Recent advances in the SISSO method and their implementation in the SISSO++ code

Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of ta...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 159; no. 11
Main Authors Purcell, Thomas A. R., Scheffler, Matthias, Ghiringhelli, Luca M.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.09.2023
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1520-9032
1089-7690
DOI10.1063/5.0156620

Cover

Abstract Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method is a particularly promising approach for this application. Here, we describe the new advancements of the SISSO algorithm, as implemented into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO. This is a first step toward introducing “grammar” rules into the feature creation step. Importantly, by introducing a controlled nonlinear optimization to the feature creation step, we expand the range of possible descriptors found by the methodology. Finally, we introduce refinements to the solver algorithms for both regression and classification, which drastically increase the reliability and efficiency of SISSO. For all these improvements to the basic SISSO algorithm, we not only illustrate their potential impact but also fully detail how they operate both mathematically and computationally.
AbstractList Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method is a particularly promising approach for this application. Here, we describe the new advancements of the SISSO algorithm, as implemented into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO. This is a first step toward introducing “grammar” rules into the feature creation step. Importantly, by introducing a controlled nonlinear optimization to the feature creation step, we expand the range of possible descriptors found by the methodology. Finally, we introduce refinements to the solver algorithms for both regression and classification, which drastically increase the reliability and efficiency of SISSO. For all these improvements to the basic SISSO algorithm, we not only illustrate their potential impact but also fully detail how they operate both mathematically and computationally.
Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method is a particularly promising approach for this application. Here, we describe the new advancements of the SISSO algorithm, as implemented into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO. This is a first step toward introducing "grammar" rules into the feature creation step. Importantly, by introducing a controlled nonlinear optimization to the feature creation step, we expand the range of possible descriptors found by the methodology. Finally, we introduce refinements to the solver algorithms for both regression and classification, which drastically increase the reliability and efficiency of SISSO. For all these improvements to the basic SISSO algorithm, we not only illustrate their potential impact but also fully detail how they operate both mathematically and computationally.Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method is a particularly promising approach for this application. Here, we describe the new advancements of the SISSO algorithm, as implemented into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO. This is a first step toward introducing "grammar" rules into the feature creation step. Importantly, by introducing a controlled nonlinear optimization to the feature creation step, we expand the range of possible descriptors found by the methodology. Finally, we introduce refinements to the solver algorithms for both regression and classification, which drastically increase the reliability and efficiency of SISSO. For all these improvements to the basic SISSO algorithm, we not only illustrate their potential impact but also fully detail how they operate both mathematically and computationally.
Author Ghiringhelli, Luca M.
Scheffler, Matthias
Purcell, Thomas A. R.
Author_xml – sequence: 1
  givenname: Thomas A. R.
  surname: Purcell
  fullname: Purcell, Thomas A. R.
  email: purcell@fhi-berlin.mpg.de
  organization: The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin
– sequence: 2
  givenname: Matthias
  surname: Scheffler
  fullname: Scheffler, Matthias
  organization: The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin
– sequence: 3
  givenname: Luca M.
  surname: Ghiringhelli
  fullname: Ghiringhelli, Luca M.
  organization: 2Physics Department and IRIS-Adlershof, Humboldt Universität zu Berlin, Zum Großen Windkanal 2, D-12489 Berlin, Germany
BookMark eNp90N9LwzAQB_AgE9ymD_4HBV_U0S1Jk7R9lOGPwWDi9DlkyZV1tGlNOmX_vR2dDw7Z08HxuePuO0A9W1lA6JrgMcEimvAxJlwIis9Qn-AkDWOR4h7qY0xJmAosLtDA-w3GmMSU9dHrG2iwTaDMl7IafJDboFlDsJwtl4ughGZdmUBZs2_mLsjLuoCyHVBNXtk_eDQKdGXgEp1nqvBwdahD9PH0-D59CeeL59n0YR5qGnMcrpKYQmQY18pAnGjGFKMgsqztJ0rHwFZGpQnXCaOaithEOjUMCGSaiYhBNET33d6trdXuWxWFrF1eKreTBMt9FpLLQxYtvu1w7arPLfhGlrnXUBTKQrX1kiZCEILbvFp6c0Q31dbZ9pW94ilmgvFWTTqlXeW9g0zqvMukcSov_j3h7mji1LmH3_zv1hP4B_1HlTw
CODEN JCPSA6
CitedBy_id crossref_primary_10_1103_PhysRevMaterials_9_013801
crossref_primary_10_1002_qua_70036
crossref_primary_10_1016_j_jocs_2024_102402
crossref_primary_10_1021_acsaem_4c03003
crossref_primary_10_1016_j_jcat_2024_115610
crossref_primary_10_1039_D4PY00866A
crossref_primary_10_3847_1538_4357_ad014c
crossref_primary_10_1088_2515_7655_adba87
crossref_primary_10_1039_D4FD00102H
crossref_primary_10_1063_5_0228461
crossref_primary_10_1103_PhysRevMaterials_8_115408
crossref_primary_10_1038_s41524_023_01063_y
Cites_doi 10.1021/acsami.9b14530
10.1038/s43246-021-00209-z
10.1088/2515-7639/ab077b
10.1557/mrc.2019.85
10.1002/widm.1424
10.1007/BF00175355
10.1126/sciadv.aay2631
10.1103/physrevmaterials.2.083802
10.21105/joss.03960
10.1103/physrevb.89.115202
10.1109/tsmcc.2004.841906
10.1126/sciadv.aav0693
10.1109/TNNLS.2020.3017010
10.1038/s41467-021-22048-9
10.1038/s41598-017-17535-3
10.1111/j.1467-9868.2008.00674.x
10.1038/s41929-018-0142-1
10.1039/d1ee00442e
10.1103/PhysRevMaterials.2.083802
10.1021/acs.jcim.9b00807
10.1103/PhysRevLett.129.055301
10.1093/comjnl/7.4.308
10.1126/scirobotics.aay7120
10.1145/1961189.1961199
10.1038/s41524-023-01063-y
10.1021/acs.chemmater.6b04179
ContentType Journal Article
Copyright Author(s)
2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
7X8
ADTOC
UNPAY
DOI 10.1063/5.0156620
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10.1063/5.0156620
10_1063_5_0156620
jcp
GrantInformation_xml – fundername: European Research Council
  grantid: 740233
  funderid: https://doi.org/10.13039/501100000781
– fundername: H2020 Research Infrastructures
  grantid: 951786
  funderid: https://doi.org/10.13039/100010666
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 460197019
  funderid: https://doi.org/10.13039/501100001659
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
.GJ
0ZJ
186
2WC
3O-
41~
6TJ
9M8
AAYJJ
ABDPE
ABRJW
ACBNA
ADTOC
ADXHL
AETEA
AFFNX
AI.
EJD
H~9
MVM
NEUPN
NHB
OHT
P0-
QZG
RDFOP
ROL
T9H
UBC
UNPAY
UQL
VH1
VOH
X7L
XJT
XOL
ZCG
ZGI
ZXP
ID FETCH-LOGICAL-c2750-b872e3d45cade78c44a42e6ff8728ac7e4bda985c842c267d3c9d4e1efc4634e3
IEDL.DBID AJDQP
ISSN 0021-9606
1089-7690
1520-9032
IngestDate Sun Sep 07 11:28:42 EDT 2025
Wed Oct 01 13:21:03 EDT 2025
Mon Jun 30 03:13:07 EDT 2025
Wed Oct 01 05:59:19 EDT 2025
Thu Apr 24 23:00:31 EDT 2025
Fri Jun 21 00:13:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Published open access through an agreement with Fritz-Haber-Institut der Max-Planck-Gesellschaft 28259
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2750-b872e3d45cade78c44a42e6ff8728ac7e4bda985c842c267d3c9d4e1efc4634e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5099-3029
0000-0002-1280-9873
0000-0003-4564-7206
OpenAccessLink http://dx.doi.org/10.1063/5.0156620
PQID 2865904645
PQPubID 2050685
PageCount 10
ParticipantIDs scitation_primary_10_1063_5_0156620
unpaywall_primary_10_1063_5_0156620
crossref_citationtrail_10_1063_5_0156620
proquest_journals_2865904645
proquest_miscellaneous_2866110089
crossref_primary_10_1063_5_0156620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230921
2023-09-21
PublicationDateYYYYMMDD 2023-09-21
PublicationDate_xml – month: 09
  year: 2023
  text: 20230921
  day: 21
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle The Journal of chemical physics
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Tran, Ulissi (c3) 2018; 1
Koza (c13) 1994; 4
Angelov, Soares, Jiang, Arnold, Atkinson (c5) 2021; 11
Ouyang, Ahmetcik, Carbogno, Scheffler, Ghiringhelli (c22) 2019; 2
Stanev, Choudhary, Kusne, Paglione, Takeuchi (c4) 2021; 2
Wang, Wagner, Rondinelli (c12) 2019; 9
Kim (c17) 2021; 32
Bartel (c26) 2019; 5
Fan, Lv (c30) 2008; 70
Purcell, Scheffler, Ghiringhelli, Carbogno (c31) 2023; 9
Ouyang, Curtarolo, Ahmetcik, Scheffler, Ghiringhelli (c23) 2018; 2
Gunning (c6) 2019; 4
Zhu (c1) 2021; 14
Chang, Lin (c37) 2011; 2
Purcell, Scheffler, Carbogno, Ghiringhelli (c24) 2022; 7
Ouyang, Curtarolo, Ahmetcik, Scheffler, Ghiringhelli (c38) 2018; 2
Schleder, Acosta, Fazzio (c27) 2020; 12
Han (c28) 2021; 12
Foppa, Purcell, Levchenko, Scheffler, Ghringhelli (c25) 2022; 129
Miller (c2) 2017; 29
Yuan, Mueller (c15) 2017; 7
Nelder, Mead (c34) 1965; 7
Runarsson, Yao (c35) 2005; 35
Pilania, Iverson, Lookman, Marrone (c29) 2019; 59
Mueller, Johlin, Grossman (c14) 2014; 89
(2024012517142390400_c19) 2021
2024012517142390400_c20
2024012517142390400_c21
(2024012517142390400_c23) 2018; 2
(2024012517142390400_c4) 2021; 2
(2024012517142390400_c34) 1965; 7
(2024012517142390400_c28) 2021; 12
(2024012517142390400_c8) 2019
(2024012517142390400_c3) 2018; 1
(2024012517142390400_c9) 2021
(2024012517142390400_c1) 2021; 14
(2024012517142390400_c18) 2019
(2024012517142390400_c10) 2022
(2024012517142390400_c14) 2014; 89
(2024012517142390400_c12) 2019; 9
(2024012517142390400_c27) 2020; 12
(2024012517142390400_c29) 2019; 59
(2024012517142390400_c31) 2023; 9
(2024012517142390400_c6) 2019; 4
(2024012517142390400_c15) 2017; 7
(2024012517142390400_c2) 2017; 29
2024012517142390400_c7
(2024012517142390400_c17) 2021; 32
(2024012517142390400_c5) 2021; 11
2024012517142390400_c32
2024012517142390400_c11
2024012517142390400_c33
(2024012517142390400_c37) 2011; 2
2024012517142390400_c36
(2024012517142390400_c26) 2019; 5
2024012517142390400_c16
(2024012517142390400_c24) 2022; 7
(2024012517142390400_c13) 1994; 4
(2024012517142390400_c35) 2005; 35
(2024012517142390400_c30) 2008; 70
(2024012517142390400_c22) 2019; 2
(2024012517142390400_c38) 2018; 2
(2024012517142390400_c25) 2022; 129
References_xml – volume: 2
  start-page: 105
  year: 2021
  ident: c4
  publication-title: Commun. Mater.
– volume: 2
  start-page: 024002
  year: 2019
  ident: c22
  publication-title: J. Phys. Mater.
– volume: 2
  start-page: 27
  year: 2011
  ident: c37
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 11
  start-page: e1424
  year: 2021
  ident: c5
  publication-title: WIREs Data Min. Knowl. Discovery
– volume: 5
  start-page: eaav0693
  year: 2019
  ident: c26
  publication-title: Sci. Adv.
– volume: 12
  start-page: 1833
  year: 2021
  ident: c28
  publication-title: Nat. Commun.
– volume: 89
  start-page: 115202
  year: 2014
  ident: c14
  publication-title: Phys. Rev. B
– volume: 129
  start-page: 55301
  year: 2022
  ident: c25
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: eaay7120
  year: 2019
  ident: c6
  publication-title: Sci. Rob.
– volume: 35
  start-page: 233
  year: 2005
  ident: c35
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
– volume: 2
  start-page: 083802
  year: 2018
  ident: c38
  publication-title: Phys. Rev. Mater.
– volume: 1
  start-page: 696
  year: 2018
  ident: c3
  publication-title: Nature Catalysis
– volume: 70
  start-page: 849
  year: 2008
  ident: c30
  publication-title: J. R. Stat. Soc. Ser. B: Stat. Methodol.
– volume: 7
  start-page: 308
  year: 1965
  ident: c34
  publication-title: Comput. J.
– volume: 12
  start-page: 20149
  year: 2020
  ident: c27
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 112
  year: 2023
  ident: c31
  publication-title: npj Comput. Mater
– volume: 9
  start-page: 793
  year: 2019
  ident: c12
  publication-title: MRS Commun.
– volume: 59
  start-page: 5013
  year: 2019
  ident: c29
  publication-title: J. Chem. Inf. Model.
– volume: 14
  start-page: 3559
  year: 2021
  ident: c1
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 83802
  year: 2018
  ident: c23
  publication-title: Phys. Rev. Mater.
– volume: 4
  start-page: 87
  year: 1994
  ident: c13
  publication-title: Stat. Comput.
– volume: 29
  start-page: 2494
  year: 2017
  ident: c2
  publication-title: Chem. Mater.
– volume: 32
  start-page: 4166
  year: 2021
  ident: c17
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 7
  start-page: 17594
  year: 2017
  ident: c15
  publication-title: Sci. Rep.
– volume: 7
  start-page: 3960
  year: 2022
  ident: c24
  publication-title: J. Open Source Software
– ident: 2024012517142390400_c21
  article-title: Deep symbolic regression for physics guidconstraints: Toward the automated discovery of physical laws
– volume: 12
  start-page: 20149
  year: 2020
  ident: 2024012517142390400_c27
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14530
– volume: 2
  start-page: 105
  year: 2021
  ident: 2024012517142390400_c4
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-021-00209-z
– ident: 2024012517142390400_c20
  article-title: Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients
– volume: 2
  start-page: 024002
  year: 2019
  ident: 2024012517142390400_c22
  publication-title: J. Phys. Mater.
  doi: 10.1088/2515-7639/ab077b
– volume: 9
  start-page: 793
  year: 2019
  ident: 2024012517142390400_c12
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.85
– volume: 11
  start-page: e1424
  year: 2021
  ident: 2024012517142390400_c5
  publication-title: WIREs Data Min. Knowl. Discovery
  doi: 10.1002/widm.1424
– volume: 4
  start-page: 87
  year: 1994
  ident: 2024012517142390400_c13
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175355
– ident: 2024012517142390400_c36
– ident: 2024012517142390400_c16
  doi: 10.1126/sciadv.aay2631
– volume-title: Symbolicgpt: A Generative Transformer Model for Symbolic Regression
  year: 2021
  ident: 2024012517142390400_c19
– ident: 2024012517142390400_c33
– volume: 2
  start-page: 083802
  year: 2018
  ident: 2024012517142390400_c38
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/physrevmaterials.2.083802
– volume: 7
  start-page: 3960
  year: 2022
  ident: 2024012517142390400_c24
  publication-title: J. Open Source Software
  doi: 10.21105/joss.03960
– start-page: 13
  year: 2022
  ident: 2024012517142390400_c10
  article-title: Explainable AI methods - a brief overview
– volume: 89
  start-page: 115202
  year: 2014
  ident: 2024012517142390400_c14
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.89.115202
– ident: 2024012517142390400_c7
– volume: 35
  start-page: 233
  year: 2005
  ident: 2024012517142390400_c35
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/tsmcc.2004.841906
– volume: 5
  start-page: eaav0693
  year: 2019
  ident: 2024012517142390400_c26
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav0693
– volume: 32
  start-page: 4166
  year: 2021
  ident: 2024012517142390400_c17
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2020.3017010
– volume: 12
  start-page: 1833
  year: 2021
  ident: 2024012517142390400_c28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22048-9
– start-page: 750
  year: 2021
  ident: 2024012517142390400_c9
  article-title: Measuring feature importance of symbolic regression models using partial effects
– volume: 7
  start-page: 17594
  year: 2017
  ident: 2024012517142390400_c15
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17535-3
– volume: 70
  start-page: 849
  year: 2008
  ident: 2024012517142390400_c30
  publication-title: J. R. Stat. Soc. Ser. B: Stat. Methodol.
  doi: 10.1111/j.1467-9868.2008.00674.x
– volume: 1
  start-page: 696
  year: 2018
  ident: 2024012517142390400_c3
  publication-title: Nature Catalysis
  doi: 10.1038/s41929-018-0142-1
– volume: 14
  start-page: 3559
  year: 2021
  ident: 2024012517142390400_c1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee00442e
– ident: 2024012517142390400_c32
– start-page: 563
  year: 2019
  ident: 2024012517142390400_c8
  article-title: Explainable AI: A brief survey on history, research areas, approaches and challenges
– ident: 2024012517142390400_c11
– volume: 2
  start-page: 83802
  year: 2018
  ident: 2024012517142390400_c23
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.083802
– volume: 59
  start-page: 5013
  year: 2019
  ident: 2024012517142390400_c29
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00807
– volume: 129
  start-page: 55301
  year: 2022
  ident: 2024012517142390400_c25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.055301
– volume: 7
  start-page: 308
  year: 1965
  ident: 2024012517142390400_c34
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 4
  start-page: eaay7120
  year: 2019
  ident: 2024012517142390400_c6
  publication-title: Sci. Rob.
  doi: 10.1126/scirobotics.aay7120
– volume: 2
  start-page: 27
  year: 2011
  ident: 2024012517142390400_c37
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 9
  start-page: 112
  year: 2023
  ident: 2024012517142390400_c31
  publication-title: npj Comput. Mater
  doi: 10.1038/s41524-023-01063-y
– volume: 29
  start-page: 2494
  year: 2017
  ident: 2024012517142390400_c2
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04179
– volume-title: Learning Symbolic Physics with Graph Networks
  year: 2019
  ident: 2024012517142390400_c18
SSID ssj0001724
Score 2.5799494
Snippet Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression...
SourceID unpaywall
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Nonlinear control
Optimization
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7IhvjkXZxMiZcHQaJtkybp4xBFBS8wB_pUkjSF4eyGWxH99Sa9TCcqvpX20JJzUs7Xnu98B-BAeEoyQ1LsBdKNMNMKKyk0Nn6kBdUsVIVuwfUNu-jRq4fwYQ52616Ymfo9IydOVNMijsB-lTdZaOF2A5q9m7vOY0nd8LFD4CWJPsKcFf9UbErycOSRoFYS-nqf2fzzCSoXbMYpi9_2OM9G8u1VDgZfcs350mfHTkkxeTrOJ-pYv38TcPxzGcuwWCFN1Cm3xgrMmWwVFk7rAW-rMF-wP_V4De4seLTJB1WEgDHqZ8gCQ9S97HZvUTlkGsksQUVZAfWfa9K5W8iM8dERck3y69A7P7s_vcDVqAWsncA7VoIHhiQ0dKR8LjSlkgaGpak9L6TmhqpERiK08Qt0wHhCdJRQ45tUU0aoIRvQyIaZ2QRUtPIKn0WCGsqZlDz1lBKKhIJz35gWHNYBiGuXu3EYg7iohzMSh3HlrBbsTU1HpfjGT0btOopx9f6NY9dvGxVV2xbsTi9b_7pyiMzMMC9smBPME1EL9qfR_-tB-9N98bvV1r-s2tCYvORm2wKaidqptvQHX3XqYQ
  priority: 102
  providerName: Unpaywall
Title Recent advances in the SISSO method and their implementation in the SISSO++ code
URI http://dx.doi.org/10.1063/5.0156620
https://www.proquest.com/docview/2865904645
https://www.proquest.com/docview/2866110089
https://doi.org/10.1063/5.0156620
UnpaywallVersion publishedVersion
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 1520-9032
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3_S8JAFH-IEvZLlBVZJlf2QyAjt91utx_FEpM0wwT7adzdbiDYlFSi_767uS2FjH7a2N6-8N5t73N83n0ewA1tcEakHRoNi-kWZoIbnFFhSNMTFAvi8Fi3oNcnnRHujp1xDmo7GHxi32lZTYU5LDUvL1gK3aphXGh2718G2Q9X5eBEbNk0NCBPBYQ2L95OOz9YsqgSzZrzVvuraM6-Ptl0upFi2odwkGBD1FwH8whyMipBsZW2ZCvBXlyvKRbHMFBwT6ULlFD4CzSJkIJyaPg4HD6jdVtoxKIAxUQAmrynZeL6HbaM63Wkl7WfwKj98NrqGElzBENoSXaDU9eSdoAdXUbvUoExw5YkYaiOUyZciXnAPOooj1vCIm5gCy_A0pShwMTG0j6FfDSL5BmgePEtNYlHscQuYcwNG5xTbjvUdU0py3Cb-s5PvaUbWEz9mMEmtu_4iZvLcJ2ZztdyGb8ZVdIA-MkXs_D1Clkv5lnLcJWdVv7VBAaL5GwV2xAtcUe9MtSywP31oFoW0t1W5_-61wXs607zulTEMiuQX36s5KXCI0teVePxvvc0rCbjUm1H_UHz7RuSbtmC
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED9kQ-aL-InTqfHjQZDq2qZJ-jjUMec3c-BbSdIUJrMWtyH-9yZdWh2o-Fbaaxvu2t6v_O5-B3DImoIT5SdO0-NmhJkUjuBMOsoNJcOSBCLXLbi5JZ0-7j4FT7Y2x_TC6EWMTvggy0n8Z5mdWgc6Q405J9mX4ADxT43gpkYjnv5jr1KiE2UFqq3u-cN9-SnW2dnKMLuOgeqFtND3k2cT0hfKrOkUNGXD9fYkzfjHOx8OvyWf9hIsWtSIWtNVLsOcSlegdlYMa1uB-bySU45W4V4DQZ1IkCX3R2iQIg3yUO-y17tD04HRiKcxyikCNHgpCsjNGmaMj4-RaXhfg3774vGs49ixCY40Yu2OYNRTfowDU2BPmcSYY0-RJNH7GZdUYRHzkAU6Fp70CI19GcZYuSqRmPhY-etQSV9TtQEob8tlLgkZVpgSzmnSFIIJP2CUukrV4ajwXVR4y4y2GEY5t038KIism-uwX5pmUyGNn4waRQAi-y6NItM7G-YMbB32ysPav4ba4Kl6neQ2xIjfsbAOB2Xg_rrRQRnS3602_3WtXah1Hm-uo-vL26stWDDz6E1Biec2oDJ-m6htjVrGYsc-m59mT-M9
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7IhvjkXZxMiZcHQaJtkybp4xBFBS8wB_pUkjSF4eyGWxH99Sa9TCcqvpX20JJzUs7Xnu98B-BAeEoyQ1LsBdKNMNMKKyk0Nn6kBdUsVIVuwfUNu-jRq4fwYQ52616Ymfo9IydOVNMijsB-lTdZaOF2A5q9m7vOY0nd8LFD4CWJPsKcFf9UbErycOSRoFYS-nqf2fzzCSoXbMYpi9_2OM9G8u1VDgZfcs350mfHTkkxeTrOJ-pYv38TcPxzGcuwWCFN1Cm3xgrMmWwVFk7rAW-rMF-wP_V4De4seLTJB1WEgDHqZ8gCQ9S97HZvUTlkGsksQUVZAfWfa9K5W8iM8dERck3y69A7P7s_vcDVqAWsncA7VoIHhiQ0dKR8LjSlkgaGpak9L6TmhqpERiK08Qt0wHhCdJRQ45tUU0aoIRvQyIaZ2QRUtPIKn0WCGsqZlDz1lBKKhIJz35gWHNYBiGuXu3EYg7iohzMSh3HlrBbsTU1HpfjGT0btOopx9f6NY9dvGxVV2xbsTi9b_7pyiMzMMC9smBPME1EL9qfR_-tB-9N98bvV1r-s2tCYvORm2wKaidqptvQHX3XqYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+the+SISSO+method+and+their+implementation+in+the+SISSO%2B%2B+code&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Purcell%2C+Thomas+A.+R.&rft.au=Scheffler%2C+Matthias&rft.au=Ghiringhelli%2C+Luca+M.&rft.date=2023-09-21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=159&rft.issue=11&rft_id=info:doi/10.1063%2F5.0156620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0156620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon