Exploring the Efficacy of Python-Driven Automated Machine Vision Algorithms for Inspection in Sheet Metal Forming

This research explores the application of Python-driven automated machine vision algorithms for inspection in sheet metal forming, a critical manufacturing process. The study addresses the need for advanced, reliable, and efficient inspection techniques to enhance quality control, thereby improving...

Full description

Saved in:
Bibliographic Details
Published inExperimental techniques (Westport, Conn.) Vol. 49; no. 4; pp. 703 - 726
Main Authors Pratheesh, Kumar S, Nharguna Nangai M B
Format Journal Article Magazine Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0732-8818
1747-1567
DOI10.1007/s40799-024-00773-2

Cover

Abstract This research explores the application of Python-driven automated machine vision algorithms for inspection in sheet metal forming, a critical manufacturing process. The study addresses the need for advanced, reliable, and efficient inspection techniques to enhance quality control, thereby improving product performance and manufacturing efficiency. The methodology used in this research involves inspecting formed sheet metal products using Python-based methods, namely the Structural Similarity Index Measure (SSIM) and Normalized Cross Correlation (NCC), along with MATLAB for image correlation, are applied directly for contour inspection. In addition to contour inspection, feature detection, which includes dimensional measurement, is also carried out as a critical part of assessing the quality and performance of the formed sheet metal products. This research integrates machine vision algorithms with Python, offering a comprehensive inspection of sheet metal products. The use of Python-based methods and the Hough Transform (HT) algorithm for inspecting sheet metal formed components introduces a novel approach with immense potential for enhancing efficiency in the quality control of the sheet metal inspection process. This signifies a notable breakthrough in automated inspection within the sheet metal forming industry, allowing comprehensive inspection of both features and dimensional measurements. By adopting the most effective method, manufacturers in the sheet metal fabrication field can enhance inspection efficiency and accuracy, thereby improving product quality and operational performance.
AbstractList This research explores the application of Python-driven automated machine vision algorithms for inspection in sheet metal forming, a critical manufacturing process. The study addresses the need for advanced, reliable, and efficient inspection techniques to enhance quality control, thereby improving product performance and manufacturing efficiency. The methodology used in this research involves inspecting formed sheet metal products using Python-based methods, namely the Structural Similarity Index Measure (SSIM) and Normalized Cross Correlation (NCC), along with MATLAB for image correlation, are applied directly for contour inspection. In addition to contour inspection, feature detection, which includes dimensional measurement, is also carried out as a critical part of assessing the quality and performance of the formed sheet metal products. This research integrates machine vision algorithms with Python, offering a comprehensive inspection of sheet metal products. The use of Python-based methods and the Hough Transform (HT) algorithm for inspecting sheet metal formed components introduces a novel approach with immense potential for enhancing efficiency in the quality control of the sheet metal inspection process. This signifies a notable breakthrough in automated inspection within the sheet metal forming industry, allowing comprehensive inspection of both features and dimensional measurements. By adopting the most effective method, manufacturers in the sheet metal fabrication field can enhance inspection efficiency and accuracy, thereby improving product quality and operational performance.
Author Nharguna Nangai M B
Pratheesh Kumar S
Author_xml – sequence: 1
  givenname: Kumar
  surname: Pratheesh
  middlename: S
  fullname: Pratheesh, Kumar S
– sequence: 2
  fullname: Nharguna Nangai M B
BookMark eNp9kE1P3DAQhq0KpC6UP8DJx15c_BHH9hHRpSCBQCriajnZMTFK7GB7q-6_J8ty5jQazfvMaJ4TdBRTBITOGf3FKFUXpaHKGEJ5Q5ZWCcK_oRVTjSJMtuoIragSnGjN9Hd0UsorpUwyZVbobf1_HlMO8QXXAfDa-9C7foeTx4-7OqRIfufwDyK-3NY0uQobfO_6IUTAz6GEtAzGl4Wvw1SwTxnfxjJDX_eTEPHfAaDie6huxNcpT8udH-jYu7HA2Wc9RU_X66erG3L38Of26vKO9FzJSlptGuWBG-o20OnOG7fR3LSCM6572bXSA3Qt061R0DRUUidBdkYYUJ4KcYp-HtbOOb1toVQ7hdLDOLoIaVus4FK2Qhuplyg_RPucSsng7ZzD5PLOMmr3eu1Br1302g-9li-QOEBl3tuDbF_TNsflo6-odwoRgEI
Cites_doi 10.3390/s19183832
10.1016/j.psep.2024.02.060
10.1145/361237.361242
10.3390/app11114904
10.1109/ACCESS.2021.3092425
10.1109/ISCID51228.2020.00064
10.48550/arXiv.1502.02160
10.1007/s13246-023-01280-1
10.1016/j.icheatmasstransfer.2024.107262
10.1109/BMEI.2015.7401472
10.1117/1.JEI.26.5.053008
10.1016/j.compag.2023.107822
10.3390/s20185136
10.1080/0020739x.2021.197926
10.1016/j.dche.2023.100119
10.1007/978-3-030-64556-4_13
10.1007/s11770-023-1068-1
10.48550/arXiv.2006.13846
10.1109/ICAwST.2013.6765416
10.1109/ICPR.2010.579
10.1016/S0167-8655(03)00098-
10.1109/TIP.2013.2251645
10.1021/acsomega.3c01227
10.1109/CVPR.2016.136
10.3390/s20185117
10.1007/978-981-19-6004-8_16
10.3923/tasr.2015.195.206
10.1109/TIP.2003.819861
10.1109/LES.2010.2051412
10.20944/preprints202309.1590.v1
10.1007/s00161-020-00920-1
10.4236/jcc.2019.73002
10.1016/j.dche.2023.100115
10.15623/ijret.2014.0317003
10.1007/s11760-021-02051-9
10.1109/THS.2016.7568893
10.1109/ACCESS.2024.3425166
10.1371/journal.pone.0203434
10.1007/s00181-024-02659-z
10.14569/IJACSA.2013.041113
10.3390/rs12182906
10.1016/j.patcog.2014.08.027
10.1007/978-981-99-1288-9_35
10.1007/s11042-020-10035-z
10.1016/j.eswa.2021.116087
10.1007/s00170-021-07416-5
10.1121/1.1810291
10.1016/j.optlaseng.2016.11.005
10.1109/LSP.2022.3227748
ContentType Journal Article
Magazine Article
Copyright The Society for Experimental Mechanics, Inc 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Society for Experimental Mechanics, Inc 2025.
Copyright_xml – notice: The Society for Experimental Mechanics, Inc 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Society for Experimental Mechanics, Inc 2025.
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s40799-024-00773-2
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1747-1567
EndPage 726
ExternalDocumentID 10_1007_s40799_024_00773_2
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OC
203
29G
31~
4.4
406
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8AO
8FE
8FG
8FW
8R4
8R5
8UM
930
A03
AACDK
AAEVG
AAEWM
AAHNG
AAIAL
AAIKT
AAJBT
AAMMB
AANHP
AANZL
AAOIN
AAONW
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYQN
AAYTO
AAZMS
ABAKF
ABBRH
ABBTF
ABCQN
ABDBE
ABDZT
ABECU
ABEFU
ABEML
ABFSG
ABFTV
ABHLI
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABPVW
ABQBU
ABRTZ
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBEA
ACBWZ
ACDTI
ACGFS
ACGOD
ACHSB
ACIWK
ACMFV
ACMLO
ACOKC
ACPIV
ACREN
ACRPL
ACSCC
ACSTC
ACXQS
ACYXJ
ACZOJ
ADHHG
ADIZJ
ADKNI
ADKPE
ADMLS
ADNMO
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFGJ
AEFQL
AEGXH
AEIMD
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AEZWR
AFBBN
AFBPY
AFDZB
AFFNX
AFHIU
AFKRA
AFOHR
AFQWF
AFZJQ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGXDD
AHBYD
AHEFC
AHKAY
AHPBZ
AHSBF
AHWEU
AIAKS
AIDQK
AIDYY
AIGIU
AILAN
AITGF
AIXLP
AJAOE
AJRNO
AJZVZ
ALAGY
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ARCSS
ASPBG
ATHPR
ATUGU
AVWKF
AXYYD
AYFIA
AZBYB
AZQEC
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BGNMA
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
CSCUP
D-E
D-F
DCZOG
DNIVK
DPUIP
DPXWK
DR2
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
F00
F01
F04
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
G-S
G.N
GGCAI
GJIRD
GNUQQ
GODZA
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZI
HZ~
H~9
I-F
IKXTQ
ITM
IWAJR
IX1
J-C
J0M
JZLTJ
K48
KOV
L6V
LC2
LC3
LH4
LLZTM
LP6
LP7
LW6
M2P
M2Q
M4Y
M7S
MK4
MK~
N04
N05
N9A
NF~
NPVJJ
NQJWS
NU0
O9J
OIG
P2X
P4D
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PTHSS
Q.N
Q11
Q2X
QB0
QF4
QM1
QN7
QO4
R.K
RHV
RLLFE
RNS
ROL
RSV
RWL
RX1
SCG
SCLPG
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SUPJJ
TAE
TN5
TSG
TUS
UB1
UG4
UOJIU
UTJUX
UZXMN
V8K
VFIZW
W48
W8V
W99
WQJ
WYUIH
XG1
XSW
ZMTXR
ZY4
~IA
~WT
AAYXX
ABRTQ
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c275t-68947fe290adeb8bf9ad829632128c5b65feeb618697e44050a5e5b939e7f033
ISSN 0732-8818
IngestDate Wed Oct 01 07:04:05 EDT 2025
Wed Oct 01 04:00:06 EDT 2025
Thu Jul 10 06:03:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Inspection
Image correlation
Sheet metal forming
Machine vision
Python
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c275t-68947fe290adeb8bf9ad829632128c5b65feeb618697e44050a5e5b939e7f033
Notes ObjectType-Article-1
ObjectType-Feature-2
content type line 24
SourceType-Magazines-1
ORCID 0000-0002-3748-0525
PQID 3255638958
PQPubID 37666
PageCount 24
ParticipantIDs proquest_miscellaneous_3255638958
crossref_primary_10_1007_s40799_024_00773_2
springer_journals_10_1007_s40799_024_00773_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Bethel
PublicationSubtitle Developments, Applications and Tutorials in Experimental Mechanics and Dynamics
PublicationTitle Experimental techniques (Westport, Conn.)
PublicationTitleAbbrev Exp Tech
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References GF Bomarito (773_CR46) 2017; 91
I Bakurov (773_CR58) 2022; 189
773_CR10
773_CR54
773_CR11
773_CR55
WM Ashraf (773_CR29) 2023; 8
773_CR56
773_CR13
773_CR57
773_CR14
R Khanam (773_CR31) 2024; 12
J Zujovic (773_CR53) 2013; 22
773_CR50
X Fang (773_CR37) 2020; 20
U Sara (773_CR8) 2019; 07
Y Shen (773_CR21) 2023; 20
B Cui (773_CR15) 2020; 20
773_CR41
D Atkinson (773_CR17) 2020; 12
A Bovik (773_CR42) 2005
P Mukhopadhyay (773_CR34) 2015; 48
H Gholami (773_CR40) 2022; 53
773_CR43
773_CR44
773_CR45
773_CR47
J Krzywanski (773_CR26) 2024; 152
WM Ashraf (773_CR30) 2023; 8
Z Ye (773_CR49) 2023; 209
M Grillenberger (773_CR19) 2021; 33
773_CR38
YR Rao (773_CR12) 2014; 03
RO Duda (773_CR39) 1972; 15
773_CR32
773_CR33
773_CR35
VVN Satya Suresh (773_CR1) 2023
S Maruyama (773_CR6) 2023; 46
AR Singh (773_CR36) 2022
D-M Tsai (773_CR48) 2003; 24
M Sambath (773_CR2) 2023
773_CR20
773_CR22
773_CR25
A-T Dang (773_CR23) 2021; 115
MW Shahzad (773_CR27) 2024; 184
WM Ashraf (773_CR28) 2023; 8
RS Thakur (773_CR60) 2021; 9
S Mathavan (773_CR24) 2017; 26
773_CR61
MK Kannan (773_CR51) 2021; 6
773_CR9
V Belloni (773_CR18) 2019; 19
Z Wang (773_CR3) 2004; 13
773_CR4
773_CR5
J Lin (773_CR62) 2022; 29
RK Satzoda (773_CR59) 2010; 2
I van Kamp (773_CR52) 2004; 116
F Osorio (773_CR7) 2022; 16
YM Fouda (773_CR16) 2015; 10
References_xml – volume: 19
  start-page: 3832
  issue: 18
  year: 2019
  ident: 773_CR18
  publication-title: Sensors (Basel)
  doi: 10.3390/s19183832
– volume: 184
  start-page: 1119
  year: 2024
  ident: 773_CR27
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2024.02.060
– volume: 15
  start-page: 11
  issue: 1
  year: 1972
  ident: 773_CR39
  publication-title: Commun ACM
  doi: 10.1145/361237.361242
– ident: 773_CR45
  doi: 10.3390/app11114904
– volume: 9
  start-page: 93338
  year: 2021
  ident: 773_CR60
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3092425
– ident: 773_CR32
  doi: 10.1109/ISCID51228.2020.00064
– ident: 773_CR20
  doi: 10.48550/arXiv.1502.02160
– volume: 46
  start-page: 1131
  issue: 3
  year: 2023
  ident: 773_CR6
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-023-01280-1
– volume: 152
  start-page: 107262
  issue: 107262
  year: 2024
  ident: 773_CR26
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2024.107262
– ident: 773_CR13
– ident: 773_CR22
  doi: 10.1109/BMEI.2015.7401472
– volume: 26
  start-page: 053008
  issue: 5
  year: 2017
  ident: 773_CR24
  publication-title: J Electron Imaging
  doi: 10.1117/1.JEI.26.5.053008
– volume: 209
  start-page: 107822
  issue: 107822
  year: 2023
  ident: 773_CR49
  publication-title: Compu Electron Agric
  doi: 10.1016/j.compag.2023.107822
– volume: 20
  start-page: 5136
  issue: 18
  year: 2020
  ident: 773_CR37
  publication-title: Sensors (Basel)
  doi: 10.3390/s20185136
– volume: 53
  start-page: 3457
  issue: 12
  year: 2022
  ident: 773_CR40
  publication-title: Int J Math Educ Sci Technol
  doi: 10.1080/0020739x.2021.197926
– volume: 8
  start-page: 100119
  issue: 100119
  year: 2023
  ident: 773_CR28
  publication-title: Dig Chem Eng
  doi: 10.1016/j.dche.2023.100119
– start-page: 225
  volume-title: Signal processing and communications
  year: 2005
  ident: 773_CR42
– ident: 773_CR55
  doi: 10.1007/978-3-030-64556-4_13
– volume: 20
  start-page: 252
  issue: 3
  year: 2023
  ident: 773_CR21
  publication-title: Appl Geophys
  doi: 10.1007/s11770-023-1068-1
– ident: 773_CR41
– ident: 773_CR4
  doi: 10.48550/arXiv.2006.13846
– ident: 773_CR11
  doi: 10.1109/ICAwST.2013.6765416
– ident: 773_CR54
  doi: 10.1109/ICPR.2010.579
– volume: 24
  start-page: 2525
  issue: 15
  year: 2003
  ident: 773_CR48
  publication-title: Pattern Recognitt Lett
  doi: 10.1016/S0167-8655(03)00098-
– volume: 22
  start-page: 2545
  issue: 7
  year: 2013
  ident: 773_CR53
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2251645
– volume: 8
  start-page: 21709
  issue: 24
  year: 2023
  ident: 773_CR29
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c01227
– ident: 773_CR57
  doi: 10.1109/CVPR.2016.136
– volume: 20
  start-page: 5117
  issue: 18
  year: 2020
  ident: 773_CR15
  publication-title: Sensors (Basel)
  doi: 10.3390/s20185117
– start-page: 183
  volume-title: Data intelligence and cognitive informatics
  year: 2023
  ident: 773_CR2
  doi: 10.1007/978-981-19-6004-8_16
– volume: 10
  start-page: 195
  issue: 4
  year: 2015
  ident: 773_CR16
  publication-title: Trends Appl Sci Res
  doi: 10.3923/tasr.2015.195.206
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 773_CR3
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– start-page: 411
  volume-title: The minerals, metals & materials Series
  year: 2022
  ident: 773_CR36
– volume: 2
  start-page: 23
  issue: 2
  year: 2010
  ident: 773_CR59
  publication-title: IEEE Embed Syst Lett
  doi: 10.1109/LES.2010.2051412
– ident: 773_CR33
  doi: 10.20944/preprints202309.1590.v1
– volume: 33
  start-page: 475
  issue: 2
  year: 2021
  ident: 773_CR19
  publication-title: Cont Mech Thermodyn
  doi: 10.1007/s00161-020-00920-1
– ident: 773_CR47
– volume: 07
  start-page: 8
  issue: 03
  year: 2019
  ident: 773_CR8
  publication-title: J Comput Commun
  doi: 10.4236/jcc.2019.73002
– volume: 8
  start-page: 100115
  issue: 100115
  year: 2023
  ident: 773_CR30
  publication-title: Dig Chem Engr
  doi: 10.1016/j.dche.2023.100115
– volume: 03
  start-page: 12
  issue: 17
  year: 2014
  ident: 773_CR12
  publication-title: Int J Res Eng Technol
  doi: 10.15623/ijret.2014.0317003
– ident: 773_CR44
  doi: 10.1109/TIP.2003.819861
– volume: 16
  start-page: 1035
  issue: 4
  year: 2022
  ident: 773_CR7
  publication-title: Sig Image Vid Process
  doi: 10.1007/s11760-021-02051-9
– ident: 773_CR61
  doi: 10.1109/THS.2016.7568893
– volume: 12
  start-page: 94250
  year: 2024
  ident: 773_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3425166
– ident: 773_CR9
  doi: 10.1371/journal.pone.0203434
– ident: 773_CR38
  doi: 10.1007/s00181-024-02659-z
– ident: 773_CR50
  doi: 10.14569/IJACSA.2013.041113
– ident: 773_CR43
– volume: 6
  start-page: 399
  year: 2021
  ident: 773_CR51
  publication-title: Int J Emerg Trends
– volume: 12
  start-page: 2906
  issue: 18
  year: 2020
  ident: 773_CR17
  publication-title: Remote Sens (Basel)
  doi: 10.3390/rs12182906
– ident: 773_CR25
– volume: 48
  start-page: 993
  issue: 3
  year: 2015
  ident: 773_CR34
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2014.08.027
– start-page: 335
  volume-title: Advances in manufacturing, automation, design and energy technologies
  year: 2023
  ident: 773_CR1
  doi: 10.1007/978-981-99-1288-9_35
– ident: 773_CR56
  doi: 10.1109/TIP.2003.819861
– ident: 773_CR10
  doi: 10.1007/s11042-020-10035-z
– ident: 773_CR5
  doi: 10.1007/s11042-020-10035-z
– volume: 189
  start-page: 116087
  issue: 116087
  year: 2022
  ident: 773_CR58
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116087
– ident: 773_CR35
– ident: 773_CR14
– volume: 115
  start-page: 3657
  issue: 11–12
  year: 2021
  ident: 773_CR23
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-021-07416-5
– volume: 116
  start-page: 3471
  issue: 6
  year: 2004
  ident: 773_CR52
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1810291
– volume: 91
  start-page: 73
  year: 2017
  ident: 773_CR46
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.11.005
– volume: 29
  start-page: 2617
  year: 2022
  ident: 773_CR62
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2022.3227748
SSID ssj0015179
Score 2.355912
Snippet This research explores the application of Python-driven automated machine vision algorithms for inspection in sheet metal forming, a critical manufacturing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 703
SubjectTerms Accuracy
Algorithms
Automation
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computer vision
Contours
Cross correlation
Defects
Dimensional measurement
Effectiveness
Efficiency
Fourier transforms
Hough transformation
Inspection
Machine vision
Manufacturers
Manufacturing
Materials Science
Metal forming
Metal sheets
Methods
Quality control
Research Paper
Small & medium sized enterprises-SME
Software
Vision systems
Title Exploring the Efficacy of Python-Driven Automated Machine Vision Algorithms for Inspection in Sheet Metal Forming
URI https://link.springer.com/article/10.1007/s40799-024-00773-2
https://www.proquest.com/docview/3255638958
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1747-1567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015179
  issn: 0732-8818
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0732-8818
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1747-1567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015179
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG5kvehBfOL4ogVvsZdsP5Lu4-DusgiziI6yt5BkKjMLkuhM5qC_3qpOJ5lZV3G9hBBI03R9qVR1f_UVY2-cLTGx0rGQVaqEBuuE1RALbYzMrSOtaipOnp0nZ5_1-wtzMfLnfXVJWxyWP6-tK_kfq-IztCtVyd7AssOg-ADv0b54RQvj9Z9sPBLoKHw8ITUI6t5OtLYfpAkgjtfkzKLptm0wMgWiVBB3EqIvvqQ8mn5d4vvtqlNlIOaAL7zs6I-fVnRePQMqlzxtiDOz3NvH3-0NMEjB-k1calfTt6gnJs3hzn7DhzXFnLBZRZ7dPW69npNm07bOyeEv88toFhpChy0JaQZCXO-5UoVu1gbHCp1nxbxFYLKYXuu3O6rGBrNLEkWQWpDMkAqFkXsi2Vd-XgOlcJBf9mNkOEbmx8jw_3xbosunvh7HHwdtsSPSJvMarWGuoaLK11X-No_9qGVMRa6cnvugZH6f3QvZBJ920HjAbkH9kN3d0Zh8xL4PIOG47rwHCW8qvgcSPoCEB5DwDiR8BAlHkPARJPyy5h4k3IOEB5A8ZvPTk_m7MxH6bIhSpqYViXU6rUC6OF9AYYvK5Qsr0TNjWGNLUySmAiiosYJLQWOEH-cGTOGUg7SKlXrCDuqmhqeMV9qoElMMyDEyVEe60LFcJM5SY9nE5HLCon4Zs2-dmkr2Z8NN2Ot-pTN0enSSldfQbDeZIuE8DLWNnbC3vQmy8GVu_jLksxtN4Dm7M8L7BTto11t4iTFoW7zyWPoFyXGA9w
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Efficacy+of+Python-Driven+Automated+Machine+Vision+Algorithms+for+Inspection+in+Sheet+Metal+Forming&rft.jtitle=Experimental+techniques+%28Westport%2C+Conn.%29&rft.au=Pratheesh+Kumar+S&rft.au=Nharguna+Nangai+M+B&rft.date=2025-08-01&rft.issn=0732-8818&rft.eissn=1747-1567&rft_id=info:doi/10.1007%2Fs40799-024-00773-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40799_024_00773_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0732-8818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0732-8818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0732-8818&client=summon