Enhanced Brain Tumour MRI Segmentation using K-means with machine learning based PSO and Firefly Algorithm
INTRODUCTION: Medical image segmentation is usually integrated as a critical step in medical image analysis, often associated with numerous clinical applications. Magnetic Resonance Imaging (MRI) provides detailed visualization of the various anatomical structures decisive for interventions and surg...
        Saved in:
      
    
          | Published in | EAI endorsed transactions on pervasive health and technology Vol. 7; no. 26; p. e2 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            European Alliance for Innovation (EAI)
    
        01.04.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2411-7145 2411-7145  | 
| DOI | 10.4108/eai.3-2-2021.168600 | 
Cover
| Abstract | INTRODUCTION: Medical image segmentation is usually integrated as a critical step in medical image analysis, often associated with numerous clinical applications. Magnetic Resonance Imaging (MRI) provides detailed visualization of the various anatomical structures decisive for interventions and surgical plans.OBJECTIVES: The objective of this paper is to design and apply an enhanced brain tumor MRI segmentation using K-mean with K-means as machine learning based Particle Swarm Optimization (PSO) and Firefly Algorithm (FA).METHODS: A novel fitness function of Swarm Based PSO works on velocity variation is introduced, which enhances the segmented regions. The traditional k-means algorithm is enhanced by applying PSO to the segmented part. Another extension of Swarm Intelligence named Firefly is applied to compare the results of the PSO based segmentation, and Firefly based segmentation is used.RESULTS: The simulation results are evaluated in terms of precision (98%), recall (0.95), f-measure (0.96), accuracy (97%), and segmentation time (2.63s) to measure the image segmentation the quality of main results obtained.CONCLUSION: Comparative studies have shown that the proposed design using k-means combined with FA exhibited high accuracy and precision in detecting brain tumor RoI. | 
    
|---|---|
| AbstractList | INTRODUCTION: Medical image segmentation is usually integrated as a critical step in medical image analysis, often associated with numerous clinical applications. Magnetic Resonance Imaging (MRI) provides detailed visualization of the various anatomical structures decisive for interventions and surgical plans.OBJECTIVES: The objective of this paper is to design and apply an enhanced brain tumor MRI segmentation using K-mean with K-means as machine learning based Particle Swarm Optimization (PSO) and Firefly Algorithm (FA). METHODS: A novel fitness function of Swarm Based PSO works on velocity variation is introduced, which enhances the segmented regions. The traditional k-means algorithm is enhanced by applying PSO to the segmented part. Another extension of Swarm Intelligence named Firefly is applied to compare the results of the PSO based segmentation, and Firefly based segmentation is used. RESULTS: The simulation results are evaluated in terms of precision (98%), recall (0.95), f-measure (0.96), accuracy (97%), and segmentation time (2.63s) to measure the image segmentation the quality of main results obtained.CONCLUSION: Comparative studies have shown that the proposed design using k-means combined with FA exhibited high accuracy and precision in detecting brain tumor RoI. | 
    
| Author | Kapoor, Anjali Agarwal, Rekha  | 
    
| Author_xml | – sequence: 1 givenname: Anjali surname: Kapoor fullname: Kapoor, Anjali – sequence: 2 givenname: Rekha surname: Agarwal fullname: Agarwal, Rekha  | 
    
| BookMark | eNqNkctKAzEUQIMoWGu_wE1-YGqe08yyio9iRbF1HW7zaFNmMpKZIv17p46IuBA3SbjJOYuTM3Qc6-gQuqBkLChRlw7CmGcsY4TRMc1VTsgRGjBBaTahQh7_OJ-iUdNsCSG0YEQIMkDbm7iBaJzFVwlCxMtdVe8SfnyZ4YVbVy620IY64l0T4ho_ZJWD2OD30G5wBWYTosOlgxQPtytoOs_z4glDtPg2JOfLPZ6W6zp176tzdOKhbNzoax-i19ub5fV9Nn-6m11P55lhE0kyLxRnXpoVpUxaqajlUqocvLIr4khuCkq4t1zkE8MKKoXzistu8V6A8MCHaNZ7bQ1b_ZZCBWmvawj6c1CntYbUBlM6XUDuORW8UIUUTColJc-VNdZOgCniOpfoXbv4Bvt3KMtvISX6kF93-TXXTB_y6z5_h_EeM6lumq7DP6niF2VCn7_t_qb8k_0ANOicZA | 
    
| CitedBy_id | crossref_primary_10_1016_j_bspc_2022_103866 crossref_primary_10_1016_j_procs_2024_04_149 crossref_primary_10_1016_j_asoc_2022_109794  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.4108/eai.3-2-2021.168600 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2411-7145 | 
    
| ExternalDocumentID | oai_doaj_org_article_9a6f314398954258855368dcdd7a280e 10.4108/eai.3-2-2021.168600 10_4108_eai_3_2_2021_168600  | 
    
| GroupedDBID | 5VS 8FE 8FG 8FI AAFWJ AAYXX ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AQUVI ARAPS BCNDV BENPR BGLVJ BPHCQ BVXVI CITATION FYUFA GROUPED_DOAJ HCIFZ KQ8 M0T M~E OK1 P62 PIMPY PQQKQ 8FJ ABUWG ADTOC AFFHD CCPQU IPNFZ PHGZM PHGZT PJZUB PPXIY PQGLB RIG UKHRP UNPAY  | 
    
| ID | FETCH-LOGICAL-c2750-f4832f5cb1125d581d35586af8db0e06c9103fd3467c29154ef835ef8ff4a4fa3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2411-7145 | 
    
| IngestDate | Fri Oct 03 12:43:57 EDT 2025 Thu Oct 30 05:56:09 EDT 2025 Wed Oct 01 02:16:08 EDT 2025 Thu Apr 24 23:11:12 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 26 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/3.0 cc-by-nc-sa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2750-f4832f5cb1125d581d35586af8db0e06c9103fd3467c29154ef835ef8ff4a4fa3 | 
    
| OpenAccessLink | https://doaj.org/article/9a6f314398954258855368dcdd7a280e | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9a6f314398954258855368dcdd7a280e unpaywall_primary_10_4108_eai_3_2_2021_168600 crossref_primary_10_4108_eai_3_2_2021_168600 crossref_citationtrail_10_4108_eai_3_2_2021_168600  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-04-01 | 
    
| PublicationDateYYYYMMDD | 2021-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | EAI endorsed transactions on pervasive health and technology | 
    
| PublicationYear | 2021 | 
    
| Publisher | European Alliance for Innovation (EAI) | 
    
| Publisher_xml | – name: European Alliance for Innovation (EAI) | 
    
| SSID | ssj0001920440 | 
    
| Score | 2.2709942 | 
    
| Snippet | INTRODUCTION: Medical image segmentation is usually integrated as a critical step in medical image analysis, often associated with numerous clinical... | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database  | 
    
| StartPage | e2 | 
    
| SubjectTerms | firefly algorithm (fa) k-means machine learning magnetic resonance imaging (mri) particle swarm optimization (pso)  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwE9lFdRFwrygSMOSew4znGLuiqgbSvalcopcuxxeCTZ1WojVH494yTdUiFQuURKNE6i8Yznsz3-hpDXBYdUFxkwoVzGhFYF0zEY5mTorDaFirqU_9mxPJqLDxfJxfVEEVpbBdC-XVrn_Vn4IjWgvwacxdifcRREUmGIvku2ZILYe0S25senk8--gpyIIpZGIumphf7W8kb46Vj6t8n9tlnqyx-6qn4LLdOH5OTqgE6fUfI9aNdFYH7-ydd4y79-RHYGlEknvVk8JnegeULuzYZ99Kfk22Hzpdv6pwe-RAQ9b2tsQmef3tMzKOvhPFJDfVZ8ST-yGjCiUb9mS-su-xLoUG6ipD4OWnp6dkJ1Y-kUh1BXXdJJVS5WKF_vkvn08PzdERuqLjDjud6ZE-jkLjEFIrHEJohnPQO71E7ZIoRQGgQY3FmOI6yJM0Rg4BDF4cU5oYXT_BkZNYsG9ggFEEbGRWZCCSLFN2gEDBDrDFLLuUvHJL7qjNwMlOS-MkaV49TEazFHLeY8j3OvxbzX4pi82TRa9owc_xY_8L28EfV02t2DxarMB-_MMy0dR-SYqSzBQUypJOFSWWNtqmMVwpiwjY3c5qPP_1P-BXng7_qMoH0yWq9aeIlgZ128Giz8F6kV9RM priority: 102 providerName: Unpaywall  | 
    
| Title | Enhanced Brain Tumour MRI Segmentation using K-means with machine learning based PSO and Firefly Algorithm | 
    
| URI | http://eudl.eu/pdf/10.4108/eai.3-2-2021.168600 https://doaj.org/article/9a6f314398954258855368dcdd7a280e  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2411-7145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920440 issn: 2411-7145 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2411-7145 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0001920440 issn: 2411-7145 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2411-7145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920440 issn: 2411-7145 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2411-7145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920440 issn: 2411-7145 databaseCode: 8FG dateStart: 20150501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgSEAPiK-K5WPlA0dcEttx7OMWdSmgLRXtSuUUOfZ4ocqm1aor1H_fmSSs9gQcuOQQOXY0nsw8x-P3GHtbKyh97UBom5zQ3tbCSwgimSxFH2qbdyX_s2NzNNefz4vzLakvqgnr6YF7w7133iSFSd1ZV6B_WVsUytgYYiy9tBlQ9M2s21pMXfS4hbSUSVlO57koc130lEOaZG_A_9xXQqKHyHw_N9bQ-battNSx9--yB-v2yt_88k2zlXKmj9mjASvySf-OT9gdaJ-y-7NhN_wZuzhsf3Qb-PyAhB742RrX8Ss--_aJn8JiOZwqajnVti_4F7EEzEuc_rzyZVdDCXwQjVhwymaRn5x-5b6NfIqBMDU3fNIsLlfYfvmczaeHZx-OxKCdIAIxtouk8VNNRagRTxWxQFRKPOrGJxvrDDITECaoFBXGySAd4ihIiMXwkpL2Onm1x3bayxZeMA6gg5G1C5kBXWIPHtM-SO-gjEqlcsTkb9NVYSAWJ32LpsIFBtm7QntXqpIV2bvq7T1i7zYPXfW8Gn9ufkBzsmlKpNjdDXSVanCV6m-uMmJiM6P_MujL_zHoK_aQuuyLfV6znevVGt4gjrmux-yunX4cd447ZvfmxyeT77fyZOyS | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwE9lFdRFwrygSMOSew4znGLuiqgbSvalcopcuxxeCTZ1WojVH494yTdUiFQuURKNE6i8Yznsz3-hpDXBYdUFxkwoVzGhFYF0zEY5mTorDaFirqU_9mxPJqLDxfJxfVEEVpbBdC-XVrn_Vn4IjWgvwacxdifcRREUmGIvku2ZILYe0S25senk8--gpyIIpZGIumphf7W8kb46Vj6t8n9tlnqyx-6qn4LLdOH5OTqgE6fUfI9aNdFYH7-ydd4y79-RHYGlEknvVk8JnegeULuzYZ99Kfk22Hzpdv6pwe-RAQ9b2tsQmef3tMzKOvhPFJDfVZ8ST-yGjCiUb9mS-su-xLoUG6ipD4OWnp6dkJ1Y-kUh1BXXdJJVS5WKF_vkvn08PzdERuqLjDjud6ZE-jkLjEFIrHEJohnPQO71E7ZIoRQGgQY3FmOI6yJM0Rg4BDF4cU5oYXT_BkZNYsG9ggFEEbGRWZCCSLFN2gEDBDrDFLLuUvHJL7qjNwMlOS-MkaV49TEazFHLeY8j3OvxbzX4pi82TRa9owc_xY_8L28EfV02t2DxarMB-_MMy0dR-SYqSzBQUypJOFSWWNtqmMVwpiwjY3c5qPP_1P-BXng7_qMoH0yWq9aeIlgZ128Giz8F6kV9RM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Brain+Tumour+MRI+Segmentation+using+K-means+with+machine+learning+based+PSO+and+Firefly+Algorithm&rft.jtitle=EAI+endorsed+transactions+on+pervasive+health+and+technology&rft.au=Kapoor%2C+Anjali&rft.au=Agarwal%2C+Rekha&rft.date=2021-04-01&rft.issn=2411-7145&rft.eissn=2411-7145&rft.volume=7&rft.issue=26&rft.spage=e2&rft_id=info:doi/10.4108%2Feai.3-2-2021.168600&rft.externalDBID=n%2Fa&rft.externalDocID=10_4108_eai_3_2_2021_168600 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2411-7145&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2411-7145&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2411-7145&client=summon |