Quantum Private Comparison via Cavity QED

The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The prop...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 67; no. 2; pp. 147 - 156
Main Author 叶天语
Format Journal Article
LanguageEnglish
Published 01.02.2017
Subjects
Online AccessGet full text
ISSN0253-6102
DOI10.1088/0253-6102/67/2/147

Cover

Abstract The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack.Particularly, it can prevent TP from knowing two users' secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%.
AbstractList The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack.Particularly, it can prevent TP from knowing two users' secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%.
Author 叶天语
AuthorAffiliation College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
Author_xml – sequence: 1
  fullname: 叶天语
BookMark eNp9j01Lw0AURWdRwbb6B1wFdy5i5itv0qXEWoWCFnQ9vGQmdaSZ1Mk00H9vi6ULF64uXDj3ciZk5DtvCblh9J7Rosgoz0UKjPIMVMYzJtWIjM_lJZn0_RellCtgY3K32qGPuzZ5C27AaJOya7cYXN_5ZHCYlDi4uE9W88crctHgprfXp5ySj6f5e_mcLl8XL-XDMq25kjFFZvMZIM2RM-C5LQxFMRONNMjBclsoDlCrCqSpJAUjRVMZVhlTAWuKRoop4b-7dej6PthGb4NrMew1o_ooqI8u-uiiQWmuD4IHqPgD1S5idJ2PAd3mf_T2hH52fv3t_Pp8CIqpfCZyIX4AEIdjZg
CitedBy_id crossref_primary_10_1007_s11128_020_02986_x
crossref_primary_10_1007_s11128_020_02674_w
crossref_primary_10_1140_epjqt_s40507_023_00167_0
crossref_primary_10_1142_S0217732322501498
crossref_primary_10_1140_epjqt_s40507_024_00228_y
crossref_primary_10_1016_j_physa_2022_128424
crossref_primary_10_1007_s10773_017_3499_z
crossref_primary_10_1007_s11128_024_04398_7
crossref_primary_10_1007_s10773_020_04559_1
crossref_primary_10_1007_s11433_017_9056_6
crossref_primary_10_1007_s10773_018_3729_z
crossref_primary_10_1088_1674_1056_ac65f0
crossref_primary_10_1007_s10773_018_3823_2
crossref_primary_10_1007_s10773_022_05043_8
crossref_primary_10_1007_s11128_023_03828_2
crossref_primary_10_3389_fphy_2024_1364140
crossref_primary_10_1007_s10773_022_05091_0
crossref_primary_10_1007_s11128_022_03460_6
crossref_primary_10_1007_s10773_021_04771_7
crossref_primary_10_1007_s10773_021_04937_3
crossref_primary_10_1088_1612_202X_ad21ec
crossref_primary_10_1007_s10773_020_04537_7
crossref_primary_10_3390_e26050413
crossref_primary_10_1007_s10773_019_04369_0
crossref_primary_10_1007_s11128_021_03178_x
crossref_primary_10_1142_S0217732323501171
crossref_primary_10_1007_s10773_019_04084_w
crossref_primary_10_1007_s10773_018_3894_0
crossref_primary_10_1140_epjqt_s40507_024_00293_3
crossref_primary_10_1088_1402_4896_acb61f
crossref_primary_10_1140_epjd_e2019_90374_y
crossref_primary_10_1007_s11128_017_1755_z
crossref_primary_10_1007_s10773_019_04080_0
crossref_primary_10_1007_s11128_020_02960_7
crossref_primary_10_1007_s11128_023_03892_8
crossref_primary_10_1007_s10773_022_05033_w
crossref_primary_10_1007_s11128_023_04069_z
crossref_primary_10_1007_s10773_018_3852_x
crossref_primary_10_1007_s10773_018_3812_5
crossref_primary_10_1007_s10773_022_05268_7
Cites_doi 10.1016/j.physleta.2004.06.009
10.1140/epjd/e2008-00141-0
10.1103/PhysRevLett.85.5635
10.1007/s10773-011-0878-8
10.1103/PhysRevLett.70.1895
10.1103/PhysRevLett.85.441
10.1007/s11128-012-0505-5
10.1016/j.optcom.2005.04.048
10.1007/s11434-013-6019-4
10.1007/s11128-012-0433-4
10.1103/PhysRevLett.68.557
10.1007/s11128-013-0698-2
10.1103/PhysRevA.68.035801
10.1103/PhysRevLett.89.187902
10.1088/0256-307X/22/5/006
10.1038/srep15610
10.1103/PhysRevA.59.162
10.1016/j.optcom.2011.02.017
10.1007/s11128-012-0502-8
10.1007/s11128-013-0645-2
10.1103/PhysRevA.69.052307
10.1007/s11434-014-0339-x
10.1007/s11128-012-0507-3
10.1016/j.optcom.2006.02.043
10.1007/s10773-013-1616-1
10.1088/0253-6102/57/4/11
10.1007/s11128-011-0251-0
10.1007/s10773-009-0206-8
10.1007/s11433-014-5542-x
10.1016/j.physleta.2005.04.062
10.1007/s11128-012-0454-z
10.1142/S0217984909021259
10.1007/s11433-014-5461-x
10.1088/0256-307X/23/11/004
10.1016/j.optcom.2009.11.085
10.1103/PhysRevA.59.1829
10.1007/s10773-013-1970-z
10.1016/j.optcom.2010.07.058
10.1007/s11128-015-0924-1
10.1007/s10773-012-1321-5
10.1007/s10773-011-1073-7
10.1103/PhysRevLett.67.661
10.1007/s11128-012-0439-y
10.1016/j.optcom.2010.10.095
10.1016/j.optcom.2010.12.070
10.1103/PhysRevLett.85.2392
10.1142/S0129183109014576
10.1016/S0375-9601(03)00906-X
10.1088/0256-307X/24/1/006
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/0253-6102/67/2/147
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate Quantum Private Comparison via Cavity QED
EndPage 156
ExternalDocumentID 10_1088_0253_6102_67_2_147
671759353
GroupedDBID 02O
042
1JI
1WK
2B.
2C.
2RA
4.4
5B3
5GY
5VR
5VS
7.M
92E
92I
92L
92Q
93N
AAGCD
AAJIO
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
FRP
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NS0
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
ID FETCH-LOGICAL-c274t-a1e596a05a21625e8d0a393f4da26e2e87266c7b64db406d43fbd1bddb61f8f43
ISSN 0253-6102
IngestDate Thu Apr 24 22:58:05 EDT 2025
Wed Oct 01 02:22:01 EDT 2025
Wed Feb 14 10:03:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c274t-a1e596a05a21625e8d0a393f4da26e2e87266c7b64db406d43fbd1bddb61f8f43
Notes The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack.Particularly, it can prevent TP from knowing two users' secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%.
Tian-Yu Ye (College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China)
11-2592/O3
quantum private comparison(QPC) third party(TP) cavity quantum electrodynamics(QED) product state participant attack
PageCount 10
ParticipantIDs crossref_primary_10_1088_0253_6102_67_2_147
crossref_citationtrail_10_1088_0253_6102_67_2_147
chongqing_primary_671759353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Communications in theoretical physics
PublicationTitleAlternate Communications in Theoretical Physics
PublicationYear 2017
References Chen X.B. (55) 2010; 283
Zhang Z.J. (26) 2004
Liu W. (57) 2012; 51
Tseng H.Y. (48) 2012; 11
Lin J. (56) 2011; 284
Wang T.J. (69) 2016; 6
Zhou L. (67) 2014; 90
Liu W. (46) 2012; 57
Zhang B. (53) 2015; 14
Long G.L. (16) 2002; 65
Yang Y.G. (43) 2012; 10
Li T. (77) 2015; 5
Chen J.H. (15) 1999; 20
Deng F.G. (19) 2004; 69
Wang C. (22) 2006; 262
Shu J. (66) 2007
Deng F.G. (6) 2004; 70
Nguyen B.A. (28) 2004; 328
Liu W. (64) 2012; 51
Sheng Y.B. (70) 2013; 12
Cao C. (73) 2015; 12
Zhang W.W. (51) 2013; 12
Ekert A.K. (2) 1991; 67
Yang Y.G. (50) 2013; 12
Shan C.J. (79) 2009; 23
Hillery M. (11) 1999; 59
Cabello A. (4) 2000; 85
Wang C. (21) 2005; 253
Bostrom K. (17) 2002; 89
Deng F.G. (5) 2003; 68
Bennett C.H. (33) 1993; 70
Shan C.J. (78) 2010; 49
Yang Y.G. (39) 2009; 42
Zheng S.B. (76) 2003; 68
Sheng Y.B. (74) 2014; 13
Sheng Y.B. (71) 2013; 58
Zheng S.B. (75) 2000; 85
Zhang C.M. (8) 2014; 59
Karlsson A. (12) 1999; 59
Chen Y. (29) 2007; 24
Liu W. (63) 2012; 51
Shor P.W. (82) 2000; 85
Zou X.F. (24) 2014; 57
Yang Y.G. (40) 2010; 43
Xu G.A. (61) 2012; 10
Gorbachev V.N. (34) 2003; 314
Yang Y.G. (42) 2009; 80
Li C.Y. (80) 2005; 22
Chang Y. (23) 2015; 24
Quan D.X. (9) 2015; 24
Su X.L. (7) 2014; 59
Zheng C. (31) 2014; 57
Liu B. (45) 2013; 12
Gao F. (83) 2007; 7
Bennett C.H. (3) 1992; 68
Wang C. (20) 2005; 71
Ye T.Y. (30) 2013; 30
Zi W. (47) 2013; 52
Lin J. (52) 2014; 13
Zhang C.M. (10) 2015; 58
Dong J. (36) 2008; 49
Chang Y.J. (58) 2013; 12
Bennett C.H. (1) 1984
Chen X.B. (44) 2014; 13
Sun Z.W. (62) 2013; 52
Deng F.G. (18) 2003; 68
Chen X.B. (37) 2010; 283
Zhang Z.J. (27) 2004
Chang Y. (25) 2014; 59
Wang C. (49) 2013; 11
Zhang W.W. (60) 2014; 53
Zhang Z.J. (35) 2005; 341
Li C.Y. (81) 2006; 23
Liu W. (59) 2011; 284
Lo H.K. (41) 1997; 56
Heo J. (38) 2015; 24
Xiao L. (13) 2004; 69
Lin S. (65) 2013; 52
Zhou L. (68) 2015; 92
Lin J. (14) 2011; 284
Ye T.Y. (32) 2015; 58
Cao C. (72) 2015; 14
Li J. (54) 2014; 53
References_xml – volume: 328
  start-page: 6
  year: 2004
  ident: 28
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2004.06.009
– volume: 49
  start-page: 129
  year: 2008
  ident: 36
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2008-00141-0
– volume: 6
  year: 2016
  ident: 69
  publication-title: Sci. Rep.
– volume: 85
  start-page: 5635
  year: 2000
  ident: 4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.5635
– volume: 51
  start-page: 69
  year: 2012
  ident: 63
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-011-0878-8
– volume: 12
  year: 2015
  ident: 73
  publication-title: Laser Phys. Lett.
– volume: 69
  year: 2004
  ident: 19
  publication-title: Phys. Rev. A
– volume: 7
  start-page: 329
  year: 2007
  ident: 83
  publication-title: Quantum Inf. Comput.
– volume: 58
  year: 2015
  ident: 32
  publication-title: Sci. China-Phys. Mech. Astron.
– volume: 70
  start-page: 1895
  year: 1993
  ident: 33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.1895
– volume: 85
  start-page: 441
  year: 2000
  ident: 82
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.441
– volume: 53
  year: 2014
  ident: 54
  publication-title: Int. J. Theor. Phys.
– year: 2004
  ident: 26
– volume: 13
  start-page: 101
  year: 2014
  ident: 44
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-012-0505-5
– volume: 253
  start-page: 15
  year: 2005
  ident: 21
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2005.04.048
– volume: 43
  year: 2010
  ident: 40
  publication-title: J. Phys. A: Math. Theor.
– volume: 65
  year: 2002
  ident: 16
  publication-title: Phys. Rev. A
– volume: 58
  year: 2013
  ident: 71
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-013-6019-4
– volume: 12
  start-page: 877
  year: 2013
  ident: 50
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-012-0433-4
– volume: 68
  start-page: 557
  year: 1992
  ident: 3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.557
– volume: 13
  start-page: 881
  year: 2014
  ident: 74
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-013-0698-2
– volume: 24
  year: 2015
  ident: 9
  publication-title: Chin. Phys. B
– volume: 68
  year: 2003
  ident: 76
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.035801
– volume: 89
  year: 2002
  ident: 17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.187902
– volume: 22
  start-page: 1049
  year: 2005
  ident: 80
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/22/5/006
– volume: 5
  start-page: 15610
  year: 2015
  ident: 77
  publication-title: Sci. Rep.
  doi: 10.1038/srep15610
– volume: 59
  start-page: 162
  year: 1999
  ident: 12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.162
– volume: 284
  start-page: 3160
  year: 2011
  ident: 59
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2011.02.017
– volume: 10
  year: 2012
  ident: 61
  publication-title: Int. J. Quantum Inf.
– volume: 12
  start-page: 1885
  year: 2013
  ident: 70
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-012-0502-8
– volume: 14
  year: 2015
  ident: 53
  publication-title: Quantum Inf. Process.
– volume: 13
  start-page: 239
  year: 2014
  ident: 52
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-013-0645-2
– start-page: 19
  year: 2007
  ident: 66
  publication-title: Quantum State Preparation and Quantum Information Processing in Cavity QED
– volume: 69
  year: 2004
  ident: 13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.052307
– volume: 51
  year: 2012
  ident: 57
  publication-title: Int. J. Theor. Phys.
– volume: 10
  year: 2012
  ident: 43
  publication-title: Int. J. Quantum Inf.
– volume: 59
  start-page: 2541
  year: 2014
  ident: 25
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-014-0339-x
– volume: 12
  start-page: 1981
  year: 2013
  ident: 51
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-012-0507-3
– volume: 68
  year: 2003
  ident: 18
  publication-title: Phys. Rev. A
– volume: 262
  start-page: 134
  year: 2006
  ident: 22
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2006.02.043
– volume: 52
  start-page: 3212
  year: 2013
  ident: 47
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-013-1616-1
– volume: 57
  start-page: 583
  year: 2012
  ident: 46
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/57/4/11
– volume: 59
  year: 2014
  ident: 7
  publication-title: Chin. Sci. Bull.
– volume: 11
  start-page: 373
  year: 2012
  ident: 48
  publication-title: Quantum Inf. Process
  doi: 10.1007/s11128-011-0251-0
– volume: 49
  start-page: 334
  year: 2010
  ident: 78
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-009-0206-8
– volume: 57
  start-page: 1696
  year: 2014
  ident: 24
  publication-title: Sci. China-Phys. Mech. Astron.
  doi: 10.1007/s11433-014-5542-x
– volume: 341
  start-page: 55
  year: 2005
  ident: 35
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.04.062
– volume: 12
  start-page: 1077
  year: 2013
  ident: 58
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-012-0454-z
– volume: 92
  year: 2015
  ident: 68
  publication-title: Phys. Rev. A
– volume: 90
  year: 2014
  ident: 67
  publication-title: Phys. Rev. A
– volume: 23
  start-page: 3225
  year: 2009
  ident: 79
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984909021259
– volume: 57
  start-page: 1238
  year: 2014
  ident: 31
  publication-title: Sci. China-Phys. Mech. Astron.
  doi: 10.1007/s11433-014-5461-x
– volume: 23
  start-page: 2896
  year: 2006
  ident: 81
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/23/11/004
– volume: 71
  year: 2005
  ident: 20
  publication-title: Phys. Rev. A
– volume: 24
  year: 2015
  ident: 38
  publication-title: Chin. Phys. B
– start-page: 175
  year: 1984
  ident: 1
– volume: 283
  start-page: 1561
  year: 2010
  ident: 55
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2009.11.085
– volume: 59
  start-page: 1829
  year: 1999
  ident: 11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.1829
– volume: 52
  year: 2013
  ident: 65
  publication-title: Int. J. Theor. Phys.
– volume: 24
  year: 2015
  ident: 23
  publication-title: Chin. Phys. B
– volume: 53
  start-page: 1723
  year: 2014
  ident: 60
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-013-1970-z
– volume: 283
  start-page: 4802
  year: 2010
  ident: 37
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2010.07.058
– volume: 14
  start-page: 1265
  year: 2015
  ident: 72
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-015-0924-1
– volume: 30
  year: 2013
  ident: 30
  publication-title: Chin. Phys. Lett.
– volume: 52
  start-page: 212
  year: 2013
  ident: 62
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-012-1321-5
– volume: 70
  year: 2004
  ident: 6
  publication-title: Phys. Rev. A
– volume: 68
  year: 2003
  ident: 5
  publication-title: Phys. Rev. A
– year: 2004
  ident: 27
– volume: 59
  year: 2014
  ident: 8
  publication-title: Chin. Sci. Bull.
– volume: 51
  start-page: 1953
  year: 2012
  ident: 64
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-011-1073-7
– volume: 80
  year: 2009
  ident: 42
  publication-title: Phys. Scr.
– volume: 67
  start-page: 661
  year: 1991
  ident: 2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.661
– volume: 12
  start-page: 887
  year: 2013
  ident: 45
  publication-title: Quantum Inf. Process
  doi: 10.1007/s11128-012-0439-y
– volume: 284
  start-page: 1468
  year: 2011
  ident: 14
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2010.10.095
– volume: 56
  year: 1997
  ident: 41
  publication-title: Phys. Rev. A
– volume: 11
  year: 2013
  ident: 49
  publication-title: Int. J. Quantum Inf.
– volume: 284
  start-page: 2412
  year: 2011
  ident: 56
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2010.12.070
– volume: 85
  start-page: 2392
  year: 2000
  ident: 75
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.2392
– volume: 42
  year: 2009
  ident: 39
  publication-title: A: Math. Theor.
– volume: 20
  start-page: 1531
  year: 1999
  ident: 15
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183109014576
– volume: 58
  year: 2015
  ident: 10
  publication-title: Sci. China-Phys. Mech. Astron.
– volume: 314
  start-page: 267
  year: 2003
  ident: 34
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(03)00906-X
– volume: 24
  start-page: 19
  year: 2007
  ident: 29
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/24/1/006
SSID ssj0002761
Score 2.2964604
Snippet The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 147
SubjectTerms 交换操作
协议
单原子
演化规律
腔QED
腔量子电动力学
量子比特
量子纠缠
Title Quantum Private Comparison via Cavity QED
URI http://lib.cqvip.com/qk/83837X/201702/671759353.html
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  issn: 0253-6102
  databaseCode: IOP
  dateStart: 19820101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://iopscience.iop.org/
  omitProxy: false
  ssIdentifier: ssj0002761
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja9wwFBZtSmkuXdKGTNMWH3opwR1r8aJjCClpoW0CCSQno82lECbbTA759flkyRp3CTS9GI_wPIM-6b1Plt77CHlvOmM5AlvulNS5oK7MG8pN7ppOOF2WjhqfO_z1W7V3JL4cl8dLCc4-u2SuP5qbv-aV_A-qaAOuPkv2Hsgmo2jAPfDFFQjj-k8YHyzQL_4k-6XXKHNhcgdRweufamtH9cIQB9E3DfUIxikhV_GcY0pmDF86EtE-CUV5MYbyk8X4CwGiTpFOWwRHwkqOJWLxi9cLIhgRXTZyYTRUwPzDtcId9VUooi3cV363l_UZ-_UynAxb6L9FmXT2r9_1bprWW2q9pbaqW4YlSP2QPGLwzV6A4_P3_RRP0dbrHg5vjqlPsDFNbdOqnrIp9SI5TxA2Zj8uEPhHVGPEGQ6fk6eR7GfbAbkX5IGbrZFnkfhn0a1erZHH-6HXX5IPEdIsQpotIc0AaRYgzQDpK3L0afdwZy-Paha5wcp_nivMA1mpolSMYtHpGlsoLnknrGKVY66pwZVMrSthNViWFbzTlmprdUU7zBy-TlZmZzO3QTLtPJE0ViorhbUCvy0Hr7VCFp2s5YRspk5oz0PVEvQymKLkJZ8QOnRLa2IheK9HctreDc2EbKX_DAbvfvr1vZ7eJKvLUfuGrMwvF-4tmN5cv-sHwi0kJEqC
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Private+Comparison+via+Cavity+QED&rft.jtitle=Communications+in+theoretical+physics&rft.au=Ye%2C+Tian-Yu&rft.date=2017-02-01&rft.issn=0253-6102&rft.volume=67&rft.issue=2&rft.spage=147&rft_id=info:doi/10.1088%2F0253-6102%2F67%2F2%2F147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_67_2_147
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg