Enhanced Brain Tumour MRI Segmentation using K-means with machine learning based PSO and Firefly Algorithm

INTRODUCTION: Medical image segmentation is usually integrated as a critical step in medical image analysis, often associated with numerous clinical applications. Magnetic Resonance Imaging (MRI) provides detailed visualization of the various anatomical structures decisive for interventions and surg...

Full description

Saved in:
Bibliographic Details
Published inEAI endorsed transactions on pervasive health and technology Vol. 7; no. 26; p. e2
Main Authors Kapoor, Anjali, Agarwal, Rekha
Format Journal Article
LanguageEnglish
Published European Alliance for Innovation (EAI) 01.04.2021
Subjects
Online AccessGet full text
ISSN2411-7145
2411-7145
DOI10.4108/eai.3-2-2021.168600

Cover

Abstract INTRODUCTION: Medical image segmentation is usually integrated as a critical step in medical image analysis, often associated with numerous clinical applications. Magnetic Resonance Imaging (MRI) provides detailed visualization of the various anatomical structures decisive for interventions and surgical plans.OBJECTIVES: The objective of this paper is to design and apply an enhanced brain tumor MRI segmentation using K-mean with K-means as machine learning based Particle Swarm Optimization (PSO) and Firefly Algorithm (FA).METHODS: A novel fitness function of Swarm Based PSO works on velocity variation is introduced, which enhances the segmented regions. The traditional k-means algorithm is enhanced by applying PSO to the segmented part. Another extension of Swarm Intelligence named Firefly is applied to compare the results of the PSO based segmentation, and Firefly based segmentation is used.RESULTS: The simulation results are evaluated in terms of precision (98%), recall (0.95), f-measure (0.96), accuracy (97%), and segmentation time (2.63s) to measure the image segmentation the quality of main results obtained.CONCLUSION: Comparative studies have shown that the proposed design using k-means combined with FA exhibited high accuracy and precision in detecting brain tumor RoI.
AbstractList INTRODUCTION: Medical image segmentation is usually integrated as a critical step in medical image analysis, often associated with numerous clinical applications. Magnetic Resonance Imaging (MRI) provides detailed visualization of the various anatomical structures decisive for interventions and surgical plans.OBJECTIVES: The objective of this paper is to design and apply an enhanced brain tumor MRI segmentation using K-mean with K-means as machine learning based Particle Swarm Optimization (PSO) and Firefly Algorithm (FA). METHODS: A novel fitness function of Swarm Based PSO works on velocity variation is introduced, which enhances the segmented regions. The traditional k-means algorithm is enhanced by applying PSO to the segmented part. Another extension of Swarm Intelligence named Firefly is applied to compare the results of the PSO based segmentation, and Firefly based segmentation is used. RESULTS: The simulation results are evaluated in terms of precision (98%), recall (0.95), f-measure (0.96), accuracy (97%), and segmentation time (2.63s) to measure the image segmentation the quality of main results obtained.CONCLUSION: Comparative studies have shown that the proposed design using k-means combined with FA exhibited high accuracy and precision in detecting brain tumor RoI.
Author Kapoor, Anjali
Agarwal, Rekha
Author_xml – sequence: 1
  givenname: Anjali
  surname: Kapoor
  fullname: Kapoor, Anjali
– sequence: 2
  givenname: Rekha
  surname: Agarwal
  fullname: Agarwal, Rekha
BookMark eNqNkctKAzEUQIMoWGu_wE1-YGqe08yyio9iRbF1HW7zaFNmMpKZIv17p46IuBA3SbjJOYuTM3Qc6-gQuqBkLChRlw7CmGcsY4TRMc1VTsgRGjBBaTahQh7_OJ-iUdNsCSG0YEQIMkDbm7iBaJzFVwlCxMtdVe8SfnyZ4YVbVy620IY64l0T4ho_ZJWD2OD30G5wBWYTosOlgxQPtytoOs_z4glDtPg2JOfLPZ6W6zp176tzdOKhbNzoax-i19ub5fV9Nn-6m11P55lhE0kyLxRnXpoVpUxaqajlUqocvLIr4khuCkq4t1zkE8MKKoXzistu8V6A8MCHaNZ7bQ1b_ZZCBWmvawj6c1CntYbUBlM6XUDuORW8UIUUTColJc-VNdZOgCniOpfoXbv4Bvt3KMtvISX6kF93-TXXTB_y6z5_h_EeM6lumq7DP6niF2VCn7_t_qb8k_0ANOicZA
CitedBy_id crossref_primary_10_1016_j_bspc_2022_103866
crossref_primary_10_1016_j_procs_2024_04_149
crossref_primary_10_1016_j_asoc_2022_109794
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.4108/eai.3-2-2021.168600
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2411-7145
ExternalDocumentID oai_doaj_org_article_9a6f314398954258855368dcdd7a280e
10.4108/eai.3-2-2021.168600
10_4108_eai_3_2_2021_168600
GroupedDBID 5VS
8FE
8FG
8FI
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AQUVI
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
BVXVI
CITATION
FYUFA
GROUPED_DOAJ
HCIFZ
KQ8
M0T
M~E
OK1
P62
PIMPY
PQQKQ
8FJ
ABUWG
ADTOC
AFFHD
CCPQU
IPNFZ
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
RIG
UKHRP
UNPAY
ID FETCH-LOGICAL-c2750-f4832f5cb1125d581d35586af8db0e06c9103fd3467c29154ef835ef8ff4a4fa3
IEDL.DBID DOA
ISSN 2411-7145
IngestDate Fri Oct 03 12:43:57 EDT 2025
Thu Oct 30 05:56:09 EDT 2025
Wed Oct 01 02:16:08 EDT 2025
Thu Apr 24 23:11:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License https://creativecommons.org/licenses/by/3.0
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2750-f4832f5cb1125d581d35586af8db0e06c9103fd3467c29154ef835ef8ff4a4fa3
OpenAccessLink https://doaj.org/article/9a6f314398954258855368dcdd7a280e
ParticipantIDs doaj_primary_oai_doaj_org_article_9a6f314398954258855368dcdd7a280e
unpaywall_primary_10_4108_eai_3_2_2021_168600
crossref_primary_10_4108_eai_3_2_2021_168600
crossref_citationtrail_10_4108_eai_3_2_2021_168600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationTitle EAI endorsed transactions on pervasive health and technology
PublicationYear 2021
Publisher European Alliance for Innovation (EAI)
Publisher_xml – name: European Alliance for Innovation (EAI)
SSID ssj0001920440
Score 2.2709942
Snippet INTRODUCTION: Medical image segmentation is usually integrated as a critical step in medical image analysis, often associated with numerous clinical...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage e2
SubjectTerms firefly algorithm (fa)
k-means
machine learning
magnetic resonance imaging (mri)
particle swarm optimization (pso)
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwE9lFdRFwrygSMOSew4znGLuiqgbSvalcopcuxxeCTZ1WojVH494yTdUiFQuURKNE6i8Yznsz3-hpDXBYdUFxkwoVzGhFYF0zEY5mTorDaFirqU_9mxPJqLDxfJxfVEEVpbBdC-XVrn_Vn4IjWgvwacxdifcRREUmGIvku2ZILYe0S25senk8--gpyIIpZGIumphf7W8kb46Vj6t8n9tlnqyx-6qn4LLdOH5OTqgE6fUfI9aNdFYH7-ydd4y79-RHYGlEknvVk8JnegeULuzYZ99Kfk22Hzpdv6pwe-RAQ9b2tsQmef3tMzKOvhPFJDfVZ8ST-yGjCiUb9mS-su-xLoUG6ipD4OWnp6dkJ1Y-kUh1BXXdJJVS5WKF_vkvn08PzdERuqLjDjud6ZE-jkLjEFIrHEJohnPQO71E7ZIoRQGgQY3FmOI6yJM0Rg4BDF4cU5oYXT_BkZNYsG9ggFEEbGRWZCCSLFN2gEDBDrDFLLuUvHJL7qjNwMlOS-MkaV49TEazFHLeY8j3OvxbzX4pi82TRa9owc_xY_8L28EfV02t2DxarMB-_MMy0dR-SYqSzBQUypJOFSWWNtqmMVwpiwjY3c5qPP_1P-BXng7_qMoH0yWq9aeIlgZ128Giz8F6kV9RM
  priority: 102
  providerName: Unpaywall
Title Enhanced Brain Tumour MRI Segmentation using K-means with machine learning based PSO and Firefly Algorithm
URI http://eudl.eu/pdf/10.4108/eai.3-2-2021.168600
https://doaj.org/article/9a6f314398954258855368dcdd7a280e
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2411-7145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001920440
  issn: 2411-7145
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2411-7145
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0001920440
  issn: 2411-7145
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2411-7145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001920440
  issn: 2411-7145
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2411-7145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001920440
  issn: 2411-7145
  databaseCode: 8FG
  dateStart: 20150501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgSEAPiK-K5WPlA0dcEttx7OMWdSmgLRXtSuUUOfZ4ocqm1aor1H_fmSSs9gQcuOQQOXY0nsw8x-P3GHtbKyh97UBom5zQ3tbCSwgimSxFH2qbdyX_s2NzNNefz4vzLakvqgnr6YF7w7133iSFSd1ZV6B_WVsUytgYYiy9tBlQ9M2s21pMXfS4hbSUSVlO57koc130lEOaZG_A_9xXQqKHyHw_N9bQ-battNSx9--yB-v2yt_88k2zlXKmj9mjASvySf-OT9gdaJ-y-7NhN_wZuzhsf3Qb-PyAhB742RrX8Ss--_aJn8JiOZwqajnVti_4F7EEzEuc_rzyZVdDCXwQjVhwymaRn5x-5b6NfIqBMDU3fNIsLlfYfvmczaeHZx-OxKCdIAIxtouk8VNNRagRTxWxQFRKPOrGJxvrDDITECaoFBXGySAd4ihIiMXwkpL2Onm1x3bayxZeMA6gg5G1C5kBXWIPHtM-SO-gjEqlcsTkb9NVYSAWJ32LpsIFBtm7QntXqpIV2bvq7T1i7zYPXfW8Gn9ufkBzsmlKpNjdDXSVanCV6m-uMmJiM6P_MujL_zHoK_aQuuyLfV6znevVGt4gjrmux-yunX4cd447ZvfmxyeT77fyZOyS
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwE9lFdRFwrygSMOSew4znGLuiqgbSvalcopcuxxeCTZ1WojVH494yTdUiFQuURKNE6i8Yznsz3-hpDXBYdUFxkwoVzGhFYF0zEY5mTorDaFirqU_9mxPJqLDxfJxfVEEVpbBdC-XVrn_Vn4IjWgvwacxdifcRREUmGIvku2ZILYe0S25senk8--gpyIIpZGIumphf7W8kb46Vj6t8n9tlnqyx-6qn4LLdOH5OTqgE6fUfI9aNdFYH7-ydd4y79-RHYGlEknvVk8JnegeULuzYZ99Kfk22Hzpdv6pwe-RAQ9b2tsQmef3tMzKOvhPFJDfVZ8ST-yGjCiUb9mS-su-xLoUG6ipD4OWnp6dkJ1Y-kUh1BXXdJJVS5WKF_vkvn08PzdERuqLjDjud6ZE-jkLjEFIrHEJohnPQO71E7ZIoRQGgQY3FmOI6yJM0Rg4BDF4cU5oYXT_BkZNYsG9ggFEEbGRWZCCSLFN2gEDBDrDFLLuUvHJL7qjNwMlOS-MkaV49TEazFHLeY8j3OvxbzX4pi82TRa9owc_xY_8L28EfV02t2DxarMB-_MMy0dR-SYqSzBQUypJOFSWWNtqmMVwpiwjY3c5qPP_1P-BXng7_qMoH0yWq9aeIlgZ128Giz8F6kV9RM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Brain+Tumour+MRI+Segmentation+using+K-means+with+machine+learning+based+PSO+and+Firefly+Algorithm&rft.jtitle=EAI+endorsed+transactions+on+pervasive+health+and+technology&rft.au=Kapoor%2C+Anjali&rft.au=Agarwal%2C+Rekha&rft.date=2021-04-01&rft.issn=2411-7145&rft.eissn=2411-7145&rft.volume=7&rft.issue=26&rft.spage=e2&rft_id=info:doi/10.4108%2Feai.3-2-2021.168600&rft.externalDBID=n%2Fa&rft.externalDocID=10_4108_eai_3_2_2021_168600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2411-7145&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2411-7145&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2411-7145&client=summon