From text to test: AI-generated control software for materials science instruments
Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge...
        Saved in:
      
    
          | Published in | Digital discovery Vol. 4; no. 1; pp. 35 - 45 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Royal Society of Chemistry
    
        15.01.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2635-098X 2635-098X  | 
| DOI | 10.1039/d4dd00143e | 
Cover
| Abstract | Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. However, these AI-driven materials advances are limited to a few laboratories with existing automated instruments and control software, whereas the rest of materials science research remains highly manual. AI-crafted control code for automating scientific instruments would democratize and further accelerate materials research advances, but reports of such AI applications remain scarce. The goal of this manuscript is to demonstrate how to swiftly establish a Python-based control module for a scientific measurement instrument solely through interactions with ChatGPT-4. Through a series of test and correction cycles, we achieved successful management of a common Keithley 2400 electrical source measure unit instrument with minimal human-corrected code, and discussed lessons learned from this development approach for scientific software. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements, and text prompts as well as JSON templates for interaction with ChatGPT are provided for this and other instruments. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current-voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing and parameterizing IV data from a Pt/Cr
2
O
3
:Mg/β-Ga
2
O
3
heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path to further accelerate research progress towards synthesis and characterization in materials science.
AI-crafted control software for automating scientific instruments can democratize and further accelerate materials research. | 
    
|---|---|
| AbstractList | Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. However, these AI-driven materials advances are limited to a few laboratories with existing automated instruments and control software, whereas the rest of materials science research remains highly manual. AI-crafted control code for automating scientific instruments would democratize and further accelerate materials research advances, but reports of such AI applications remain scarce. The goal of this manuscript is to demonstrate how to swiftly establish a Python-based control module for a scientific measurement instrument solely through interactions with ChatGPT-4. Through a series of test and correction cycles, we achieved successful management of a common Keithley 2400 electrical source measure unit instrument with minimal human-corrected code, and discussed lessons learned from this development approach for scientific software. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements, and text prompts as well as JSON templates for interaction with ChatGPT are provided for this and other instruments. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current-voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing and parameterizing IV data from a Pt/Cr
2
O
3
:Mg/β-Ga
2
O
3
heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path to further accelerate research progress towards synthesis and characterization in materials science.
AI-crafted control software for automating scientific instruments can democratize and further accelerate materials research. Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. However, these AI-driven materials advances are limited to a few laboratories with existing automated instruments and control software, whereas the rest of materials science research remains highly manual. AI-crafted control code for automating scientific instruments would democratize and further accelerate materials research advances, but reports of such AI applications remain scarce. The goal of this manuscript is to demonstrate how to swiftly establish a Python-based control module for a scientific measurement instrument solely through interactions with ChatGPT-4. Through a series of test and correction cycles, we achieved successful management of a common Keithley 2400 electrical source measure unit instrument with minimal human-corrected code, and discussed lessons learned from this development approach for scientific software. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements, and text prompts as well as JSON templates for interaction with ChatGPT are provided for this and other instruments. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current–voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing and parameterizing IV data from a Pt/Cr 2 O 3 :Mg/β-Ga 2 O 3 heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path to further accelerate research progress towards synthesis and characterization in materials science. Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. However, these AI-driven materials advances are limited to a few laboratories with existing automated instruments and control software, whereas the rest of materials science research remains highly manual. AI-crafted control code for automating scientific instruments would democratize and further accelerate materials research advances, but reports of such AI applications remain scarce. The goal of this manuscript is to demonstrate how to swiftly establish a Python-based control module for a scientific measurement instrument solely through interactions with ChatGPT-4. Through a series of test and correction cycles, we achieved successful management of a common Keithley 2400 electrical source measure unit instrument with minimal human-corrected code, and discussed lessons learned from this development approach for scientific software. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements, and text prompts as well as JSON templates for interaction with ChatGPT are provided for this and other instruments. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current–voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing and parameterizing IV data from a Pt/Cr2O3:Mg/β-Ga2O3 heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path to further accelerate research progress towards synthesis and characterization in materials science.  | 
    
| Author | Fébba, Davi Callahan, William A Egbo, Kingsley Zakutayev, Andriy  | 
    
| AuthorAffiliation | National Renewable Energy Laboratory (NREL) Materials Science Center  | 
    
| AuthorAffiliation_xml | – name: National Renewable Energy Laboratory (NREL) – name: Materials Science Center  | 
    
| Author_xml | – sequence: 1 givenname: Davi surname: Fébba fullname: Fébba, Davi – sequence: 2 givenname: Kingsley surname: Egbo fullname: Egbo, Kingsley – sequence: 3 givenname: William A surname: Callahan fullname: Callahan, William A – sequence: 4 givenname: Andriy surname: Zakutayev fullname: Zakutayev, Andriy  | 
    
| BackLink | https://www.osti.gov/biblio/2476742$$D View this record in Osti.gov | 
    
| BookMark | eNplkM1LAzEQxYNUsNZevAvBo7KazWY3qTfphxYKgih4W9JkoivbpCQptf-90RUteJqB9-O9mXeMetZZQOg0J1c5KUbXmmlNSM4KOEB9WhVlRkbipbe3H6FhCO-EEMp5nhdVHz3OvFvhCB8RR5dmiDf4dp69ggUvI2isnI3etTg4E7fSAzbO41WSfCPbgINqwCrAjQ3Rb1ZgYzhBhyZJMPyZA_Q8mz6N77PFw918fLvIFOVlzGSuOJglKQgzwmgtqioXFS9LQ0xpqABJJeOMcqI5XyqlyhHXjApRaCZAQTFAl53vxq7lbivbtl77ZiX9rs5J_dVI_ddIos872oXY1OnsCOotPWdBxZoyXqWoBF10kPIuBA_mn-OETSbfjtMEn3WwD-qX20v8BCrlec0 | 
    
| Cites_doi | 10.21105/joss.02338 10.1038/s41598-023-41111-7 10.1109/JEDS.2020.3024669 10.1016/j.rser.2021.110828 10.1016/j.renene.2016.06.024 10.1021/acs.jcim.3c00285 10.1038/d41586-023-03930-6 10.1109/TEVC.2006.872133 10.1016/j.solener.2017.01.064 10.1063/5.0159406 10.1002/pssa.202300535 10.3390/en15051667 10.1039/D3DD00112A 10.1016/j.snb.2010.04.008 10.1109/JPHOTOV.2021.3109585 10.1116/1.4980042 10.48550/arXiv.2408.02479 10.1016/j.sse.2023.108759 10.1039/D3DD00202K 10.1116/6.0001003 10.48550/arXiv.2409.02977 10.48550/arXiv.2409.09030 10.48550/arXiv.2405.06682 10.1016/j.solener.2018.09.051 10.1039/D3DD00113J 10.1063/5.0185566 10.1038/s41586-023-06792-0 10.1016/j.aichem.2024.100049 10.1016/j.solener.2020.02.093 10.1116/6.0002645 10.1016/j.ceramint.2022.06.066 10.1016/j.mseb.2009.02.013 10.1039/D2DD00087C 10.1109/JPHOTOV.2020.3010105 10.1016/j.enconman.2020.112716  | 
    
| ContentType | Journal Article | 
    
| CorporateAuthor | National Renewable Energy Laboratory (NREL), Golden, CO (United States) | 
    
| CorporateAuthor_xml | – name: National Renewable Energy Laboratory (NREL), Golden, CO (United States) | 
    
| DBID | AAYXX CITATION OTOTI ADTOC UNPAY  | 
    
| DOI | 10.1039/d4dd00143e | 
    
| DatabaseName | CrossRef OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 2635-098X | 
    
| EndPage | 45 | 
    
| ExternalDocumentID | 10.1039/d4dd00143e 2476742 10_1039_D4DD00143E d4dd00143e  | 
    
| GroupedDBID | 0R~ AAFWJ AARTK AFPKN AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI C6K EBS GROUPED_DOAJ H13 M~E RRC AAYXX ABIQK CITATION OTOTI ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c275t-a1c7efb0304f8fdd866186755f0f5f28ea2a474270d77bccc597d42883d48ece3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2635-098X | 
    
| IngestDate | Sun Oct 26 03:29:44 EDT 2025 Mon Mar 03 14:50:34 EST 2025 Tue Jul 01 03:36:16 EDT 2025 Tue May 27 12:02:07 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c275t-a1c7efb0304f8fdd866186755f0f5f28ea2a474270d77bccc597d42883d48ece3 | 
    
| Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4dd00143e USDOE Laboratory Directed Research and Development (LDRD) Program AC36-08GO28308 NREL/JA-5K00-89647 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Materials & Manufacturing Technologies Office (AMMTO)  | 
    
| ORCID | 0000-0002-8701-1508 0000-0002-3054-5525 0000-0001-7456-5512 0000000174565512 0000000230545525 0000000287011508  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1039/D4DD00143E | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_primary_10_1039_D4DD00143E unpaywall_primary_10_1039_d4dd00143e osti_scitechconnect_2476742 rsc_primary_d4dd00143e  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-01-15 | 
    
| PublicationDateYYYYMMDD | 2025-01-15 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Digital discovery | 
    
| PublicationYear | 2025 | 
    
| Publisher | Royal Society of Chemistry | 
    
| Publisher_xml | – name: Royal Society of Chemistry | 
    
| References | Lin (D4DD00143E/cit30/1) 2017; 144 Callahan (D4DD00143E/cit37/1) 2023; 41 Liu (D4DD00143E/cit18/1) 2024 Renze (D4DD00143E/cit21/1) 2024 White (D4DD00143E/cit1/1) 2023; 2 LangChain (D4DD00143E/cit23/1) Lam (D4DD00143E/cit28/1) 2015 Zhai (D4DD00143E/cit14/1) 2022; 48 Devin (D4DD00143E/cit24/1) Heinselman (D4DD00143E/cit40/1) 2021; 39 Lee (D4DD00143E/cit42/1) 2010; 147 Ocaya (D4DD00143E/cit11/1) 2023; 13 Yao (D4DD00143E/cit39/1) 2017; 35 Li (D4DD00143E/cit16/1) 2021; 141 Jung (D4DD00143E/cit33/1) 2009; 165 Sohel (D4DD00143E/cit41/1) 2023 Emery (D4DD00143E/cit9/1) 2010 Jin (D4DD00143E/cit17/1) 2024 Cursor (D4DD00143E/cit22/1) Ćalasan (D4DD00143E/cit34/1) 2020; 210 Fébba (D4DD00143E/cit32/1) 2021; 11 Wong (D4DD00143E/cit15/1) 2020; 8 Amazon Q (D4DD00143E/cit25/1) Lóczi (D4DD00143E/cit36/1) 2022; 433 Callahan (D4DD00143E/cit38/1) 2024; 124 Brest (D4DD00143E/cit26/1) 2006; 10 Biscani (D4DD00143E/cit31/1) 2020; 5 Valdivieso (D4DD00143E/cit13/1) 2023; 209 Wang (D4DD00143E/cit19/1) 2024 Fébba (D4DD00143E/cit27/1) 2020; 201 Aazou (D4DD00143E/cit35/1) 2022; 15 Thway (D4DD00143E/cit3/1) 2024; 3 Fébba (D4DD00143E/cit20/1) 2023; 11 Chellaswamy (D4DD00143E/cit29/1) 2016; 97 Castro Nascimento (D4DD00143E/cit2/1) 2023; 63 Kurchin (D4DD00143E/cit10/1) 2020; 10 Van Noorden (D4DD00143E/cit7/1) 2023; 624 Aal E Ali (D4DD00143E/cit6/1) 2024; 2 Yager (D4DD00143E/cit4/1) 2023; 2 Boiko (D4DD00143E/cit5/1) 2023; 624 Jablonka (D4DD00143E/cit8/1) 2023; 2 Fébba (D4DD00143E/cit12/1) 2018; 174  | 
    
| References_xml | – doi: Amazon Q – issn: 2024 volume-title: From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future publication-title: arXiv doi: Jin Huang Cai Yan Li Chen – issn: 2024 volume-title: Agents in Software Engineering: Survey, Landscape, and Vision publication-title: arXiv doi: Wang Zhong Huang Shi Yang Chen Li Ma Wang Zheng – issn: 2024 volume-title: Large Language Model-Based Agents for Software Engineering: A Survey publication-title: arXiv doi: Liu Wang Chen Peng Chen Zhang Lou – issn: 2024 volume-title: Self-Reflection in LLM Agents: Effects on Problem-Solving Performance publication-title: arXiv doi: Renze Guven – doi: Cursor – doi: LangChain – issn: 2010 end-page: 797-840 publication-title: Measurement and Characterization of Solar Cells and Modules doi: Emery – doi: Devin – issn: 2015 publication-title: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC doi: Lam Pitrou Seibert – ident: D4DD00143E/cit23/1 – volume: 5 start-page: 2338 year: 2020 ident: D4DD00143E/cit31/1 publication-title: J. Open Source Softw. doi: 10.21105/joss.02338 – ident: D4DD00143E/cit25/1 – volume: 13 start-page: 13990 year: 2023 ident: D4DD00143E/cit11/1 publication-title: Sci. Rep. doi: 10.1038/s41598-023-41111-7 – volume: 8 start-page: 992 year: 2020 ident: D4DD00143E/cit15/1 publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2020.3024669 – volume: 141 start-page: 110828 year: 2021 ident: D4DD00143E/cit16/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.110828 – volume: 97 start-page: 823 year: 2016 ident: D4DD00143E/cit29/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2016.06.024 – volume: 433 start-page: 127406 year: 2022 ident: D4DD00143E/cit36/1 publication-title: Appl. Math. Comput. – ident: D4DD00143E/cit22/1 – volume: 63 start-page: 1649 year: 2023 ident: D4DD00143E/cit2/1 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.3c00285 – start-page: 797 volume-title: Measurement and Characterization of Solar Cells and Modules year: 2010 ident: D4DD00143E/cit9/1 – ident: D4DD00143E/cit24/1 – volume: 624 start-page: 509 year: 2023 ident: D4DD00143E/cit7/1 publication-title: Nature doi: 10.1038/d41586-023-03930-6 – volume: 10 start-page: 646 year: 2006 ident: D4DD00143E/cit26/1 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.872133 – volume: 144 start-page: 594 year: 2017 ident: D4DD00143E/cit30/1 publication-title: Sol. Energy doi: 10.1016/j.solener.2017.01.064 – volume: 11 start-page: 071119 year: 2023 ident: D4DD00143E/cit20/1 publication-title: APL Mater. doi: 10.1063/5.0159406 – start-page: 2300535 year: 2023 ident: D4DD00143E/cit41/1 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.202300535 – volume: 15 start-page: 1667 year: 2022 ident: D4DD00143E/cit35/1 publication-title: Energies doi: 10.3390/en15051667 – volume: 2 start-page: 1850 year: 2023 ident: D4DD00143E/cit4/1 publication-title: Digital Discovery doi: 10.1039/D3DD00112A – volume: 147 start-page: 723 year: 2010 ident: D4DD00143E/cit42/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2010.04.008 – volume: 11 start-page: 1350 year: 2021 ident: D4DD00143E/cit32/1 publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2021.3109585 – volume: 35 start-page: 03D113 year: 2017 ident: D4DD00143E/cit39/1 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.4980042 – volume-title: arXiv year: 2024 ident: D4DD00143E/cit17/1 doi: 10.48550/arXiv.2408.02479 – volume: 209 start-page: 108759 year: 2023 ident: D4DD00143E/cit13/1 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2023.108759 – volume: 3 start-page: 328 year: 2024 ident: D4DD00143E/cit3/1 publication-title: Digital Discovery doi: 10.1039/D3DD00202K – volume: 39 start-page: 040402 year: 2021 ident: D4DD00143E/cit40/1 publication-title: J. Vac. Sci. Technol., A doi: 10.1116/6.0001003 – volume-title: arXiv year: 2024 ident: D4DD00143E/cit18/1 doi: 10.48550/arXiv.2409.02977 – volume-title: arXiv year: 2024 ident: D4DD00143E/cit19/1 doi: 10.48550/arXiv.2409.09030 – volume-title: arXiv year: 2024 ident: D4DD00143E/cit21/1 doi: 10.48550/arXiv.2405.06682 – volume: 174 start-page: 628 year: 2018 ident: D4DD00143E/cit12/1 publication-title: Sol. Energy doi: 10.1016/j.solener.2018.09.051 – volume: 2 start-page: 1233 issue: 5 year: 2023 ident: D4DD00143E/cit8/1 publication-title: Digital Discovery doi: 10.1039/D3DD00113J – volume: 124 start-page: 153504 year: 2024 ident: D4DD00143E/cit38/1 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0185566 – volume: 624 start-page: 570 year: 2023 ident: D4DD00143E/cit5/1 publication-title: Nature doi: 10.1038/s41586-023-06792-0 – volume: 2 start-page: 100049 year: 2024 ident: D4DD00143E/cit6/1 publication-title: Artif. Intell. Chem. doi: 10.1016/j.aichem.2024.100049 – volume: 201 start-page: 420 year: 2020 ident: D4DD00143E/cit27/1 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.02.093 – volume: 41 start-page: 043211 year: 2023 ident: D4DD00143E/cit37/1 publication-title: J. Vac. Sci. Technol., A doi: 10.1116/6.0002645 – volume: 48 start-page: 24213 year: 2022 ident: D4DD00143E/cit14/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.06.066 – volume: 165 start-page: 57 year: 2009 ident: D4DD00143E/cit33/1 publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2009.02.013 – volume-title: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC year: 2015 ident: D4DD00143E/cit28/1 – volume: 2 start-page: 368 year: 2023 ident: D4DD00143E/cit1/1 publication-title: Digital Discovery doi: 10.1039/D2DD00087C – volume: 10 start-page: 1532 year: 2020 ident: D4DD00143E/cit10/1 publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2020.3010105 – volume: 210 start-page: 112716 year: 2020 ident: D4DD00143E/cit34/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112716  | 
    
| SSID | ssj0002771136 | 
    
| Score | 2.3506947 | 
    
| Snippet | Large language models (LLMs) are one of the AI technologies that are transforming the landscape of chemistry and materials science. Recent examples of... | 
    
| SourceID | unpaywall osti crossref rsc  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 35 | 
    
| SubjectTerms | artificial intelligence differential evolution diode heterojunction instrumentation LLM MATERIALS SCIENCE MATHEMATICS AND COMPUTING  | 
    
| Title | From text to test: AI-generated control software for materials science instruments | 
    
| URI | https://www.osti.gov/biblio/2476742 https://doi.org/10.1039/D4DD00143E  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2635-098X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002771136 issn: 2635-098X databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2635-098X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002771136 issn: 2635-098X databaseCode: M~E dateStart: 20220101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAUL databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2023 issn: 2635-098X databaseCode: AKBGW dateStart: 20220101 customDbUrl: https://pubs.rsc.org isFulltext: true eissn: 2635-098X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002771136 providerName: Royal Society of Chemistry  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1Beygc2CtKAVnQayBNnMXcqi4CpFYIUamcIsd2EKK0VZuqggPfzjhLyyIhLkkOHsvxczLP8swbgBqTpvRCwQ1edx2DciUNbrshPkmh9Z2oR3WCc7fnXvfp7cAZrMFZngvz7fzeZpct2mppGm-316HoOsi3C1Ds9-4aj7pqHHpLw2T-INcdRQNJpUwM1DdPUxjjF4P-YzoTm1Cajyb8bcGHwy--pLMNzXwUaQjJy8U8Di_E-w-Bxr-HuQNbGZUkjRT7XVhToz0oNfMKbvtw35mOX4kO7SDxGO-z-Io0boynRGkamSbJ4tTJDP_FCz5VBBksQQqbrkqSeUfynKjMJrlwB9DvtB-a10ZWQ8EQlufECIHwVBTqA9DIj6T0XS2Q7zlOZEZOZPmKWxzxsDyEDDETAjcYkuoSxJL6Sii7DIXReKQOgTBXmsoPXWZzRv0wZDZ2YkZMCOZ7thdV4Dyf72CSSmUEyRG3zYLV_FSgqqEI8BW0Sq3Q4TwiDiyqVYWsCpQRoaX5CswK1Jag_ep91ezof82qsGHpOr5m3ag7x1DASVQnSC7i8DTZlOO1-9E-zVbaJ-vjzSU | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHNCDbyKiZqNci6XdPtYb4RE0kRgjCZ6a7e7WGBEIlBD99c6WFkQT46k97Gy28207X7Mz3wBUmTSlFwpu8LrrGJQraXDbDfFOCq3vRD2qC5zve263T-8GziAHl1ktzMb5vc2uW7TV0jTebm9BwXWQb-eh0O89NJ511ziMlobJ_EGmO4oGkkqZGKiNSJMf4xuD8WM6EztQnI8m_GPBh8NvsaSzB81sFcsUkrfaPA5r4vOHQOPfy9yH3ZRKksYS-wPIqdEhFJtZB7cjeOxMx-9Ep3aQeIzXWXxDGrfGS6I0jUyTpHnqZIbf4gWfKoIMliCFXe5KkkZH8pqozCa1cMfQ77Sfml0j7aFgCMtzYoRAeCoK9QFo5EdS-q4WyPccJzIjJ7J8xS2OeFgeQoaYCYE_GJLqFsSS-koouwT50XikToAwV5rKD11mc0b9MGQ2TmJGTAjme7YXleEq83cwWUplBMkRt82CtX_KUNFQBPgIWqVW6HQeEQcW1apCVhlKiNDKfA1mGaor0H7Nvh52-r9hFdi2dB9fs27UnTPIoxPVOZKLOLxId9cXX2fK_w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+text+to+test%3A+AI-generated+control+software+for+materials+science+instruments&rft.jtitle=Digital+discovery&rft.au=F%C3%A9bba%2C+Davi+Marcelo&rft.au=Egbo%2C+Kingsley&rft.au=Callahan%2C+William+A.&rft.au=Zakutayev%2C+Andriy&rft.date=2025-01-15&rft.pub=Royal+Society+of+Chemistry&rft.issn=2635-098X&rft.eissn=2635-098X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1039%2Fd4dd00143e&rft.externalDocID=2476742 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-098X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-098X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-098X&client=summon |