Exploring the Efficacy of Python-Driven Automated Machine Vision Algorithms for Inspection in Sheet Metal Forming
This research explores the application of Python-driven automated machine vision algorithms for inspection in sheet metal forming, a critical manufacturing process. The study addresses the need for advanced, reliable, and efficient inspection techniques to enhance quality control, thereby improving...
        Saved in:
      
    
          | Published in | Experimental techniques (Westport, Conn.) Vol. 49; no. 4; pp. 703 - 726 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article Magazine Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.08.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0732-8818 1747-1567  | 
| DOI | 10.1007/s40799-024-00773-2 | 
Cover
| Abstract | This research explores the application of Python-driven automated machine vision algorithms for inspection in sheet metal forming, a critical manufacturing process. The study addresses the need for advanced, reliable, and efficient inspection techniques to enhance quality control, thereby improving product performance and manufacturing efficiency. The methodology used in this research involves inspecting formed sheet metal products using Python-based methods, namely the Structural Similarity Index Measure (SSIM) and Normalized Cross Correlation (NCC), along with MATLAB for image correlation, are applied directly for contour inspection. In addition to contour inspection, feature detection, which includes dimensional measurement, is also carried out as a critical part of assessing the quality and performance of the formed sheet metal products. This research integrates machine vision algorithms with Python, offering a comprehensive inspection of sheet metal products. The use of Python-based methods and the Hough Transform (HT) algorithm for inspecting sheet metal formed components introduces a novel approach with immense potential for enhancing efficiency in the quality control of the sheet metal inspection process. This signifies a notable breakthrough in automated inspection within the sheet metal forming industry, allowing comprehensive inspection of both features and dimensional measurements. By adopting the most effective method, manufacturers in the sheet metal fabrication field can enhance inspection efficiency and accuracy, thereby improving product quality and operational performance. | 
    
|---|---|
| AbstractList | This research explores the application of Python-driven automated machine vision algorithms for inspection in sheet metal forming, a critical manufacturing process. The study addresses the need for advanced, reliable, and efficient inspection techniques to enhance quality control, thereby improving product performance and manufacturing efficiency. The methodology used in this research involves inspecting formed sheet metal products using Python-based methods, namely the Structural Similarity Index Measure (SSIM) and Normalized Cross Correlation (NCC), along with MATLAB for image correlation, are applied directly for contour inspection. In addition to contour inspection, feature detection, which includes dimensional measurement, is also carried out as a critical part of assessing the quality and performance of the formed sheet metal products. This research integrates machine vision algorithms with Python, offering a comprehensive inspection of sheet metal products. The use of Python-based methods and the Hough Transform (HT) algorithm for inspecting sheet metal formed components introduces a novel approach with immense potential for enhancing efficiency in the quality control of the sheet metal inspection process. This signifies a notable breakthrough in automated inspection within the sheet metal forming industry, allowing comprehensive inspection of both features and dimensional measurements. By adopting the most effective method, manufacturers in the sheet metal fabrication field can enhance inspection efficiency and accuracy, thereby improving product quality and operational performance. | 
    
| Author | Nharguna Nangai M B Pratheesh Kumar S  | 
    
| Author_xml | – sequence: 1 givenname: Kumar surname: Pratheesh middlename: S fullname: Pratheesh, Kumar S – sequence: 2 fullname: Nharguna Nangai M B  | 
    
| BookMark | eNp9kE1P3DAQhq0KpC6UP8DJx15c_BHH9hHRpSCBQCriajnZMTFK7GB7q-6_J8ty5jQazfvMaJ4TdBRTBITOGf3FKFUXpaHKGEJ5Q5ZWCcK_oRVTjSJMtuoIragSnGjN9Hd0UsorpUwyZVbobf1_HlMO8QXXAfDa-9C7foeTx4-7OqRIfufwDyK-3NY0uQobfO_6IUTAz6GEtAzGl4Wvw1SwTxnfxjJDX_eTEPHfAaDie6huxNcpT8udH-jYu7HA2Wc9RU_X66erG3L38Of26vKO9FzJSlptGuWBG-o20OnOG7fR3LSCM6572bXSA3Qt061R0DRUUidBdkYYUJ4KcYp-HtbOOb1toVQ7hdLDOLoIaVus4FK2Qhuplyg_RPucSsng7ZzD5PLOMmr3eu1Br1302g-9li-QOEBl3tuDbF_TNsflo6-odwoRgEI | 
    
| Cites_doi | 10.3390/s19183832 10.1016/j.psep.2024.02.060 10.1145/361237.361242 10.3390/app11114904 10.1109/ACCESS.2021.3092425 10.1109/ISCID51228.2020.00064 10.48550/arXiv.1502.02160 10.1007/s13246-023-01280-1 10.1016/j.icheatmasstransfer.2024.107262 10.1109/BMEI.2015.7401472 10.1117/1.JEI.26.5.053008 10.1016/j.compag.2023.107822 10.3390/s20185136 10.1080/0020739x.2021.197926 10.1016/j.dche.2023.100119 10.1007/978-3-030-64556-4_13 10.1007/s11770-023-1068-1 10.48550/arXiv.2006.13846 10.1109/ICAwST.2013.6765416 10.1109/ICPR.2010.579 10.1016/S0167-8655(03)00098- 10.1109/TIP.2013.2251645 10.1021/acsomega.3c01227 10.1109/CVPR.2016.136 10.3390/s20185117 10.1007/978-981-19-6004-8_16 10.3923/tasr.2015.195.206 10.1109/TIP.2003.819861 10.1109/LES.2010.2051412 10.20944/preprints202309.1590.v1 10.1007/s00161-020-00920-1 10.4236/jcc.2019.73002 10.1016/j.dche.2023.100115 10.15623/ijret.2014.0317003 10.1007/s11760-021-02051-9 10.1109/THS.2016.7568893 10.1109/ACCESS.2024.3425166 10.1371/journal.pone.0203434 10.1007/s00181-024-02659-z 10.14569/IJACSA.2013.041113 10.3390/rs12182906 10.1016/j.patcog.2014.08.027 10.1007/978-981-99-1288-9_35 10.1007/s11042-020-10035-z 10.1016/j.eswa.2021.116087 10.1007/s00170-021-07416-5 10.1121/1.1810291 10.1016/j.optlaseng.2016.11.005 10.1109/LSP.2022.3227748  | 
    
| ContentType | Journal Article Magazine Article  | 
    
| Copyright | The Society for Experimental Mechanics, Inc 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Society for Experimental Mechanics, Inc 2025.  | 
    
| Copyright_xml | – notice: The Society for Experimental Mechanics, Inc 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Society for Experimental Mechanics, Inc 2025.  | 
    
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7  | 
    
| DOI | 10.1007/s40799-024-00773-2 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1747-1567 | 
    
| EndPage | 726 | 
    
| ExternalDocumentID | 10_1007_s40799_024_00773_2 | 
    
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OC 203 29G 31~ 4.4 406 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 6OB 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8AO 8FE 8FG 8FW 8R4 8R5 8UM 930 A03 AACDK AAEVG AAEWM AAHNG AAIAL AAIKT AAJBT AAMMB AANHP AANZL AAOIN AAONW AARHV AARTL AASML AATNV AATVU AAUYE AAYQN AAYTO AAZMS ABAKF ABBRH ABBTF ABCQN ABDBE ABDZT ABECU ABEFU ABEML ABFSG ABFTV ABHLI ABJCF ABJNI ABJOX ABKCH ABMQK ABPVW ABQBU ABRTZ ABTEG ABTKH ABTMW ABUWG ABXPI ACAOD ACBEA ACBWZ ACDTI ACGFS ACGOD ACHSB ACIWK ACMFV ACMLO ACOKC ACPIV ACREN ACRPL ACSCC ACSTC ACXQS ACYXJ ACZOJ ADHHG ADIZJ ADKNI ADKPE ADMLS ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFGJ AEFQL AEGXH AEIMD AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AEZWR AFBBN AFBPY AFDZB AFFNX AFHIU AFKRA AFOHR AFQWF AFZJQ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGQPQ AGRTI AGXDD AHBYD AHEFC AHKAY AHPBZ AHSBF AHWEU AIAKS AIDQK AIDYY AIGIU AILAN AITGF AIXLP AJAOE AJRNO AJZVZ ALAGY ALFXC ALMA_UNASSIGNED_HOLDINGS AMBMR AMKLP AMTXH AMXSW AMYLF AMYQR ARCSS ASPBG ATHPR ATUGU AVWKF AXYYD AYFIA AZBYB AZQEC BAFTC BDRZF BENPR BFHJK BGLVJ BGNMA BNHUX BPHCQ BROTX BRXPI BY8 CAG CCPQU COF CS3 CSCUP D-E D-F DCZOG DNIVK DPUIP DPXWK DR2 DU5 DWQXO EBLON EBS EDO EIOEI EJD F00 F01 F04 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE G-S G.N GGCAI GJIRD GNUQQ GODZA H.T H.X HCIFZ HF~ HOLLA HVGLF HZI HZ~ H~9 I-F IKXTQ ITM IWAJR IX1 J-C J0M JZLTJ K48 KOV L6V LC2 LC3 LH4 LLZTM LP6 LP7 LW6 M2P M2Q M4Y M7S MK4 MK~ N04 N05 N9A NF~ NPVJJ NQJWS NU0 O9J OIG P2X P4D PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PTHSS Q.N Q11 Q2X QB0 QF4 QM1 QN7 QO4 R.K RHV RLLFE RNS ROL RSV RWL RX1 SCG SCLPG SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SUPJJ TAE TN5 TSG TUS UB1 UG4 UOJIU UTJUX UZXMN V8K VFIZW W48 W8V W99 WQJ WYUIH XG1 XSW ZMTXR ZY4 ~IA ~WT AAYXX ABRTQ CITATION 7TB 8FD FR3 KR7  | 
    
| ID | FETCH-LOGICAL-c275t-68947fe290adeb8bf9ad829632128c5b65feeb618697e44050a5e5b939e7f033 | 
    
| ISSN | 0732-8818 | 
    
| IngestDate | Wed Oct 01 07:04:05 EDT 2025 Wed Oct 01 04:00:06 EDT 2025 Thu Jul 10 06:03:38 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Inspection Image correlation Sheet metal forming Machine vision Python  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c275t-68947fe290adeb8bf9ad829632128c5b65feeb618697e44050a5e5b939e7f033 | 
    
| Notes | ObjectType-Article-1 ObjectType-Feature-2 content type line 24 SourceType-Magazines-1  | 
    
| ORCID | 0000-0002-3748-0525 | 
    
| PQID | 3255638958 | 
    
| PQPubID | 37666 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | proquest_miscellaneous_3255638958 crossref_primary_10_1007_s40799_024_00773_2 springer_journals_10_1007_s40799_024_00773_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-08-01 | 
    
| PublicationDateYYYYMMDD | 2025-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Bethel  | 
    
| PublicationSubtitle | Developments, Applications and Tutorials in Experimental Mechanics and Dynamics | 
    
| PublicationTitle | Experimental techniques (Westport, Conn.) | 
    
| PublicationTitleAbbrev | Exp Tech | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | GF Bomarito (773_CR46) 2017; 91 I Bakurov (773_CR58) 2022; 189 773_CR10 773_CR54 773_CR11 773_CR55 WM Ashraf (773_CR29) 2023; 8 773_CR56 773_CR13 773_CR57 773_CR14 R Khanam (773_CR31) 2024; 12 J Zujovic (773_CR53) 2013; 22 773_CR50 X Fang (773_CR37) 2020; 20 U Sara (773_CR8) 2019; 07 Y Shen (773_CR21) 2023; 20 B Cui (773_CR15) 2020; 20 773_CR41 D Atkinson (773_CR17) 2020; 12 A Bovik (773_CR42) 2005 P Mukhopadhyay (773_CR34) 2015; 48 H Gholami (773_CR40) 2022; 53 773_CR43 773_CR44 773_CR45 773_CR47 J Krzywanski (773_CR26) 2024; 152 WM Ashraf (773_CR30) 2023; 8 Z Ye (773_CR49) 2023; 209 M Grillenberger (773_CR19) 2021; 33 773_CR38 YR Rao (773_CR12) 2014; 03 RO Duda (773_CR39) 1972; 15 773_CR32 773_CR33 773_CR35 VVN Satya Suresh (773_CR1) 2023 S Maruyama (773_CR6) 2023; 46 AR Singh (773_CR36) 2022 D-M Tsai (773_CR48) 2003; 24 M Sambath (773_CR2) 2023 773_CR20 773_CR22 773_CR25 A-T Dang (773_CR23) 2021; 115 MW Shahzad (773_CR27) 2024; 184 WM Ashraf (773_CR28) 2023; 8 RS Thakur (773_CR60) 2021; 9 S Mathavan (773_CR24) 2017; 26 773_CR61 MK Kannan (773_CR51) 2021; 6 773_CR9 V Belloni (773_CR18) 2019; 19 Z Wang (773_CR3) 2004; 13 773_CR4 773_CR5 J Lin (773_CR62) 2022; 29 RK Satzoda (773_CR59) 2010; 2 I van Kamp (773_CR52) 2004; 116 F Osorio (773_CR7) 2022; 16 YM Fouda (773_CR16) 2015; 10  | 
    
| References_xml | – volume: 19 start-page: 3832 issue: 18 year: 2019 ident: 773_CR18 publication-title: Sensors (Basel) doi: 10.3390/s19183832 – volume: 184 start-page: 1119 year: 2024 ident: 773_CR27 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2024.02.060 – volume: 15 start-page: 11 issue: 1 year: 1972 ident: 773_CR39 publication-title: Commun ACM doi: 10.1145/361237.361242 – ident: 773_CR45 doi: 10.3390/app11114904 – volume: 9 start-page: 93338 year: 2021 ident: 773_CR60 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3092425 – ident: 773_CR32 doi: 10.1109/ISCID51228.2020.00064 – ident: 773_CR20 doi: 10.48550/arXiv.1502.02160 – volume: 46 start-page: 1131 issue: 3 year: 2023 ident: 773_CR6 publication-title: Phys Eng Sci Med doi: 10.1007/s13246-023-01280-1 – volume: 152 start-page: 107262 issue: 107262 year: 2024 ident: 773_CR26 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2024.107262 – ident: 773_CR13 – ident: 773_CR22 doi: 10.1109/BMEI.2015.7401472 – volume: 26 start-page: 053008 issue: 5 year: 2017 ident: 773_CR24 publication-title: J Electron Imaging doi: 10.1117/1.JEI.26.5.053008 – volume: 209 start-page: 107822 issue: 107822 year: 2023 ident: 773_CR49 publication-title: Compu Electron Agric doi: 10.1016/j.compag.2023.107822 – volume: 20 start-page: 5136 issue: 18 year: 2020 ident: 773_CR37 publication-title: Sensors (Basel) doi: 10.3390/s20185136 – volume: 53 start-page: 3457 issue: 12 year: 2022 ident: 773_CR40 publication-title: Int J Math Educ Sci Technol doi: 10.1080/0020739x.2021.197926 – volume: 8 start-page: 100119 issue: 100119 year: 2023 ident: 773_CR28 publication-title: Dig Chem Eng doi: 10.1016/j.dche.2023.100119 – start-page: 225 volume-title: Signal processing and communications year: 2005 ident: 773_CR42 – ident: 773_CR55 doi: 10.1007/978-3-030-64556-4_13 – volume: 20 start-page: 252 issue: 3 year: 2023 ident: 773_CR21 publication-title: Appl Geophys doi: 10.1007/s11770-023-1068-1 – ident: 773_CR41 – ident: 773_CR4 doi: 10.48550/arXiv.2006.13846 – ident: 773_CR11 doi: 10.1109/ICAwST.2013.6765416 – ident: 773_CR54 doi: 10.1109/ICPR.2010.579 – volume: 24 start-page: 2525 issue: 15 year: 2003 ident: 773_CR48 publication-title: Pattern Recognitt Lett doi: 10.1016/S0167-8655(03)00098- – volume: 22 start-page: 2545 issue: 7 year: 2013 ident: 773_CR53 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2251645 – volume: 8 start-page: 21709 issue: 24 year: 2023 ident: 773_CR29 publication-title: ACS Omega doi: 10.1021/acsomega.3c01227 – ident: 773_CR57 doi: 10.1109/CVPR.2016.136 – volume: 20 start-page: 5117 issue: 18 year: 2020 ident: 773_CR15 publication-title: Sensors (Basel) doi: 10.3390/s20185117 – start-page: 183 volume-title: Data intelligence and cognitive informatics year: 2023 ident: 773_CR2 doi: 10.1007/978-981-19-6004-8_16 – volume: 10 start-page: 195 issue: 4 year: 2015 ident: 773_CR16 publication-title: Trends Appl Sci Res doi: 10.3923/tasr.2015.195.206 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 773_CR3 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – start-page: 411 volume-title: The minerals, metals & materials Series year: 2022 ident: 773_CR36 – volume: 2 start-page: 23 issue: 2 year: 2010 ident: 773_CR59 publication-title: IEEE Embed Syst Lett doi: 10.1109/LES.2010.2051412 – ident: 773_CR33 doi: 10.20944/preprints202309.1590.v1 – volume: 33 start-page: 475 issue: 2 year: 2021 ident: 773_CR19 publication-title: Cont Mech Thermodyn doi: 10.1007/s00161-020-00920-1 – ident: 773_CR47 – volume: 07 start-page: 8 issue: 03 year: 2019 ident: 773_CR8 publication-title: J Comput Commun doi: 10.4236/jcc.2019.73002 – volume: 8 start-page: 100115 issue: 100115 year: 2023 ident: 773_CR30 publication-title: Dig Chem Engr doi: 10.1016/j.dche.2023.100115 – volume: 03 start-page: 12 issue: 17 year: 2014 ident: 773_CR12 publication-title: Int J Res Eng Technol doi: 10.15623/ijret.2014.0317003 – ident: 773_CR44 doi: 10.1109/TIP.2003.819861 – volume: 16 start-page: 1035 issue: 4 year: 2022 ident: 773_CR7 publication-title: Sig Image Vid Process doi: 10.1007/s11760-021-02051-9 – ident: 773_CR61 doi: 10.1109/THS.2016.7568893 – volume: 12 start-page: 94250 year: 2024 ident: 773_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3425166 – ident: 773_CR9 doi: 10.1371/journal.pone.0203434 – ident: 773_CR38 doi: 10.1007/s00181-024-02659-z – ident: 773_CR50 doi: 10.14569/IJACSA.2013.041113 – ident: 773_CR43 – volume: 6 start-page: 399 year: 2021 ident: 773_CR51 publication-title: Int J Emerg Trends – volume: 12 start-page: 2906 issue: 18 year: 2020 ident: 773_CR17 publication-title: Remote Sens (Basel) doi: 10.3390/rs12182906 – ident: 773_CR25 – volume: 48 start-page: 993 issue: 3 year: 2015 ident: 773_CR34 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2014.08.027 – start-page: 335 volume-title: Advances in manufacturing, automation, design and energy technologies year: 2023 ident: 773_CR1 doi: 10.1007/978-981-99-1288-9_35 – ident: 773_CR56 doi: 10.1109/TIP.2003.819861 – ident: 773_CR10 doi: 10.1007/s11042-020-10035-z – ident: 773_CR5 doi: 10.1007/s11042-020-10035-z – volume: 189 start-page: 116087 issue: 116087 year: 2022 ident: 773_CR58 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116087 – ident: 773_CR35 – ident: 773_CR14 – volume: 115 start-page: 3657 issue: 11–12 year: 2021 ident: 773_CR23 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-07416-5 – volume: 116 start-page: 3471 issue: 6 year: 2004 ident: 773_CR52 publication-title: J Acoust Soc Am doi: 10.1121/1.1810291 – volume: 91 start-page: 73 year: 2017 ident: 773_CR46 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.11.005 – volume: 29 start-page: 2617 year: 2022 ident: 773_CR62 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2022.3227748  | 
    
| SSID | ssj0015179 | 
    
| Score | 2.355912 | 
    
| Snippet | This research explores the application of Python-driven automated machine vision algorithms for inspection in sheet metal forming, a critical manufacturing... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 703 | 
    
| SubjectTerms | Accuracy Algorithms Automation Characterization and Evaluation of Materials Chemistry and Materials Science Computer vision Contours Cross correlation Defects Dimensional measurement Effectiveness Efficiency Fourier transforms Hough transformation Inspection Machine vision Manufacturers Manufacturing Materials Science Metal forming Metal sheets Methods Quality control Research Paper Small & medium sized enterprises-SME Software Vision systems  | 
    
| Title | Exploring the Efficacy of Python-Driven Automated Machine Vision Algorithms for Inspection in Sheet Metal Forming | 
    
| URI | https://link.springer.com/article/10.1007/s40799-024-00773-2 https://www.proquest.com/docview/3255638958  | 
    
| Volume | 49 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1747-1567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015179 issn: 0732-8818 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0732-8818 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1747-1567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015179 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG5kvehBfOL4ogVvsZdsP5Lu4-DusgiziI6yt5BkKjMLkuhM5qC_3qpOJ5lZV3G9hBBI03R9qVR1f_UVY2-cLTGx0rGQVaqEBuuE1RALbYzMrSOtaipOnp0nZ5_1-wtzMfLnfXVJWxyWP6-tK_kfq-IztCtVyd7AssOg-ADv0b54RQvj9Z9sPBLoKHw8ITUI6t5OtLYfpAkgjtfkzKLptm0wMgWiVBB3EqIvvqQ8mn5d4vvtqlNlIOaAL7zs6I-fVnRePQMqlzxtiDOz3NvH3-0NMEjB-k1calfTt6gnJs3hzn7DhzXFnLBZRZ7dPW69npNm07bOyeEv88toFhpChy0JaQZCXO-5UoVu1gbHCp1nxbxFYLKYXuu3O6rGBrNLEkWQWpDMkAqFkXsi2Vd-XgOlcJBf9mNkOEbmx8jw_3xbosunvh7HHwdtsSPSJvMarWGuoaLK11X-No_9qGVMRa6cnvugZH6f3QvZBJ920HjAbkH9kN3d0Zh8xL4PIOG47rwHCW8qvgcSPoCEB5DwDiR8BAlHkPARJPyy5h4k3IOEB5A8ZvPTk_m7MxH6bIhSpqYViXU6rUC6OF9AYYvK5Qsr0TNjWGNLUySmAiiosYJLQWOEH-cGTOGUg7SKlXrCDuqmhqeMV9qoElMMyDEyVEe60LFcJM5SY9nE5HLCon4Zs2-dmkr2Z8NN2Ot-pTN0enSSldfQbDeZIuE8DLWNnbC3vQmy8GVu_jLksxtN4Dm7M8L7BTto11t4iTFoW7zyWPoFyXGA9w | 
    
| linkProvider | Wiley-Blackwell | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Efficacy+of+Python-Driven+Automated+Machine+Vision+Algorithms+for+Inspection+in+Sheet+Metal+Forming&rft.jtitle=Experimental+techniques+%28Westport%2C+Conn.%29&rft.au=Pratheesh+Kumar+S&rft.au=Nharguna+Nangai+M+B&rft.date=2025-08-01&rft.issn=0732-8818&rft.eissn=1747-1567&rft_id=info:doi/10.1007%2Fs40799-024-00773-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40799_024_00773_2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0732-8818&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0732-8818&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0732-8818&client=summon |