Quantum Private Comparison via Cavity QED
The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The prop...
        Saved in:
      
    
          | Published in | Communications in theoretical physics Vol. 67; no. 2; pp. 147 - 156 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        01.02.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0253-6102 | 
| DOI | 10.1088/0253-6102/67/2/147 | 
Cover
| Abstract | The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack.Particularly, it can prevent TP from knowing two users' secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%. | 
    
|---|---|
| AbstractList | The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack.Particularly, it can prevent TP from knowing two users' secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%. | 
    
| Author | 叶天语 | 
    
| AuthorAffiliation | College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China | 
    
| Author_xml | – sequence: 1 fullname: 叶天语  | 
    
| BookMark | eNp9j01Lw0AURWdRwbb6B1wFdy5i5itv0qXEWoWCFnQ9vGQmdaSZ1Mk00H9vi6ULF64uXDj3ciZk5DtvCblh9J7Rosgoz0UKjPIMVMYzJtWIjM_lJZn0_RellCtgY3K32qGPuzZ5C27AaJOya7cYXN_5ZHCYlDi4uE9W88crctHgprfXp5ySj6f5e_mcLl8XL-XDMq25kjFFZvMZIM2RM-C5LQxFMRONNMjBclsoDlCrCqSpJAUjRVMZVhlTAWuKRoop4b-7dej6PthGb4NrMew1o_ooqI8u-uiiQWmuD4IHqPgD1S5idJ2PAd3mf_T2hH52fv3t_Pp8CIqpfCZyIX4AEIdjZg | 
    
| CitedBy_id | crossref_primary_10_1007_s11128_020_02986_x crossref_primary_10_1007_s11128_020_02674_w crossref_primary_10_1140_epjqt_s40507_023_00167_0 crossref_primary_10_1142_S0217732322501498 crossref_primary_10_1140_epjqt_s40507_024_00228_y crossref_primary_10_1016_j_physa_2022_128424 crossref_primary_10_1007_s10773_017_3499_z crossref_primary_10_1007_s11128_024_04398_7 crossref_primary_10_1007_s10773_020_04559_1 crossref_primary_10_1007_s11433_017_9056_6 crossref_primary_10_1007_s10773_018_3729_z crossref_primary_10_1088_1674_1056_ac65f0 crossref_primary_10_1007_s10773_018_3823_2 crossref_primary_10_1007_s10773_022_05043_8 crossref_primary_10_1007_s11128_023_03828_2 crossref_primary_10_3389_fphy_2024_1364140 crossref_primary_10_1007_s10773_022_05091_0 crossref_primary_10_1007_s11128_022_03460_6 crossref_primary_10_1007_s10773_021_04771_7 crossref_primary_10_1007_s10773_021_04937_3 crossref_primary_10_1088_1612_202X_ad21ec crossref_primary_10_1007_s10773_020_04537_7 crossref_primary_10_3390_e26050413 crossref_primary_10_1007_s10773_019_04369_0 crossref_primary_10_1007_s11128_021_03178_x crossref_primary_10_1142_S0217732323501171 crossref_primary_10_1007_s10773_019_04084_w crossref_primary_10_1007_s10773_018_3894_0 crossref_primary_10_1140_epjqt_s40507_024_00293_3 crossref_primary_10_1088_1402_4896_acb61f crossref_primary_10_1140_epjd_e2019_90374_y crossref_primary_10_1007_s11128_017_1755_z crossref_primary_10_1007_s10773_019_04080_0 crossref_primary_10_1007_s11128_020_02960_7 crossref_primary_10_1007_s11128_023_03892_8 crossref_primary_10_1007_s10773_022_05033_w crossref_primary_10_1007_s11128_023_04069_z crossref_primary_10_1007_s10773_018_3852_x crossref_primary_10_1007_s10773_018_3812_5 crossref_primary_10_1007_s10773_022_05268_7  | 
    
| Cites_doi | 10.1016/j.physleta.2004.06.009 10.1140/epjd/e2008-00141-0 10.1103/PhysRevLett.85.5635 10.1007/s10773-011-0878-8 10.1103/PhysRevLett.70.1895 10.1103/PhysRevLett.85.441 10.1007/s11128-012-0505-5 10.1016/j.optcom.2005.04.048 10.1007/s11434-013-6019-4 10.1007/s11128-012-0433-4 10.1103/PhysRevLett.68.557 10.1007/s11128-013-0698-2 10.1103/PhysRevA.68.035801 10.1103/PhysRevLett.89.187902 10.1088/0256-307X/22/5/006 10.1038/srep15610 10.1103/PhysRevA.59.162 10.1016/j.optcom.2011.02.017 10.1007/s11128-012-0502-8 10.1007/s11128-013-0645-2 10.1103/PhysRevA.69.052307 10.1007/s11434-014-0339-x 10.1007/s11128-012-0507-3 10.1016/j.optcom.2006.02.043 10.1007/s10773-013-1616-1 10.1088/0253-6102/57/4/11 10.1007/s11128-011-0251-0 10.1007/s10773-009-0206-8 10.1007/s11433-014-5542-x 10.1016/j.physleta.2005.04.062 10.1007/s11128-012-0454-z 10.1142/S0217984909021259 10.1007/s11433-014-5461-x 10.1088/0256-307X/23/11/004 10.1016/j.optcom.2009.11.085 10.1103/PhysRevA.59.1829 10.1007/s10773-013-1970-z 10.1016/j.optcom.2010.07.058 10.1007/s11128-015-0924-1 10.1007/s10773-012-1321-5 10.1007/s10773-011-1073-7 10.1103/PhysRevLett.67.661 10.1007/s11128-012-0439-y 10.1016/j.optcom.2010.10.095 10.1016/j.optcom.2010.12.070 10.1103/PhysRevLett.85.2392 10.1142/S0129183109014576 10.1016/S0375-9601(03)00906-X 10.1088/0256-307X/24/1/006  | 
    
| ContentType | Journal Article | 
    
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION  | 
    
| DOI | 10.1088/0253-6102/67/2/147 | 
    
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Physics  | 
    
| DocumentTitleAlternate | Quantum Private Comparison via Cavity QED | 
    
| EndPage | 156 | 
    
| ExternalDocumentID | 10_1088_0253_6102_67_2_147 671759353  | 
    
| GroupedDBID | 02O 042 1JI 1WK 2B. 2C. 2RA 4.4 5B3 5GY 5VR 5VS 7.M 92E 92I 92L 92Q 93N AAGCD AAJIO AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 CW9 DU5 E3Z EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE FRP HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NS0 NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K  | 
    
| ID | FETCH-LOGICAL-c274t-a1e596a05a21625e8d0a393f4da26e2e87266c7b64db406d43fbd1bddb61f8f43 | 
    
| ISSN | 0253-6102 | 
    
| IngestDate | Thu Apr 24 22:58:05 EDT 2025 Wed Oct 01 02:22:01 EDT 2025 Wed Feb 14 10:03:42 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright  | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c274t-a1e596a05a21625e8d0a393f4da26e2e87266c7b64db406d43fbd1bddb61f8f43 | 
    
| Notes | The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack.Particularly, it can prevent TP from knowing two users' secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%. Tian-Yu Ye (College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China) 11-2592/O3 quantum private comparison(QPC) third party(TP) cavity quantum electrodynamics(QED) product state participant attack  | 
    
| PageCount | 10 | 
    
| ParticipantIDs | crossref_primary_10_1088_0253_6102_67_2_147 crossref_citationtrail_10_1088_0253_6102_67_2_147 chongqing_primary_671759353  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-02-01 | 
    
| PublicationDateYYYYMMDD | 2017-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Communications in theoretical physics | 
    
