Recent advances in the SISSO method and their implementation in the SISSO++ code
Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of ta...
Saved in:
| Published in | The Journal of chemical physics Vol. 159; no. 11 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Melville
American Institute of Physics
21.09.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9606 1089-7690 1520-9032 1089-7690 |
| DOI | 10.1063/5.0156620 |
Cover
| Abstract | Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method is a particularly promising approach for this application. Here, we describe the new advancements of the SISSO algorithm, as implemented into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO. This is a first step toward introducing “grammar” rules into the feature creation step. Importantly, by introducing a controlled nonlinear optimization to the feature creation step, we expand the range of possible descriptors found by the methodology. Finally, we introduce refinements to the solver algorithms for both regression and classification, which drastically increase the reliability and efficiency of SISSO. For all these improvements to the basic SISSO algorithm, we not only illustrate their potential impact but also fully detail how they operate both mathematically and computationally. |
|---|---|
| AbstractList | Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method is a particularly promising approach for this application. Here, we describe the new advancements of the SISSO algorithm, as implemented into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO. This is a first step toward introducing “grammar” rules into the feature creation step. Importantly, by introducing a controlled nonlinear optimization to the feature creation step, we expand the range of possible descriptors found by the methodology. Finally, we introduce refinements to the solver algorithms for both regression and classification, which drastically increase the reliability and efficiency of SISSO. For all these improvements to the basic SISSO algorithm, we not only illustrate their potential impact but also fully detail how they operate both mathematically and computationally. Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method is a particularly promising approach for this application. Here, we describe the new advancements of the SISSO algorithm, as implemented into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO. This is a first step toward introducing "grammar" rules into the feature creation step. Importantly, by introducing a controlled nonlinear optimization to the feature creation step, we expand the range of possible descriptors found by the methodology. Finally, we introduce refinements to the solver algorithms for both regression and classification, which drastically increase the reliability and efficiency of SISSO. For all these improvements to the basic SISSO algorithm, we not only illustrate their potential impact but also fully detail how they operate both mathematically and computationally.Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method is a particularly promising approach for this application. Here, we describe the new advancements of the SISSO algorithm, as implemented into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO. This is a first step toward introducing "grammar" rules into the feature creation step. Importantly, by introducing a controlled nonlinear optimization to the feature creation step, we expand the range of possible descriptors found by the methodology. Finally, we introduce refinements to the solver algorithms for both regression and classification, which drastically increase the reliability and efficiency of SISSO. For all these improvements to the basic SISSO algorithm, we not only illustrate their potential impact but also fully detail how they operate both mathematically and computationally. |
| Author | Ghiringhelli, Luca M. Scheffler, Matthias Purcell, Thomas A. R. |
| Author_xml | – sequence: 1 givenname: Thomas A. R. surname: Purcell fullname: Purcell, Thomas A. R. email: purcell@fhi-berlin.mpg.de organization: The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin – sequence: 2 givenname: Matthias surname: Scheffler fullname: Scheffler, Matthias organization: The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin – sequence: 3 givenname: Luca M. surname: Ghiringhelli fullname: Ghiringhelli, Luca M. organization: 2Physics Department and IRIS-Adlershof, Humboldt Universität zu Berlin, Zum Großen Windkanal 2, D-12489 Berlin, Germany |
| BookMark | eNp90N9LwzAQB_AgE9ymD_4HBV_U0S1Jk7R9lOGPwWDi9DlkyZV1tGlNOmX_vR2dDw7Z08HxuePuO0A9W1lA6JrgMcEimvAxJlwIis9Qn-AkDWOR4h7qY0xJmAosLtDA-w3GmMSU9dHrG2iwTaDMl7IafJDboFlDsJwtl4ughGZdmUBZs2_mLsjLuoCyHVBNXtk_eDQKdGXgEp1nqvBwdahD9PH0-D59CeeL59n0YR5qGnMcrpKYQmQY18pAnGjGFKMgsqztJ0rHwFZGpQnXCaOaithEOjUMCGSaiYhBNET33d6trdXuWxWFrF1eKreTBMt9FpLLQxYtvu1w7arPLfhGlrnXUBTKQrX1kiZCEILbvFp6c0Q31dbZ9pW94ilmgvFWTTqlXeW9g0zqvMukcSov_j3h7mji1LmH3_zv1hP4B_1HlTw |
| CODEN | JCPSA6 |
| CitedBy_id | crossref_primary_10_1103_PhysRevMaterials_9_013801 crossref_primary_10_1002_qua_70036 crossref_primary_10_1016_j_jocs_2024_102402 crossref_primary_10_1021_acsaem_4c03003 crossref_primary_10_1016_j_jcat_2024_115610 crossref_primary_10_1039_D4PY00866A crossref_primary_10_3847_1538_4357_ad014c crossref_primary_10_1088_2515_7655_adba87 crossref_primary_10_1039_D4FD00102H crossref_primary_10_1063_5_0228461 crossref_primary_10_1103_PhysRevMaterials_8_115408 crossref_primary_10_1038_s41524_023_01063_y |
| Cites_doi | 10.1021/acsami.9b14530 10.1038/s43246-021-00209-z 10.1088/2515-7639/ab077b 10.1557/mrc.2019.85 10.1002/widm.1424 10.1007/BF00175355 10.1126/sciadv.aay2631 10.1103/physrevmaterials.2.083802 10.21105/joss.03960 10.1103/physrevb.89.115202 10.1109/tsmcc.2004.841906 10.1126/sciadv.aav0693 10.1109/TNNLS.2020.3017010 10.1038/s41467-021-22048-9 10.1038/s41598-017-17535-3 10.1111/j.1467-9868.2008.00674.x 10.1038/s41929-018-0142-1 10.1039/d1ee00442e 10.1103/PhysRevMaterials.2.083802 10.1021/acs.jcim.9b00807 10.1103/PhysRevLett.129.055301 10.1093/comjnl/7.4.308 10.1126/scirobotics.aay7120 10.1145/1961189.1961199 10.1038/s41524-023-01063-y 10.1021/acs.chemmater.6b04179 |
| ContentType | Journal Article |
| Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 2023 Author(s). Published under an exclusive license by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
| DBID | AJDQP AAYXX CITATION 8FD H8D L7M 7X8 ADTOC UNPAY |
| DOI | 10.1063/5.0156620 |
| DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1089-7690 |
| ExternalDocumentID | 10.1063/5.0156620 10_1063_5_0156620 jcp |
| GrantInformation_xml | – fundername: European Research Council grantid: 740233 funderid: https://doi.org/10.13039/501100000781 – fundername: H2020 Research Infrastructures grantid: 951786 funderid: https://doi.org/10.13039/100010666 – fundername: Deutsche Forschungsgemeinschaft grantid: 460197019 funderid: https://doi.org/10.13039/501100001659 |
| GroupedDBID | --- -DZ -ET -~X 123 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 .GJ 0ZJ 186 2WC 3O- 41~ 6TJ 9M8 AAYJJ ABDPE ABRJW ACBNA ADTOC ADXHL AETEA AFFNX AI. EJD H~9 MVM NEUPN NHB OHT P0- QZG RDFOP ROL T9H UBC UNPAY UQL VH1 VOH X7L XJT XOL ZCG ZGI ZXP |
| ID | FETCH-LOGICAL-c2750-b872e3d45cade78c44a42e6ff8728ac7e4bda985c842c267d3c9d4e1efc4634e3 |
| IEDL.DBID | AJDQP |
| ISSN | 0021-9606 1089-7690 1520-9032 |
| IngestDate | Sun Sep 07 11:28:42 EDT 2025 Wed Oct 01 13:21:03 EDT 2025 Mon Jun 30 03:13:07 EDT 2025 Wed Oct 01 05:59:19 EDT 2025 Thu Apr 24 23:00:31 EDT 2025 Fri Jun 21 00:13:14 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Published open access through an agreement with Fritz-Haber-Institut der Max-Planck-Gesellschaft 28259 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2750-b872e3d45cade78c44a42e6ff8728ac7e4bda985c842c267d3c9d4e1efc4634e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5099-3029 0000-0002-1280-9873 0000-0003-4564-7206 |
| OpenAccessLink | http://dx.doi.org/10.1063/5.0156620 |
| PQID | 2865904645 |
| PQPubID | 2050685 |
| PageCount | 10 |
| ParticipantIDs | scitation_primary_10_1063_5_0156620 unpaywall_primary_10_1063_5_0156620 crossref_citationtrail_10_1063_5_0156620 proquest_journals_2865904645 proquest_miscellaneous_2866110089 crossref_primary_10_1063_5_0156620 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230921 2023-09-21 |
| PublicationDateYYYYMMDD | 2023-09-21 |
| PublicationDate_xml | – month: 09 year: 2023 text: 20230921 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Melville |
| PublicationPlace_xml | – name: Melville |
| PublicationTitle | The Journal of chemical physics |
| PublicationYear | 2023 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | Tran, Ulissi (c3) 2018; 1 Koza (c13) 1994; 4 Angelov, Soares, Jiang, Arnold, Atkinson (c5) 2021; 11 Ouyang, Ahmetcik, Carbogno, Scheffler, Ghiringhelli (c22) 2019; 2 Stanev, Choudhary, Kusne, Paglione, Takeuchi (c4) 2021; 2 Wang, Wagner, Rondinelli (c12) 2019; 9 Kim (c17) 2021; 32 Bartel (c26) 2019; 5 Fan, Lv (c30) 2008; 70 Purcell, Scheffler, Ghiringhelli, Carbogno (c31) 2023; 9 Ouyang, Curtarolo, Ahmetcik, Scheffler, Ghiringhelli (c23) 2018; 2 Gunning (c6) 2019; 4 Zhu (c1) 2021; 14 Chang, Lin (c37) 2011; 2 Purcell, Scheffler, Carbogno, Ghiringhelli (c24) 2022; 7 Ouyang, Curtarolo, Ahmetcik, Scheffler, Ghiringhelli (c38) 2018; 2 Schleder, Acosta, Fazzio (c27) 2020; 12 Han (c28) 2021; 12 Foppa, Purcell, Levchenko, Scheffler, Ghringhelli (c25) 2022; 129 Miller (c2) 2017; 29 Yuan, Mueller (c15) 2017; 7 Nelder, Mead (c34) 1965; 7 Runarsson, Yao (c35) 2005; 35 Pilania, Iverson, Lookman, Marrone (c29) 2019; 59 Mueller, Johlin, Grossman (c14) 2014; 89 (2024012517142390400_c19) 2021 2024012517142390400_c20 2024012517142390400_c21 (2024012517142390400_c23) 2018; 2 (2024012517142390400_c4) 2021; 2 (2024012517142390400_c34) 1965; 7 (2024012517142390400_c28) 2021; 12 (2024012517142390400_c8) 2019 (2024012517142390400_c3) 2018; 1 (2024012517142390400_c9) 2021 (2024012517142390400_c1) 2021; 14 (2024012517142390400_c18) 2019 (2024012517142390400_c10) 2022 (2024012517142390400_c14) 2014; 89 (2024012517142390400_c12) 2019; 9 (2024012517142390400_c27) 2020; 12 (2024012517142390400_c29) 2019; 59 (2024012517142390400_c31) 2023; 9 (2024012517142390400_c6) 2019; 4 (2024012517142390400_c15) 2017; 7 (2024012517142390400_c2) 2017; 29 2024012517142390400_c7 (2024012517142390400_c17) 2021; 32 (2024012517142390400_c5) 2021; 11 2024012517142390400_c32 2024012517142390400_c11 2024012517142390400_c33 (2024012517142390400_c37) 2011; 2 2024012517142390400_c36 (2024012517142390400_c26) 2019; 5 2024012517142390400_c16 (2024012517142390400_c24) 2022; 7 (2024012517142390400_c13) 1994; 4 (2024012517142390400_c35) 2005; 35 (2024012517142390400_c30) 2008; 70 (2024012517142390400_c22) 2019; 2 (2024012517142390400_c38) 2018; 2 (2024012517142390400_c25) 2022; 129 |
| References_xml | – volume: 2 start-page: 105 year: 2021 ident: c4 publication-title: Commun. Mater. – volume: 2 start-page: 024002 year: 2019 ident: c22 publication-title: J. Phys. Mater. – volume: 2 start-page: 27 year: 2011 ident: c37 publication-title: ACM Trans. Intell. Syst. Technol. – volume: 11 start-page: e1424 year: 2021 ident: c5 publication-title: WIREs Data Min. Knowl. Discovery – volume: 5 start-page: eaav0693 year: 2019 ident: c26 publication-title: Sci. Adv. – volume: 12 start-page: 1833 year: 2021 ident: c28 publication-title: Nat. Commun. – volume: 89 start-page: 115202 year: 2014 ident: c14 publication-title: Phys. Rev. B – volume: 129 start-page: 55301 year: 2022 ident: c25 publication-title: Phys. Rev. Lett. – volume: 4 start-page: eaay7120 year: 2019 ident: c6 publication-title: Sci. Rob. – volume: 35 start-page: 233 year: 2005 ident: c35 publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) – volume: 2 start-page: 083802 year: 2018 ident: c38 publication-title: Phys. Rev. Mater. – volume: 1 start-page: 696 year: 2018 ident: c3 publication-title: Nature Catalysis – volume: 70 start-page: 849 year: 2008 ident: c30 publication-title: J. R. Stat. Soc. Ser. B: Stat. Methodol. – volume: 7 start-page: 308 year: 1965 ident: c34 publication-title: Comput. J. – volume: 12 start-page: 20149 year: 2020 ident: c27 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 112 year: 2023 ident: c31 publication-title: npj Comput. Mater – volume: 9 start-page: 793 year: 2019 ident: c12 publication-title: MRS Commun. – volume: 59 start-page: 5013 year: 2019 ident: c29 publication-title: J. Chem. Inf. Model. – volume: 14 start-page: 3559 year: 2021 ident: c1 publication-title: Energy Environ. Sci. – volume: 2 start-page: 83802 year: 2018 ident: c23 publication-title: Phys. Rev. Mater. – volume: 4 start-page: 87 year: 1994 ident: c13 publication-title: Stat. Comput. – volume: 29 start-page: 2494 year: 2017 ident: c2 publication-title: Chem. Mater. – volume: 32 start-page: 4166 year: 2021 ident: c17 publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 7 start-page: 17594 year: 2017 ident: c15 publication-title: Sci. Rep. – volume: 7 start-page: 3960 year: 2022 ident: c24 publication-title: J. Open Source Software – ident: 2024012517142390400_c21 article-title: Deep symbolic regression for physics guidconstraints: Toward the automated discovery of physical laws – volume: 12 start-page: 20149 year: 2020 ident: 2024012517142390400_c27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14530 – volume: 2 start-page: 105 year: 2021 ident: 2024012517142390400_c4 publication-title: Commun. Mater. doi: 10.1038/s43246-021-00209-z – ident: 2024012517142390400_c20 article-title: Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients – volume: 2 start-page: 024002 year: 2019 ident: 2024012517142390400_c22 publication-title: J. Phys. Mater. doi: 10.1088/2515-7639/ab077b – volume: 9 start-page: 793 year: 2019 ident: 2024012517142390400_c12 publication-title: MRS Commun. doi: 10.1557/mrc.2019.85 – volume: 11 start-page: e1424 year: 2021 ident: 2024012517142390400_c5 publication-title: WIREs Data Min. Knowl. Discovery doi: 10.1002/widm.1424 – volume: 4 start-page: 87 year: 1994 ident: 2024012517142390400_c13 publication-title: Stat. Comput. doi: 10.1007/BF00175355 – ident: 2024012517142390400_c36 – ident: 2024012517142390400_c16 doi: 10.1126/sciadv.aay2631 – volume-title: Symbolicgpt: A Generative Transformer Model for Symbolic Regression year: 2021 ident: 2024012517142390400_c19 – ident: 2024012517142390400_c33 – volume: 2 start-page: 083802 year: 2018 ident: 2024012517142390400_c38 publication-title: Phys. Rev. Mater. doi: 10.1103/physrevmaterials.2.083802 – volume: 7 start-page: 3960 year: 2022 ident: 2024012517142390400_c24 publication-title: J. Open Source Software doi: 10.21105/joss.03960 – start-page: 13 year: 2022 ident: 2024012517142390400_c10 article-title: Explainable AI methods - a brief overview – volume: 89 start-page: 115202 year: 2014 ident: 2024012517142390400_c14 publication-title: Phys. Rev. B doi: 10.1103/physrevb.89.115202 – ident: 2024012517142390400_c7 – volume: 35 start-page: 233 year: 2005 ident: 2024012517142390400_c35 publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/tsmcc.2004.841906 – volume: 5 start-page: eaav0693 year: 2019 ident: 2024012517142390400_c26 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav0693 – volume: 32 start-page: 4166 year: 2021 ident: 2024012517142390400_c17 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2020.3017010 – volume: 12 start-page: 1833 year: 2021 ident: 2024012517142390400_c28 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22048-9 – start-page: 750 year: 2021 ident: 2024012517142390400_c9 article-title: Measuring feature importance of symbolic regression models using partial effects – volume: 7 start-page: 17594 year: 2017 ident: 2024012517142390400_c15 publication-title: Sci. Rep. doi: 10.1038/s41598-017-17535-3 – volume: 70 start-page: 849 year: 2008 ident: 2024012517142390400_c30 publication-title: J. R. Stat. Soc. Ser. B: Stat. Methodol. doi: 10.1111/j.1467-9868.2008.00674.x – volume: 1 start-page: 696 year: 2018 ident: 2024012517142390400_c3 publication-title: Nature Catalysis doi: 10.1038/s41929-018-0142-1 – volume: 14 start-page: 3559 year: 2021 ident: 2024012517142390400_c1 publication-title: Energy Environ. Sci. doi: 10.1039/d1ee00442e – ident: 2024012517142390400_c32 – start-page: 563 year: 2019 ident: 2024012517142390400_c8 article-title: Explainable AI: A brief survey on history, research areas, approaches and challenges – ident: 2024012517142390400_c11 – volume: 2 start-page: 83802 year: 2018 ident: 2024012517142390400_c23 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.083802 – volume: 59 start-page: 5013 year: 2019 ident: 2024012517142390400_c29 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00807 – volume: 129 start-page: 55301 year: 2022 ident: 2024012517142390400_c25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.055301 – volume: 7 start-page: 308 year: 1965 ident: 2024012517142390400_c34 publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 4 start-page: eaay7120 year: 2019 ident: 2024012517142390400_c6 publication-title: Sci. Rob. doi: 10.1126/scirobotics.aay7120 – volume: 2 start-page: 27 year: 2011 ident: 2024012517142390400_c37 publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 9 start-page: 112 year: 2023 ident: 2024012517142390400_c31 publication-title: npj Comput. Mater doi: 10.1038/s41524-023-01063-y – volume: 29 start-page: 2494 year: 2017 ident: 2024012517142390400_c2 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04179 – volume-title: Learning Symbolic Physics with Graph Networks year: 2019 ident: 2024012517142390400_c18 |
| SSID | ssj0001724 |
| Score | 2.5799494 |
| Snippet | Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently, symbolic regression... |
| SourceID | unpaywall proquest crossref scitation |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Nonlinear control Optimization |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7IhvjkXZxMiZcHQaJtkybp4xBFBS8wB_pUkjSF4eyGWxH99Sa9TCcqvpX20JJzUs7Xnu98B-BAeEoyQ1LsBdKNMNMKKyk0Nn6kBdUsVIVuwfUNu-jRq4fwYQ52616Ymfo9IydOVNMijsB-lTdZaOF2A5q9m7vOY0nd8LFD4CWJPsKcFf9UbErycOSRoFYS-nqf2fzzCSoXbMYpi9_2OM9G8u1VDgZfcs350mfHTkkxeTrOJ-pYv38TcPxzGcuwWCFN1Cm3xgrMmWwVFk7rAW-rMF-wP_V4De4seLTJB1WEgDHqZ8gCQ9S97HZvUTlkGsksQUVZAfWfa9K5W8iM8dERck3y69A7P7s_vcDVqAWsncA7VoIHhiQ0dKR8LjSlkgaGpak9L6TmhqpERiK08Qt0wHhCdJRQ45tUU0aoIRvQyIaZ2QRUtPIKn0WCGsqZlDz1lBKKhIJz35gWHNYBiGuXu3EYg7iohzMSh3HlrBbsTU1HpfjGT0btOopx9f6NY9dvGxVV2xbsTi9b_7pyiMzMMC9smBPME1EL9qfR_-tB-9N98bvV1r-s2tCYvORm2wKaidqptvQHX3XqYQ priority: 102 providerName: Unpaywall |
| Title | Recent advances in the SISSO method and their implementation in the SISSO++ code |
| URI | http://dx.doi.org/10.1063/5.0156620 https://www.proquest.com/docview/2865904645 https://www.proquest.com/docview/2866110089 https://doi.org/10.1063/5.0156620 |
| UnpaywallVersion | publishedVersion |
| Volume | 159 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0001724 issn: 1520-9032 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3_S8JAFH-IEvZLlBVZJlf2QyAjt91utx_FEpM0wwT7adzdbiDYlFSi_767uS2FjH7a2N6-8N5t73N83n0ewA1tcEakHRoNi-kWZoIbnFFhSNMTFAvi8Fi3oNcnnRHujp1xDmo7GHxi32lZTYU5LDUvL1gK3aphXGh2718G2Q9X5eBEbNk0NCBPBYQ2L95OOz9YsqgSzZrzVvuraM6-Ptl0upFi2odwkGBD1FwH8whyMipBsZW2ZCvBXlyvKRbHMFBwT6ULlFD4CzSJkIJyaPg4HD6jdVtoxKIAxUQAmrynZeL6HbaM63Wkl7WfwKj98NrqGElzBENoSXaDU9eSdoAdXUbvUoExw5YkYaiOUyZciXnAPOooj1vCIm5gCy_A0pShwMTG0j6FfDSL5BmgePEtNYlHscQuYcwNG5xTbjvUdU0py3Cb-s5PvaUbWEz9mMEmtu_4iZvLcJ2ZztdyGb8ZVdIA-MkXs_D1Clkv5lnLcJWdVv7VBAaL5GwV2xAtcUe9MtSywP31oFoW0t1W5_-61wXs607zulTEMiuQX36s5KXCI0teVePxvvc0rCbjUm1H_UHz7RuSbtmC |
| linkProvider | American Institute of Physics |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED9kQ-aL-InTqfHjQZDq2qZJ-jjUMec3c-BbSdIUJrMWtyH-9yZdWh2o-Fbaaxvu2t6v_O5-B3DImoIT5SdO0-NmhJkUjuBMOsoNJcOSBCLXLbi5JZ0-7j4FT7Y2x_TC6EWMTvggy0n8Z5mdWgc6Q405J9mX4ADxT43gpkYjnv5jr1KiE2UFqq3u-cN9-SnW2dnKMLuOgeqFtND3k2cT0hfKrOkUNGXD9fYkzfjHOx8OvyWf9hIsWtSIWtNVLsOcSlegdlYMa1uB-bySU45W4V4DQZ1IkCX3R2iQIg3yUO-y17tD04HRiKcxyikCNHgpCsjNGmaMj4-RaXhfg3774vGs49ixCY40Yu2OYNRTfowDU2BPmcSYY0-RJNH7GZdUYRHzkAU6Fp70CI19GcZYuSqRmPhY-etQSV9TtQEob8tlLgkZVpgSzmnSFIIJP2CUukrV4ajwXVR4y4y2GEY5t038KIism-uwX5pmUyGNn4waRQAi-y6NItM7G-YMbB32ysPav4ba4Kl6neQ2xIjfsbAOB2Xg_rrRQRnS3602_3WtXah1Hm-uo-vL26stWDDz6E1Biec2oDJ-m6htjVrGYsc-m59mT-M9 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7IhvjkXZxMiZcHQaJtkybp4xBFBS8wB_pUkjSF4eyGWxH99Sa9TCcqvpX20JJzUs7Xnu98B-BAeEoyQ1LsBdKNMNMKKyk0Nn6kBdUsVIVuwfUNu-jRq4fwYQ52616Ymfo9IydOVNMijsB-lTdZaOF2A5q9m7vOY0nd8LFD4CWJPsKcFf9UbErycOSRoFYS-nqf2fzzCSoXbMYpi9_2OM9G8u1VDgZfcs350mfHTkkxeTrOJ-pYv38TcPxzGcuwWCFN1Cm3xgrMmWwVFk7rAW-rMF-wP_V4De4seLTJB1WEgDHqZ8gCQ9S97HZvUTlkGsksQUVZAfWfa9K5W8iM8dERck3y69A7P7s_vcDVqAWsncA7VoIHhiQ0dKR8LjSlkgaGpak9L6TmhqpERiK08Qt0wHhCdJRQ45tUU0aoIRvQyIaZ2QRUtPIKn0WCGsqZlDz1lBKKhIJz35gWHNYBiGuXu3EYg7iohzMSh3HlrBbsTU1HpfjGT0btOopx9f6NY9dvGxVV2xbsTi9b_7pyiMzMMC9smBPME1EL9qfR_-tB-9N98bvV1r-s2tCYvORm2wKaidqptvQHX3XqYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+the+SISSO+method+and+their+implementation+in+the+SISSO%2B%2B+code&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Purcell%2C+Thomas+A.+R.&rft.au=Scheffler%2C+Matthias&rft.au=Ghiringhelli%2C+Luca+M.&rft.date=2023-09-21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=159&rft.issue=11&rft_id=info:doi/10.1063%2F5.0156620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0156620 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |