A Hybrid Recommender System to Enrollment for Elective Subjects in Engineering Students using Classification Algorithms

One of the main problems that engineering university students face is making the correct decision regarding the lines of elective subjects to enroll based on available information (preferences, syllabus, schedules, subject content, possible academic performance, teacher, curriculum, and others). Und...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 11; no. 7
Main Author Rivera, Jerson Erick Herrera
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2020
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
2156-5570
DOI10.14569/IJACSA.2020.0110752

Cover

Abstract One of the main problems that engineering university students face is making the correct decision regarding the lines of elective subjects to enroll based on available information (preferences, syllabus, schedules, subject content, possible academic performance, teacher, curriculum, and others). Under these circumstances, this research work seeks to develop a Hybrid Recommender System. For this, a model based on the Content-based approach of all the subjects that has been studied is developed (using Natural Language Processing and the statistical measures Term Frequency and Inverse Term Frequency), giving it appropriate relevance with the grades that the student has achieved. In addition, a model based on a Collaborative Filtering approach is developed, establishing relationships between different students, identifying similar academic behaviors. Thus, the system will recommend to the student in which lines of elective subjects to enroll to obtain better results in the academic field. The given recommendation will be obtained from machine learning models (XGBoost and k-NN) based on the similarity between the contents of each subject with respect to the line of elective subject and based on the academic relationship between all the students. To achieve the objective, data from engineering students between 2011 and 2016 has been analyzed. The results obtained indicate that the recommendations reach a MAP-k of 82.14% and a precision of 91.83%.
AbstractList One of the main problems that engineering university students face is making the correct decision regarding the lines of elective subjects to enroll based on available information (preferences, syllabus, schedules, subject content, possible academic performance, teacher, curriculum, and others). Under these circumstances, this research work seeks to develop a Hybrid Recommender System. For this, a model based on the Content-based approach of all the subjects that has been studied is developed (using Natural Language Processing and the statistical measures Term Frequency and Inverse Term Frequency), giving it appropriate relevance with the grades that the student has achieved. In addition, a model based on a Collaborative Filtering approach is developed, establishing relationships between different students, identifying similar academic behaviors. Thus, the system will recommend to the student in which lines of elective subjects to enroll to obtain better results in the academic field. The given recommendation will be obtained from machine learning models (XGBoost and k-NN) based on the similarity between the contents of each subject with respect to the line of elective subject and based on the academic relationship between all the students. To achieve the objective, data from engineering students between 2011 and 2016 has been analyzed. The results obtained indicate that the recommendations reach a MAP-k of 82.14% and a precision of 91.83%.
Author Rivera, Jerson Erick Herrera
Author_xml – sequence: 1
  givenname: Jerson Erick Herrera
  surname: Rivera
  fullname: Rivera, Jerson Erick Herrera
BookMark eNplUV1LwzAUDTLBOfcPfAj43JmkTZs9ljHdZCA4Bd9KmiYzo01mkjr2780-XsT7cr_OOVzOvQUDY40E4B6jCc5oPn1cvpSzdTkhiKAJwhgVlFyBIcE0Tygt0OBUsyQuPm_A2PstipFOSc7SIdiXcHGonW7gmxS266RppIPrgw-yg8HCuXG2beM4QGUdnLdSBP0j4bqvt7H0UJuI2WgjpdNmA9ehbyLYw94f21nLvddKCx60NbBsN9bp8NX5O3CteOvl-JJH4ONp_j5bJKvX5-WsXCWCFFlIGM7rnFElkGyaGmGhGkYYyVMqFEINie1UsLRWjBCRNkgWBZsSThXlRS1Jmo4APev2ZscPe9621c7pjrtDhVF1MrDSWy48r44GVhcDI-_hzNs5-91LH6qt7Z2Jp1YkpxTTDGUoorIzSjjrvZPqv_j5O3_FfwHa_ITm
ContentType Journal Article
Copyright 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.14569/IJACSA.2020.0110752
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10.14569/ijacsa.2020.0110752
10_14569_IJACSA_2020_0110752
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c274t-816b685fc0eddb01cfd8282635cf00d2fd89c83bf822c3d0e77892a5f5a7be233
IEDL.DBID 8FG
ISSN 2158-107X
2156-5570
IngestDate Tue Aug 19 18:37:33 EDT 2025
Mon Jul 14 09:21:23 EDT 2025
Wed Oct 01 01:54:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-816b685fc0eddb01cfd8282635cf00d2fd89c83bf822c3d0e77892a5f5a7be233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2655154040?pq-origsite=%requestingapplication%
PQID 2655154040
PQPubID 5444811
ParticipantIDs unpaywall_primary_10_14569_ijacsa_2020_0110752
proquest_journals_2655154040
crossref_primary_10_14569_IJACSA_2020_0110752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2020
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.117635
Snippet One of the main problems that engineering university students face is making the correct decision regarding the lines of elective subjects to enroll based on...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Algorithms
Colleges & universities
Engineering education
Hybrid systems
Machine learning
Natural language processing
Recommender systems
Students
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa69LBd2j3RrF2hw65ybPkh-2h0KdICCwp0GbKTIEtymy2xs9hB0f76iZHTpehpwA4GrIMJGKTIjxL5EeCztiAgVSykifRLGmWFpJnknBpppIWzJkw5Ngp_HSejSXQ5jad78Diz9dY00t3gf0Gy-FrqZvB9s0-DYFzzwZVc2tw9ZjQXo3vsaRKYpi0Wm7lrwrF8e0tdvoD9BK-cerA_GV_lP3DGnE1VKDJOuXdkNeXTrpvOwohsMPspVYNcRMz3MCzymD2NVn8h6Mt1tZT3d3I-34lG54fwe9vT44pQfnnrtvDUw3OKx__2o6_hoIOuJHe29gb2TPUWDrdjIUjnJd7BXU6cLLIjizhZpK3JsFpZ48NTSWIRMxnOnc8l1ofhoVBDZhXZoUkk145-syFYo39DNmM8scBpY1Mkn9_Uq1l7u2jew-R8-O1sRLv5DlTZXLilaZAUSRqXyjdaF36gSm3zP2THUaXva2aXmUrDorQgRoXaN5ynGZNxGUteGBaGH6BX1ZU5AlKkXNknjkxSRjFTWZpaYJipiAU6DLTsA93qUSwdjYfA9Af1Li4u87PrXKDeRaf3PpxslS26Td0Illh4aRFu5PfBezSA5_KcHT2R9_FfPziGV7h0hz0n0GtXa_PJwp-2OO0s-g9V2wf5
  priority: 102
  providerName: Unpaywall
Title A Hybrid Recommender System to Enrollment for Elective Subjects in Engineering Students using Classification Algorithms
URI https://www.proquest.com/docview/2655154040
http://thesai.org/Downloads/Volume11No7/Paper_52-A_Hybrid_Recommender_System.pdf
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcCFN2KhVHPg6tZxHnZOKFS7LJVYVZSVllPk2E5btJtdmlRV_z0zibcPIXGIokiWD_7smW8mnm8Y--SQBGgrY54ZUfMkrwzPjVLcG2-QzvpYKyoU_j7LpvPkeJEuQsKtDdcqtzaxN9RubSlHfigz9O1ILxLxefOHU9co-rsaWmg8ZruRxJ1EleKTr7c5FoHOP-uVONGxkYqpWoTqOaQN-eG34-LotMAYUYoDcoMqlQ-90x3lfHLVbMzNtVku73mfyQv2LNBGKAacX7JHvnnFnm9bMkA4oa_ZdQHTGyrCAoorV6u-URwMsuTQrWHcXCLwlBEEZKswXg72DtB-UEKmhYsG7kkUwukgfdkC3Y8_g76FJl0u6vGEYnmGS9Sdr9o3bD4Z_zya8tBbgVuMQzuuo6zKdFpb4Z2rRGRrh7EXKdPYWggn8TO3Oq5qJBA2dsIrpXNp0jo1qvIyjt-ynWbd-HcMKq0sPmniszpJpc21RlKW20RGLo6cGTG-XdNyM0holBR6EAblgEFJGJQBgxHb2y58GQ5UW97BP2IHt2D8O9_Fb2Nb82C-9_-f7wN7SqOHtMoe2-kur_xHJBpdtd_vpn22-2U8O_mB7_nspPj1F4Sh05c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECaCdEiXpk_USdre0I5MaOpBaigKIbVr57UkAbypFEWlKWzZiRQY_lP5jbnTIw8U6JZBgwZx4He8--7E-46xrxmSAG2lx0Mjcu5HqeGRUYo74wzSWedpRY3Cxyfh6Nw_mASTNXbb9cLQtcrOJ9aOOptbqpHvyRBjO9ILX_xYXHGaGkV_V7sRGo1ZHLrVElO28vv4J-L7Tcrh4Gx_xNupAtxiBlZx3Q_TUAe5FS7LUtG3eYZZB2my2FyITOJrZLWX5hg6rZcJp5SOpAnywKjUSSqAost_4XueR1r9evjrvqYjkGyEtfInBlJSTVWTtlsPaUq0Nz6I909jzEml2KWwqwL5NBo-UNyNm2JhVksznT6KdsPX7FVLUyFu7OoNW3PFW7bZjYCA1iO8Y8sYRitq-gLKY2ezejAdNDLoUM1hUFyjoVEFEpAdw2Da-FdAf0UFoBIuC3gkiQinjdRmCXQf_wLqkZ10mam2H4inFwhJ9WdWvmfnz7LrH9h6MS_cRwapVhafwHdh7gfSRlojCYysL_uZ189Mj_FuT5NFI9mRUKpDGCQNBglhkLQY9NhOt_FJe4DL5MHcemz3Hox_17v8a2xpnqy39f_1vrCN0dnxUXI0PjncZi_py6aks8PWq-sb9wlJTpV-ri0L2O_nNuU7X3QN1A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa69LBd2j3RrF2hw65ybPkh-2h0KdICCwp0GbKTIEtymy2xs9hB0f76iZHTpehpwA4GrIMJGKTIjxL5EeCztiAgVSykifRLGmWFpJnknBpppIWzJkw5Ngp_HSejSXQ5jad78Diz9dY00t3gf0Gy-FrqZvB9s0-DYFzzwZVc2tw9ZjQXo3vsaRKYpi0Wm7lrwrF8e0tdvoD9BK-cerA_GV_lP3DGnE1VKDJOuXdkNeXTrpvOwohsMPspVYNcRMz3MCzymD2NVn8h6Mt1tZT3d3I-34lG54fwe9vT44pQfnnrtvDUw3OKx__2o6_hoIOuJHe29gb2TPUWDrdjIUjnJd7BXU6cLLIjizhZpK3JsFpZ48NTSWIRMxnOnc8l1ofhoVBDZhXZoUkk145-syFYo39DNmM8scBpY1Mkn9_Uq1l7u2jew-R8-O1sRLv5DlTZXLilaZAUSRqXyjdaF36gSm3zP2THUaXva2aXmUrDorQgRoXaN5ynGZNxGUteGBaGH6BX1ZU5AlKkXNknjkxSRjFTWZpaYJipiAU6DLTsA93qUSwdjYfA9Af1Li4u87PrXKDeRaf3PpxslS26Td0Illh4aRFu5PfBezSA5_KcHT2R9_FfPziGV7h0hz0n0GtXa_PJwp-2OO0s-g9V2wf5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Recommender+System+to+Enrollment+for+Elective+Subjects+in+Engineering+Students+using+Classification+Algorithms&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Rivera%2C+Jerson+Erick+Herrera&rft.date=2020&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=11&rft.issue=7&rft_id=info:doi/10.14569%2FIJACSA.2020.0110752&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2020_0110752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon