A Hybrid Recommender System to Enrollment for Elective Subjects in Engineering Students using Classification Algorithms
One of the main problems that engineering university students face is making the correct decision regarding the lines of elective subjects to enroll based on available information (preferences, syllabus, schedules, subject content, possible academic performance, teacher, curriculum, and others). Und...
Saved in:
Published in | International journal of advanced computer science & applications Vol. 11; no. 7 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
West Yorkshire
Science and Information (SAI) Organization Limited
2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2158-107X 2156-5570 2156-5570 |
DOI | 10.14569/IJACSA.2020.0110752 |
Cover
Abstract | One of the main problems that engineering university students face is making the correct decision regarding the lines of elective subjects to enroll based on available information (preferences, syllabus, schedules, subject content, possible academic performance, teacher, curriculum, and others). Under these circumstances, this research work seeks to develop a Hybrid Recommender System. For this, a model based on the Content-based approach of all the subjects that has been studied is developed (using Natural Language Processing and the statistical measures Term Frequency and Inverse Term Frequency), giving it appropriate relevance with the grades that the student has achieved. In addition, a model based on a Collaborative Filtering approach is developed, establishing relationships between different students, identifying similar academic behaviors. Thus, the system will recommend to the student in which lines of elective subjects to enroll to obtain better results in the academic field. The given recommendation will be obtained from machine learning models (XGBoost and k-NN) based on the similarity between the contents of each subject with respect to the line of elective subject and based on the academic relationship between all the students. To achieve the objective, data from engineering students between 2011 and 2016 has been analyzed. The results obtained indicate that the recommendations reach a MAP-k of 82.14% and a precision of 91.83%. |
---|---|
AbstractList | One of the main problems that engineering university students face is making the correct decision regarding the lines of elective subjects to enroll based on available information (preferences, syllabus, schedules, subject content, possible academic performance, teacher, curriculum, and others). Under these circumstances, this research work seeks to develop a Hybrid Recommender System. For this, a model based on the Content-based approach of all the subjects that has been studied is developed (using Natural Language Processing and the statistical measures Term Frequency and Inverse Term Frequency), giving it appropriate relevance with the grades that the student has achieved. In addition, a model based on a Collaborative Filtering approach is developed, establishing relationships between different students, identifying similar academic behaviors. Thus, the system will recommend to the student in which lines of elective subjects to enroll to obtain better results in the academic field. The given recommendation will be obtained from machine learning models (XGBoost and k-NN) based on the similarity between the contents of each subject with respect to the line of elective subject and based on the academic relationship between all the students. To achieve the objective, data from engineering students between 2011 and 2016 has been analyzed. The results obtained indicate that the recommendations reach a MAP-k of 82.14% and a precision of 91.83%. |
Author | Rivera, Jerson Erick Herrera |
Author_xml | – sequence: 1 givenname: Jerson Erick Herrera surname: Rivera fullname: Rivera, Jerson Erick Herrera |
BookMark | eNplUV1LwzAUDTLBOfcPfAj43JmkTZs9ljHdZCA4Bd9KmiYzo01mkjr2780-XsT7cr_OOVzOvQUDY40E4B6jCc5oPn1cvpSzdTkhiKAJwhgVlFyBIcE0Tygt0OBUsyQuPm_A2PstipFOSc7SIdiXcHGonW7gmxS266RppIPrgw-yg8HCuXG2beM4QGUdnLdSBP0j4bqvt7H0UJuI2WgjpdNmA9ehbyLYw94f21nLvddKCx60NbBsN9bp8NX5O3CteOvl-JJH4ONp_j5bJKvX5-WsXCWCFFlIGM7rnFElkGyaGmGhGkYYyVMqFEINie1UsLRWjBCRNkgWBZsSThXlRS1Jmo4APev2ZscPe9621c7pjrtDhVF1MrDSWy48r44GVhcDI-_hzNs5-91LH6qt7Z2Jp1YkpxTTDGUoorIzSjjrvZPqv_j5O3_FfwHa_ITm |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
DOI | 10.14569/IJACSA.2020.0110752 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2156-5570 |
ExternalDocumentID | 10.14569/ijacsa.2020.0110752 10_14569_IJACSA_2020_0110752 |
GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB PUEGO RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
ID | FETCH-LOGICAL-c274t-816b685fc0eddb01cfd8282635cf00d2fd89c83bf822c3d0e77892a5f5a7be233 |
IEDL.DBID | 8FG |
ISSN | 2158-107X 2156-5570 |
IngestDate | Tue Aug 19 18:37:33 EDT 2025 Mon Jul 14 09:21:23 EDT 2025 Wed Oct 01 01:54:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c274t-816b685fc0eddb01cfd8282635cf00d2fd89c83bf822c3d0e77892a5f5a7be233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2655154040?pq-origsite=%requestingapplication% |
PQID | 2655154040 |
PQPubID | 5444811 |
ParticipantIDs | unpaywall_primary_10_14569_ijacsa_2020_0110752 proquest_journals_2655154040 crossref_primary_10_14569_IJACSA_2020_0110752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | West Yorkshire |
PublicationPlace_xml | – name: West Yorkshire |
PublicationTitle | International journal of advanced computer science & applications |
PublicationYear | 2020 |
Publisher | Science and Information (SAI) Organization Limited |
Publisher_xml | – name: Science and Information (SAI) Organization Limited |
SSID | ssj0000392683 |
Score | 2.117635 |
Snippet | One of the main problems that engineering university students face is making the correct decision regarding the lines of elective subjects to enroll based on... |
SourceID | unpaywall proquest crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Algorithms Colleges & universities Engineering education Hybrid systems Machine learning Natural language processing Recommender systems Students |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa69LBd2j3RrF2hw65ybPkh-2h0KdICCwp0GbKTIEtymy2xs9hB0f76iZHTpehpwA4GrIMJGKTIjxL5EeCztiAgVSykifRLGmWFpJnknBpppIWzJkw5Ngp_HSejSXQ5jad78Diz9dY00t3gf0Gy-FrqZvB9s0-DYFzzwZVc2tw9ZjQXo3vsaRKYpi0Wm7lrwrF8e0tdvoD9BK-cerA_GV_lP3DGnE1VKDJOuXdkNeXTrpvOwohsMPspVYNcRMz3MCzymD2NVn8h6Mt1tZT3d3I-34lG54fwe9vT44pQfnnrtvDUw3OKx__2o6_hoIOuJHe29gb2TPUWDrdjIUjnJd7BXU6cLLIjizhZpK3JsFpZ48NTSWIRMxnOnc8l1ofhoVBDZhXZoUkk145-syFYo39DNmM8scBpY1Mkn9_Uq1l7u2jew-R8-O1sRLv5DlTZXLilaZAUSRqXyjdaF36gSm3zP2THUaXva2aXmUrDorQgRoXaN5ynGZNxGUteGBaGH6BX1ZU5AlKkXNknjkxSRjFTWZpaYJipiAU6DLTsA93qUSwdjYfA9Af1Li4u87PrXKDeRaf3PpxslS26Td0Illh4aRFu5PfBezSA5_KcHT2R9_FfPziGV7h0hz0n0GtXa_PJwp-2OO0s-g9V2wf5 priority: 102 providerName: Unpaywall |
Title | A Hybrid Recommender System to Enrollment for Elective Subjects in Engineering Students using Classification Algorithms |
URI | https://www.proquest.com/docview/2655154040 http://thesai.org/Downloads/Volume11No7/Paper_52-A_Hybrid_Recommender_System.pdf |
UnpaywallVersion | publishedVersion |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcCFN2KhVHPg6tZxHnZOKFS7LJVYVZSVllPk2E5btJtdmlRV_z0zibcPIXGIokiWD_7smW8mnm8Y--SQBGgrY54ZUfMkrwzPjVLcG2-QzvpYKyoU_j7LpvPkeJEuQsKtDdcqtzaxN9RubSlHfigz9O1ILxLxefOHU9co-rsaWmg8ZruRxJ1EleKTr7c5FoHOP-uVONGxkYqpWoTqOaQN-eG34-LotMAYUYoDcoMqlQ-90x3lfHLVbMzNtVku73mfyQv2LNBGKAacX7JHvnnFnm9bMkA4oa_ZdQHTGyrCAoorV6u-URwMsuTQrWHcXCLwlBEEZKswXg72DtB-UEKmhYsG7kkUwukgfdkC3Y8_g76FJl0u6vGEYnmGS9Sdr9o3bD4Z_zya8tBbgVuMQzuuo6zKdFpb4Z2rRGRrh7EXKdPYWggn8TO3Oq5qJBA2dsIrpXNp0jo1qvIyjt-ynWbd-HcMKq0sPmniszpJpc21RlKW20RGLo6cGTG-XdNyM0holBR6EAblgEFJGJQBgxHb2y58GQ5UW97BP2IHt2D8O9_Fb2Nb82C-9_-f7wN7SqOHtMoe2-kur_xHJBpdtd_vpn22-2U8O_mB7_nspPj1F4Sh05c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECaCdEiXpk_USdre0I5MaOpBaigKIbVr57UkAbypFEWlKWzZiRQY_lP5jbnTIw8U6JZBgwZx4He8--7E-46xrxmSAG2lx0Mjcu5HqeGRUYo74wzSWedpRY3Cxyfh6Nw_mASTNXbb9cLQtcrOJ9aOOptbqpHvyRBjO9ILX_xYXHGaGkV_V7sRGo1ZHLrVElO28vv4J-L7Tcrh4Gx_xNupAtxiBlZx3Q_TUAe5FS7LUtG3eYZZB2my2FyITOJrZLWX5hg6rZcJp5SOpAnywKjUSSqAost_4XueR1r9evjrvqYjkGyEtfInBlJSTVWTtlsPaUq0Nz6I909jzEml2KWwqwL5NBo-UNyNm2JhVksznT6KdsPX7FVLUyFu7OoNW3PFW7bZjYCA1iO8Y8sYRitq-gLKY2ezejAdNDLoUM1hUFyjoVEFEpAdw2Da-FdAf0UFoBIuC3gkiQinjdRmCXQf_wLqkZ10mam2H4inFwhJ9WdWvmfnz7LrH9h6MS_cRwapVhafwHdh7gfSRlojCYysL_uZ189Mj_FuT5NFI9mRUKpDGCQNBglhkLQY9NhOt_FJe4DL5MHcemz3Hox_17v8a2xpnqy39f_1vrCN0dnxUXI0PjncZi_py6aks8PWq-sb9wlJTpV-ri0L2O_nNuU7X3QN1A |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa69LBd2j3RrF2hw65ybPkh-2h0KdICCwp0GbKTIEtymy2xs9hB0f76iZHTpehpwA4GrIMJGKTIjxL5EeCztiAgVSykifRLGmWFpJnknBpppIWzJkw5Ngp_HSejSXQ5jad78Diz9dY00t3gf0Gy-FrqZvB9s0-DYFzzwZVc2tw9ZjQXo3vsaRKYpi0Wm7lrwrF8e0tdvoD9BK-cerA_GV_lP3DGnE1VKDJOuXdkNeXTrpvOwohsMPspVYNcRMz3MCzymD2NVn8h6Mt1tZT3d3I-34lG54fwe9vT44pQfnnrtvDUw3OKx__2o6_hoIOuJHe29gb2TPUWDrdjIUjnJd7BXU6cLLIjizhZpK3JsFpZ48NTSWIRMxnOnc8l1ofhoVBDZhXZoUkk145-syFYo39DNmM8scBpY1Mkn9_Uq1l7u2jew-R8-O1sRLv5DlTZXLilaZAUSRqXyjdaF36gSm3zP2THUaXva2aXmUrDorQgRoXaN5ynGZNxGUteGBaGH6BX1ZU5AlKkXNknjkxSRjFTWZpaYJipiAU6DLTsA93qUSwdjYfA9Af1Li4u87PrXKDeRaf3PpxslS26Td0Illh4aRFu5PfBezSA5_KcHT2R9_FfPziGV7h0hz0n0GtXa_PJwp-2OO0s-g9V2wf5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Recommender+System+to+Enrollment+for+Elective+Subjects+in+Engineering+Students+using+Classification+Algorithms&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Rivera%2C+Jerson+Erick+Herrera&rft.date=2020&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=11&rft.issue=7&rft_id=info:doi/10.14569%2FIJACSA.2020.0110752&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2020_0110752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |