/cit14/1) 2022; 48
Devin (D4DD00143E/cit24/1)
Heinselman (D4DD00143E/cit40/1) 2021; 39
Lee (D4DD00143E/cit42/1) 2010; 147
Ocaya (D4DD00143E/cit11/1) 2023; 13
Yao (D4DD00143E/cit39/1) 2017; 35
Li (D4DD00143E/cit16/1) 2021; 141
Jung (D4DD00143E/cit33/1) 2009; 165
Sohel (D4DD00143E/cit41/1) 2023
Emery (D4DD00143E/cit9/1) 2010
Jin (D4DD00143E/cit17/1) 2024
Cursor (D4DD00143E/cit22/1)
Ćalasan (D4DD00143E/cit34/1) 2020; 210
Fébba (D4DD00143E/cit32/1) 2021; 11
Wong (D4DD00143E/cit15/1) 2020; 8
Amazon Q (D4DD00143E/cit25/1)
Lóczi (D4DD00143E/cit36/1) 2022; 433
Callahan (D4DD00143E/cit38/1) 2024; 124
Brest (D4DD00143E/cit26/1) 2006; 10
Biscani (D4DD00143E/cit31/1) 2020; 5
Valdivieso (D4DD00143E/cit13/1) 2023; 209
Wang (D4DD00143E/cit19/1) 2024
Fébba (D4DD00143E/cit27/1) 2020; 201
Aazou (D4DD00143E/cit35/1) 2022; 15
Thway (D4DD00143E/cit3/1) 2024; 3
Fébba (D4DD00143E/cit20/1) 2023; 11
Chellaswamy (D4DD00143E/cit29/1) 2016; 97
Castro Nascimento (D4DD00143E/cit2/1) 2023; 63
Kurchin (D4DD00143E/cit10/1) 2020; 10
Van Noorden (D4DD00143E/cit7/1) 2023; 624
Aal E Ali (D4DD00143E/cit6/1) 2024; 2
Yager (D4DD00143E/cit4/1) 2023; 2
Boiko (D4DD00143E/cit5/1) 2023; 624
Jablonka (D4DD00143E/cit8/1) 2023; 2
Fébba (D4DD00143E/cit12/1) 2018; 174
References_xml – doi: Amazon Q
– issn: 2024
  volume-title: From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future
  publication-title: arXiv
  doi: Jin Huang Cai Yan Li Chen
– issn: 2024
  volume-title: Agents in Software Engineering: Survey, Landscape, and Vision
  publication-title: arXiv
  doi: Wang Zhong Huang Shi Yang Chen Li Ma Wang Zheng
– issn: 2024
  volume-title: Large Language Model-Based Agents for Software Engineering: A Survey
  publication-title: arXiv
  doi: Liu Wang Chen Peng Chen Zhang Lou
– issn: 2024
  volume-title: Self-Reflection in LLM Agents: Effects on Problem-Solving Performance
  publication-title: arXiv
  doi: Renze Guven
– doi: Cursor
– doi: LangChain
– issn: 2010
  end-page: 797-840
  publication-title: Measurement and Characterization of Solar Cells and Modules
  doi: Emery
– doi: Devin
– issn: 2015
  publication-title: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC
  doi: Lam Pitrou Seibert
– ident: D4DD00143E/cit23/1
– volume: 5
  start-page: 2338
  year: 2020
  ident: D4DD00143E/cit31/1
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02338
– ident: D4DD00143E/cit25/1
– volume: 13
  start-page: 13990
  year: 2023
  ident: D4DD00143E/cit11/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-41111-7
– volume: 8
  start-page: 992
  year: 2020
  ident: D4DD00143E/cit15/1
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2020.3024669
– volume: 141
  start-page: 110828
  year: 2021
  ident: D4DD00143E/cit16/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2021.110828
– volume: 97
  start-page: 823
  year: 2016
  ident: D4DD00143E/cit29/1
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.06.024
– volume: 433
  start-page: 127406
  year: 2022
  ident: D4DD00143E/cit36/1
  publication-title: Appl. Math. Comput.
– ident: D4DD00143E/cit22/1
– volume: 63
  start-page: 1649
  year: 2023
  ident: D4DD00143E/cit2/1
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00285
– start-page: 797
  volume-title: Measurement and Characterization of Solar Cells and Modules
  year: 2010
  ident: D4DD00143E/cit9/1
– ident: D4DD00143E/cit24/1
– volume: 624
  start-page: 509
  year: 2023
  ident: D4DD00143E/cit7/1
  publication-title: Nature
  doi: 10.1038/d41586-023-03930-6
– volume: 10
  start-page: 646
  year: 2006
  ident: D4DD00143E/cit26/1
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– volume: 144
  start-page: 594
  year: 2017
  ident: D4DD00143E/cit30/1
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.01.064
– volume: 11
  start-page: 071119
  year: 2023
  ident: D4DD00143E/cit20/1
  publication-title: APL Mater.
  doi: 10.1063/5.0159406
– start-page: 2300535
  year: 2023
  ident: D4DD00143E/cit41/1
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.202300535
– volume: 15
  start-page: 1667
  year: 2022
  ident: D4DD00143E/cit35/1
  publication-title: Energies
  doi: 10.3390/en15051667
– volume: 2
  start-page: 1850
  year: 2023
  ident: D4DD00143E/cit4/1
  publication-title: Digital Discovery
  doi: 10.1039/D3DD00112A
– volume: 147
  start-page: 723
  year: 2010
  ident: D4DD00143E/cit42/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2010.04.008
– volume: 11
  start-page: 1350
  year: 2021
  ident: D4DD00143E/cit32/1
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2021.3109585
– volume: 35
  start-page: 03D113
  year: 2017
  ident: D4DD00143E/cit39/1
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.4980042
– volume-title: arXiv
  year: 2024
  ident: D4DD00143E/cit17/1
  doi: 10.48550/arXiv.2408.02479
– volume: 209
  start-page: 108759
  year: 2023
  ident: D4DD00143E/cit13/1
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2023.108759
– volume: 3
  start-page: 328
  year: 2024
  ident: D4DD00143E/cit3/1
  publication-title: Digital Discovery
  doi: 10.1039/D3DD00202K
– volume: 39
  start-page: 040402
  year: 2021
  ident: D4DD00143E/cit40/1
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/6.0001003
– volume-title: arXiv
  year: 2024
  ident: D4DD00143E/cit18/1
  doi: 10.48550/arXiv.2409.02977
– volume-title: arXiv
  year: 2024
  ident: D4DD00143E/cit19/1
  doi: 10.48550/arXiv.2409.09030
– volume-title: arXiv
  year: 2024
  ident: D4DD00143E/cit21/1
  doi: 10.48550/arXiv.2405.06682
– volume: 174
  start-page: 628
  year: 2018
  ident: D4DD00143E/cit12/1
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.09.051
– volume: 2
  start-page: 1233
  issue: 5
  year: 2023
  ident: D4DD00143E/cit8/1
  publication-title: Digital Discovery
  doi: 10.1039/D3DD00113J
– volume: 124
  start-page: 153504
  year: 2024
  ident: D4DD00143E/cit38/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0185566
– volume: 624
  start-page: 570
  year: 2023
  ident: D4DD00143E/cit5/1
  publication-title: Nature
  doi: 10.1038/s41586-023-06792-0
– volume: 2
  start-page: 100049
  year: 2024
  ident: D4DD00143E/cit6/1
  publication-title: Artif. Intell. Chem.
  doi: 10.1016/j.aichem.2024.100049
– volume: 201
  start-page: 420
  year: 2020
  ident: D4DD00143E/cit27/1
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.02.093
– volume: 41
  start-page: 043211
  year: 2023
  ident: D4DD00143E/cit37/1
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/6.0002645
– volume: 48
  start-page: 24213
  year: 2022
  ident: D4DD00143E/cit14/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.06.066
– volume: 165
  start-page: 57
  year: 2009
  ident: D4DD00143E/cit33/1
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2009.02.013
– volume-title: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC
  year: 2015
  ident: D4DD00143E/cit28/1
– volume: 2
  start-page: 368
  year: 2023
  ident: D4DD00143E/cit1/1
  publication-title: Digital Discovery
  doi: 10.1039/D2DD00087C
– volume: 10
  start-page: 1532
  year: 2020
  ident: D4DD00143E/cit10/1
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2020.3010105
– volume: 210
  start-page: 112716
  year: 2020
  ident: D4DD00143E/cit34/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112716
SSID ssj0002771136
Score 2.3506947
Snippet Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of...
SourceID unpaywall
osti
crossref
rsc
SourceType Open Access Repository
Index Database
Publisher
StartPage 35
SubjectTerms artificial intelligence
differential evolution
diode
heterojunction
instrumentation
LLM
MATERIALS SCIENCE
MATHEMATICS AND COMPUTING
Title From text to test: AI-generated control software for materials science instruments
URI https://www.osti.gov/biblio/2476742
https://doi.org/10.1039/D4DD00143E
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2635-098X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002771136
  issn: 2635-098X
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2635-098X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002771136
  issn: 2635-098X
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2023
  issn: 2635-098X
  databaseCode: AKBGW
  dateStart: 20220101
  customDbUrl: https://pubs.rsc.org
  isFulltext: true
  eissn: 2635-098X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002771136
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1Beygc2CtKAVnQayBNnMXcqi4CpFYIUamcIsd2EKK0VZuqggPfzjhLyyIhLkkOHsvxczLP8swbgBqTpvRCwQ1edx2DciUNbrshPkmh9Z2oR3WCc7fnXvfp7cAZrMFZngvz7fzeZpct2mppGm-316HoOsi3C1Ds9-4aj7pqHHpLw2T-INcdRQNJpUwM1DdPUxjjF4P-YzoTm1Cajyb8bcGHwy--pLMNzXwUaQjJy8U8Di_E-w-Bxr-HuQNbGZUkjRT7XVhToz0oNfMKbvtw35mOX4kO7SDxGO-z-Io0boynRGkamSbJ4tTJDP_FCz5VBBksQQqbrkqSeUfynKjMJrlwB9DvtB-a10ZWQ8EQlufECIHwVBTqA9DIj6T0XS2Q7zlOZEZOZPmKWxzxsDyEDDETAjcYkuoSxJL6Sii7DIXReKQOgTBXmsoPXWZzRv0wZDZ2YkZMCOZ7thdV4Dyf72CSSmUEyRG3zYLV_FSgqqEI8BW0Sq3Q4TwiDiyqVYWsCpQRoaX5CswK1Jag_ep91ezof82qsGHpOr5m3ag7x1DASVQnSC7i8DTZlOO1-9E-zVbaJ-vjzSU
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHNCDbyKiZqNci6XdPtYb4RE0kRgjCZ6a7e7WGBEIlBD99c6WFkQT46k97Gy28207X7Mz3wBUmTSlFwpu8LrrGJQraXDbDfFOCq3vRD2qC5zve263T-8GziAHl1ktzMb5vc2uW7TV0jTebm9BwXWQb-eh0O89NJ511ziMlobJ_EGmO4oGkkqZGKiNSJMf4xuD8WM6EztQnI8m_GPBh8NvsaSzB81sFcsUkrfaPA5r4vOHQOPfy9yH3ZRKksYS-wPIqdEhFJtZB7cjeOxMx-9Ep3aQeIzXWXxDGrfGS6I0jUyTpHnqZIbf4gWfKoIMliCFXe5KkkZH8pqozCa1cMfQ77Sfml0j7aFgCMtzYoRAeCoK9QFo5EdS-q4WyPccJzIjJ7J8xS2OeFgeQoaYCYE_GJLqFsSS-koouwT50XikToAwV5rKD11mc0b9MGQ2TmJGTAjme7YXleEq83cwWUplBMkRt82CtX_KUNFQBPgIWqVW6HQeEQcW1apCVhlKiNDKfA1mGaor0H7Nvh52-r9hFdi2dB9fs27UnTPIoxPVOZKLOLxId9cXX2fK_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+text+to+test%3A+AI-generated+control+software+for+materials+science+instruments&rft.jtitle=Digital+discovery&rft.au=F%C3%A9bba%2C+Davi+Marcelo&rft.au=Egbo%2C+Kingsley&rft.au=Callahan%2C+William+A.&rft.au=Zakutayev%2C+Andriy&rft.date=2025-01-15&rft.pub=Royal+Society+of+Chemistry&rft.issn=2635-098X&rft.eissn=2635-098X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1039%2Fd4dd00143e&rft.externalDocID=2476742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-098X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-098X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-098X&client=summon