| PublicationTitleAlternate | Communications in Theoretical Physics | 
    
| PublicationYear | 2017 | 
    
| References | Chen X.B. (55) 2010; 283 Zhang Z.J. (26) 2004 Liu W. (57) 2012; 51 Tseng H.Y. (48) 2012; 11 Lin J. (56) 2011; 284 Wang T.J. (69) 2016; 6 Zhou L. (67) 2014; 90 Liu W. (46) 2012; 57 Zhang B. (53) 2015; 14 Long G.L. (16) 2002; 65 Yang Y.G. (43) 2012; 10 Li T. (77) 2015; 5 Chen J.H. (15) 1999; 20 Deng F.G. (19) 2004; 69 Wang C. (22) 2006; 262 Shu J. (66) 2007 Deng F.G. (6) 2004; 70 Nguyen B.A. (28) 2004; 328 Liu W. (64) 2012; 51 Sheng Y.B. (70) 2013; 12 Cao C. (73) 2015; 12 Zhang W.W. (51) 2013; 12 Ekert A.K. (2) 1991; 67 Yang Y.G. (50) 2013; 12 Shan C.J. (79) 2009; 23 Hillery M. (11) 1999; 59 Cabello A. (4) 2000; 85 Wang C. (21) 2005; 253 Bostrom K. (17) 2002; 89 Deng F.G. (5) 2003; 68 Bennett C.H. (33) 1993; 70 Shan C.J. (78) 2010; 49 Yang Y.G. (39) 2009; 42 Zheng S.B. (76) 2003; 68 Sheng Y.B. (74) 2014; 13 Sheng Y.B. (71) 2013; 58 Zheng S.B. (75) 2000; 85 Zhang C.M. (8) 2014; 59 Karlsson A. (12) 1999; 59 Chen Y. (29) 2007; 24 Liu W. (63) 2012; 51 Shor P.W. (82) 2000; 85 Zou X.F. (24) 2014; 57 Yang Y.G. (40) 2010; 43 Xu G.A. (61) 2012; 10 Gorbachev V.N. (34) 2003; 314 Yang Y.G. (42) 2009; 80 Li C.Y. (80) 2005; 22 Chang Y. (23) 2015; 24 Quan D.X. (9) 2015; 24 Su X.L. (7) 2014; 59 Zheng C. (31) 2014; 57 Liu B. (45) 2013; 12 Gao F. (83) 2007; 7 Bennett C.H. (3) 1992; 68 Wang C. (20) 2005; 71 Ye T.Y. (30) 2013; 30 Zi W. (47) 2013; 52 Lin J. (52) 2014; 13 Zhang C.M. (10) 2015; 58 Dong J. (36) 2008; 49 Chang Y.J. (58) 2013; 12 Bennett C.H. (1) 1984 Chen X.B. (44) 2014; 13 Sun Z.W. (62) 2013; 52 Deng F.G. (18) 2003; 68 Chen X.B. (37) 2010; 283 Zhang Z.J. (27) 2004 Chang Y. (25) 2014; 59 Wang C. (49) 2013; 11 Zhang W.W. (60) 2014; 53 Zhang Z.J. (35) 2005; 341 Li C.Y. (81) 2006; 23 Liu W. (59) 2011; 284 Lo H.K. (41) 1997; 56 Heo J. (38) 2015; 24 Xiao L. (13) 2004; 69 Lin S. (65) 2013; 52 Zhou L. (68) 2015; 92 Lin J. (14) 2011; 284 Ye T.Y. (32) 2015; 58 Cao C. (72) 2015; 14 Li J. (54) 2014; 53  | 
    
| References_xml | – volume: 328 start-page: 6 year: 2004 ident: 28 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2004.06.009 – volume: 49 start-page: 129 year: 2008 ident: 36 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2008-00141-0 – volume: 6 year: 2016 ident: 69 publication-title: Sci. Rep. – volume: 85 start-page: 5635 year: 2000 ident: 4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.5635 – volume: 51 start-page: 69 year: 2012 ident: 63 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-011-0878-8 – volume: 12 year: 2015 ident: 73 publication-title: Laser Phys. Lett. – volume: 69 year: 2004 ident: 19 publication-title: Phys. Rev. A – volume: 7 start-page: 329 year: 2007 ident: 83 publication-title: Quantum Inf. Comput. – volume: 58 year: 2015 ident: 32 publication-title: Sci. China-Phys. Mech. Astron. – volume: 70 start-page: 1895 year: 1993 ident: 33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1895 – volume: 85 start-page: 441 year: 2000 ident: 82 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.441 – volume: 53 year: 2014 ident: 54 publication-title: Int. J. Theor. Phys. – year: 2004 ident: 26 – volume: 13 start-page: 101 year: 2014 ident: 44 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-012-0505-5 – volume: 253 start-page: 15 year: 2005 ident: 21 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2005.04.048 – volume: 43 year: 2010 ident: 40 publication-title: J. Phys. A: Math. Theor. – volume: 65 year: 2002 ident: 16 publication-title: Phys. Rev. A – volume: 58 year: 2013 ident: 71 publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-013-6019-4 – volume: 12 start-page: 877 year: 2013 ident: 50 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-012-0433-4 – volume: 68 start-page: 557 year: 1992 ident: 3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.557 – volume: 13 start-page: 881 year: 2014 ident: 74 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-013-0698-2 – volume: 24 year: 2015 ident: 9 publication-title: Chin. Phys. B – volume: 68 year: 2003 ident: 76 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.035801 – volume: 89 year: 2002 ident: 17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.187902 – volume: 22 start-page: 1049 year: 2005 ident: 80 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/22/5/006 – volume: 5 start-page: 15610 year: 2015 ident: 77 publication-title: Sci. Rep. doi: 10.1038/srep15610 – volume: 59 start-page: 162 year: 1999 ident: 12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.59.162 – volume: 284 start-page: 3160 year: 2011 ident: 59 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.02.017 – volume: 10 year: 2012 ident: 61 publication-title: Int. J. Quantum Inf. – volume: 12 start-page: 1885 year: 2013 ident: 70 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-012-0502-8 – volume: 14 year: 2015 ident: 53 publication-title: Quantum Inf. Process. – volume: 13 start-page: 239 year: 2014 ident: 52 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-013-0645-2 – start-page: 19 year: 2007 ident: 66 publication-title: Quantum State Preparation and Quantum Information Processing in Cavity QED – volume: 69 year: 2004 ident: 13 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.052307 – volume: 51 year: 2012 ident: 57 publication-title: Int. J. Theor. Phys. – volume: 10 year: 2012 ident: 43 publication-title: Int. J. Quantum Inf. – volume: 59 start-page: 2541 year: 2014 ident: 25 publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-014-0339-x – volume: 12 start-page: 1981 year: 2013 ident: 51 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-012-0507-3 – volume: 68 year: 2003 ident: 18 publication-title: Phys. Rev. A – volume: 262 start-page: 134 year: 2006 ident: 22 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2006.02.043 – volume: 52 start-page: 3212 year: 2013 ident: 47 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-013-1616-1 – volume: 57 start-page: 583 year: 2012 ident: 46 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/57/4/11 – volume: 59 year: 2014 ident: 7 publication-title: Chin. Sci. Bull. – volume: 11 start-page: 373 year: 2012 ident: 48 publication-title: Quantum Inf. Process doi: 10.1007/s11128-011-0251-0 – volume: 49 start-page: 334 year: 2010 ident: 78 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-009-0206-8 – volume: 57 start-page: 1696 year: 2014 ident: 24 publication-title: Sci. China-Phys. Mech. Astron. doi: 10.1007/s11433-014-5542-x – volume: 341 start-page: 55 year: 2005 ident: 35 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.04.062 – volume: 12 start-page: 1077 year: 2013 ident: 58 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-012-0454-z – volume: 92 year: 2015 ident: 68 publication-title: Phys. Rev. A – volume: 90 year: 2014 ident: 67 publication-title: Phys. Rev. A – volume: 23 start-page: 3225 year: 2009 ident: 79 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984909021259 – volume: 57 start-page: 1238 year: 2014 ident: 31 publication-title: Sci. China-Phys. Mech. Astron. doi: 10.1007/s11433-014-5461-x – volume: 23 start-page: 2896 year: 2006 ident: 81 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/23/11/004 – volume: 71 year: 2005 ident: 20 publication-title: Phys. Rev. A – volume: 24 year: 2015 ident: 38 publication-title: Chin. Phys. B – start-page: 175 year: 1984 ident: 1 – volume: 283 start-page: 1561 year: 2010 ident: 55 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2009.11.085 – volume: 59 start-page: 1829 year: 1999 ident: 11 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.59.1829 – volume: 52 year: 2013 ident: 65 publication-title: Int. J. Theor. Phys. – volume: 24 year: 2015 ident: 23 publication-title: Chin. Phys. B – volume: 53 start-page: 1723 year: 2014 ident: 60 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-013-1970-z – volume: 283 start-page: 4802 year: 2010 ident: 37 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2010.07.058 – volume: 14 start-page: 1265 year: 2015 ident: 72 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-015-0924-1 – volume: 30 year: 2013 ident: 30 publication-title: Chin. Phys. Lett. – volume: 52 start-page: 212 year: 2013 ident: 62 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-012-1321-5 – volume: 70 year: 2004 ident: 6 publication-title: Phys. Rev. A – volume: 68 year: 2003 ident: 5 publication-title: Phys. Rev. A – year: 2004 ident: 27 – volume: 59 year: 2014 ident: 8 publication-title: Chin. Sci. Bull. – volume: 51 start-page: 1953 year: 2012 ident: 64 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-011-1073-7 – volume: 80 year: 2009 ident: 42 publication-title: Phys. Scr. – volume: 67 start-page: 661 year: 1991 ident: 2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.661 – volume: 12 start-page: 887 year: 2013 ident: 45 publication-title: Quantum Inf. Process doi: 10.1007/s11128-012-0439-y – volume: 284 start-page: 1468 year: 2011 ident: 14 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2010.10.095 – volume: 56 year: 1997 ident: 41 publication-title: Phys. Rev. A – volume: 11 year: 2013 ident: 49 publication-title: Int. J. Quantum Inf. – volume: 284 start-page: 2412 year: 2011 ident: 56 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2010.12.070 – volume: 85 start-page: 2392 year: 2000 ident: 75 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.2392 – volume: 42 year: 2009 ident: 39 publication-title: A: Math. Theor. – volume: 20 start-page: 1531 year: 1999 ident: 15 publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183109014576 – volume: 58 year: 2015 ident: 10 publication-title: Sci. China-Phys. Mech. Astron. – volume: 314 start-page: 267 year: 2003 ident: 34 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(03)00906-X – volume: 24 start-page: 19 year: 2007 ident: 29 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/24/1/006  | 
    
| SSID | ssj0002761 | 
    
| Score | 2.2964604 | 
    
| Snippet | The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution... | 
    
| SourceID | crossref chongqing  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 147 | 
    
| SubjectTerms | 交换操作 协议 单原子 演化规律 腔QED 腔量子电动力学 量子比特 量子纠缠  | 
    
| Title | Quantum Private Comparison via Cavity QED | 
    
| URI | http://lib.cqvip.com/qk/83837X/201702/671759353.html | 
    
| Volume | 67 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform issn: 0253-6102 databaseCode: IOP dateStart: 19820101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://iopscience.iop.org/ omitProxy: false ssIdentifier: ssj0002761 providerName: IOP Publishing  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja9wwFBZtSmkuXdKGTNMWH3opwR1r8aJjCClpoW0CCSQno82lECbbTA759flkyRp3CTS9GI_wPIM-6b1Plt77CHlvOmM5AlvulNS5oK7MG8pN7ppOOF2WjhqfO_z1W7V3JL4cl8dLCc4-u2SuP5qbv-aV_A-qaAOuPkv2Hsgmo2jAPfDFFQjj-k8YHyzQL_4k-6XXKHNhcgdRweufamtH9cIQB9E3DfUIxikhV_GcY0pmDF86EtE-CUV5MYbyk8X4CwGiTpFOWwRHwkqOJWLxi9cLIhgRXTZyYTRUwPzDtcId9VUooi3cV363l_UZ-_UynAxb6L9FmXT2r9_1bprWW2q9pbaqW4YlSP2QPGLwzV6A4_P3_RRP0dbrHg5vjqlPsDFNbdOqnrIp9SI5TxA2Zj8uEPhHVGPEGQ6fk6eR7GfbAbkX5IGbrZFnkfhn0a1erZHH-6HXX5IPEdIsQpotIc0AaRYgzQDpK3L0afdwZy-Paha5wcp_nivMA1mpolSMYtHpGlsoLnknrGKVY66pwZVMrSthNViWFbzTlmprdUU7zBy-TlZmZzO3QTLtPJE0ViorhbUCvy0Hr7VCFp2s5YRspk5oz0PVEvQymKLkJZ8QOnRLa2IheK9HctreDc2EbKX_DAbvfvr1vZ7eJKvLUfuGrMwvF-4tmN5cv-sHwi0kJEqC | 
    
| linkProvider | IOP Publishing | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Private+Comparison+via+Cavity+QED&rft.jtitle=Communications+in+theoretical+physics&rft.au=Ye%2C+Tian-Yu&rft.date=2017-02-01&rft.issn=0253-6102&rft.volume=67&rft.issue=2&rft.spage=147&rft_id=info:doi/10.1088%2F0253-6102%2F67%2F2%2F147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_67_2_147 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg |