Dynamic Local Conformal Reinforcement Network (DLCR) for Aortic Dissection Centerline Tracking

Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 29; no. 7; pp. 5146 - 5157
Main Authors Zhao, Jingliang, Zeng, An, Ye, Jiayu, Pan, Dan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2025
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2025.3547744

Cover

Abstract Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the acute nature of AD requires a quick algorithm, however, AD scans usually contain thousands of slices, centerline extraction is very time-consuming. In this paper, a fast AD centerline extraction algorithm, which is based on a local conformal deep reinforced agent and dynamic tracking framework, is presented. The potential dependence of adjacent center points is utilized to form the novel 2.5D state and locally constrains the shape of the centerline, which improves overlap ratio and accuracy of the tracked path. Moreover, we dynamically modify the width and direction of the detection window to focus on vessel-relevant regions and improve the ability in tracking small vessels. On a public AD dataset that involves 100 CTA scans, the proposed method obtains average overlap of 97.23% and mean distance error of 1.28 voxels, which outperforms four state-of-the-art AD centerline extraction methods. The proposed algorithm is very fast with average processing time of 9.54s, indicating that this method is very suitable for clinical practice.
AbstractList Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the acute nature of AD requires a quick algorithm, however, AD scans usually contain thousands of slices, centerline extraction is very time-consuming. In this paper, a fast AD centerline extraction algorithm, which is based on a local conformal deep reinforced agent and dynamic tracking framework, is presented. The potential dependence of adjacent center points is utilized to form the novel 2.5D state and locally constrains the shape of the centerline, which improves overlap ratio and accuracy of the tracked path. Moreover, we dynamically modify the width and direction of the detection window to focus on vessel-relevant regions and improve the ability in tracking small vessels. On a public AD dataset that involves 100 CTA scans, the proposed method obtains average overlap of 97.23% and mean distance error of 1.28 voxels, which outperforms four state-of-the-art AD centerline extraction methods. The proposed algorithm is very fast with average processing time of 9.54s, indicating that this method is very suitable for clinical practice.
Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the acute nature of AD requires a quick algorithm, however, AD scans usually contain thousands of slices, centerline extraction is very time-consuming. In this paper, a fast AD centerline extraction algorithm, which is based on a local conformal deep reinforced agent and dynamic tracking framework, is presented. The potential dependence of adjacent center points is utilized to form the novel 2.5D state and locally constrains the shape of the centerline, which improves overlap ratio and accuracy of the tracked path. Moreover, we dynamically modify the width and direction of the detection window to focus on vessel-relevant regions and improve the ability in tracking small vessels. On a public AD dataset that involves 100 CTA scans, the proposed method obtains average overlap of 97.23% and mean distance error of 1.28 voxels, which outperforms four state-of-the-art AD centerline extraction methods. The proposed algorithm is very fast with average processing time of 9.54s, indicating that this method is very suitable for clinical practice.Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the acute nature of AD requires a quick algorithm, however, AD scans usually contain thousands of slices, centerline extraction is very time-consuming. In this paper, a fast AD centerline extraction algorithm, which is based on a local conformal deep reinforced agent and dynamic tracking framework, is presented. The potential dependence of adjacent center points is utilized to form the novel 2.5D state and locally constrains the shape of the centerline, which improves overlap ratio and accuracy of the tracked path. Moreover, we dynamically modify the width and direction of the detection window to focus on vessel-relevant regions and improve the ability in tracking small vessels. On a public AD dataset that involves 100 CTA scans, the proposed method obtains average overlap of 97.23% and mean distance error of 1.28 voxels, which outperforms four state-of-the-art AD centerline extraction methods. The proposed algorithm is very fast with average processing time of 9.54s, indicating that this method is very suitable for clinical practice.
Author Zhao, Jingliang
Zeng, An
Pan, Dan
Ye, Jiayu
Author_xml – sequence: 1
  givenname: Jingliang
  orcidid: 0000-0002-1464-9105
  surname: Zhao
  fullname: Zhao, Jingliang
  email: zhao04016@163.com
  organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: An
  orcidid: 0000-0002-8730-1011
  surname: Zeng
  fullname: Zeng, An
  email: zengan@gdut.edu.cn
  organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Jiayu
  orcidid: 0000-0003-0368-9651
  surname: Ye
  fullname: Ye, Jiayu
  email: yejiayu97@outlook.com
  organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Dan
  orcidid: 0000-0002-2370-8541
  surname: Pan
  fullname: Pan, Dan
  email: pandan@gpnu.edu.cn
  organization: School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40036513$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRS0E4v0BSAhlWRYtY8eJ4yWkPFWBVMGWyHEmyJDYYKdC_XtctSBmM1f2ubM4B2TbOouEnFCYUAry4uHq7n7CgGWTNONCcL5F9hnNizFjUGz_Zir5HjkO4R3iFPFJ5rtkjwOkeUbTffI6XVrVG53MnFZdUjrbOt_HNEezihp7tEPyiMO38x_JaDor5-dJ_EgunR9ib2pCQD0YZ5Mykug7YzF59kp_GPt2RHZa1QU83uxD8nJz_VzejWdPt_fl5WysmeDDWKBsgLeMNk2mWprnuqkBkAlFG1YA5rJGylugOc90xrAVUgvIFKayhrZO00MyWt_99O5rgWGoehM0dp2y6BahSqngIHNGi4iebdBF3WNTfXrTK7-sfp1EgK4B7V0IHts_hEK1Ul-t1Fcr9dVGfeycrjsGEf_xEiQXMv0BW6p-Hw
CODEN IJBHA9
Cites_doi 10.1007/978-3-031-16443-9_3
10.1007/s11548-013-0924-5
10.4250/jcvi.2020.0106
10.1142/S0219467819500116
10.1016/j.media.2018.10.005
10.3348/kjr.2020.0313
10.1007/978-88-470-1857-0
10.1109/JBHI.2021.3068420
10.1161/cir.0000000000001106
10.1007/978-3-030-00937-3_86
10.1016/j.actbio.2019.08.017
10.1007/s10439-024-03611-z
10.1002/ccd.29367
10.1016/j.media.2009.07.011
10.1016/j.media.2009.06.003
10.1016/j.media.2020.101773
10.1016/j.compmedimag.2020.101840
10.1038/s41597-024-03284-2
10.3389/fphys.2021.732711
10.1016/j.cviu.2015.11.009
10.1109/TMI.2022.3150005
10.1016/j.media.2017.07.008
10.1109/ITME.2016.0069
10.1016/j.media.2021.102193
10.1007/978-3-030-87240-3_40
10.1016/j.jtcvs.2019.02.097
10.3390/s21186087
10.1016/j.media.2022.102724
10.1016/S0140-6736(22)01970-5
10.1109/TIP.2015.2496279
10.1016/j.media.2013.09.004
10.1109/42.848184
10.1109/JBHI.2022.3229743
10.1016/j.athoracsur.2022.10.021
10.1016/j.jvs.2020.05.076
10.1117/1.JMI.6.1.014001
10.1109/TMRB.2021.3122337
10.1016/j.media.2020.101931
10.1016/j.compbiomed.2023.106886
10.1088/1361-6560/ab0eee
10.1007/s10851-023-01170-x
10.18653/v1/P18-2116
10.1038/nature14236
10.1016/j.jvs.2019.11.013
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/JBHI.2025.3547744
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 5157
ExternalDocumentID 40036513
10_1109_JBHI_2025_3547744
10909479
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Science and Technology Planning Project of Guangdong
  grantid: 2021A1515012300; 2019A050510041
– fundername: Science and Technology Planning Project of Guangzhou
  grantid: 202206010007; SL2023A04J00421
– fundername: National Natural Science Foundation of China
  grantid: 61976058
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c274t-7e9d04f21dd5af166cdb00e27a1d280e69be14f01645c52ef79c705ae39b0fb33
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 08:43:55 EDT 2025
Sat Jul 05 01:32:01 EDT 2025
Wed Oct 01 05:53:00 EDT 2025
Wed Aug 27 02:13:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-7e9d04f21dd5af166cdb00e27a1d280e69be14f01645c52ef79c705ae39b0fb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8730-1011
0000-0002-2370-8541
0000-0002-1464-9105
0000-0003-0368-9651
PMID 40036513
PQID 3174096218
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_40036513
proquest_miscellaneous_3174096218
crossref_primary_10_1109_JBHI_2025_3547744
ieee_primary_10909479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
Lillicrap (ref37) 2015
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref45
  doi: 10.1007/978-3-031-16443-9_3
– ident: ref13
  doi: 10.1007/s11548-013-0924-5
– ident: ref7
  doi: 10.4250/jcvi.2020.0106
– ident: ref11
  doi: 10.1142/S0219467819500116
– ident: ref26
  doi: 10.1016/j.media.2018.10.005
– ident: ref21
  doi: 10.3348/kjr.2020.0313
– ident: ref10
  doi: 10.1007/978-88-470-1857-0
– ident: ref31
  doi: 10.1109/JBHI.2021.3068420
– ident: ref4
  doi: 10.1161/cir.0000000000001106
– ident: ref33
  doi: 10.1007/978-3-030-00937-3_86
– ident: ref3
  doi: 10.1016/j.actbio.2019.08.017
– ident: ref23
  doi: 10.1007/s10439-024-03611-z
– ident: ref8
  doi: 10.1002/ccd.29367
– ident: ref15
  doi: 10.1016/j.media.2009.07.011
– ident: ref44
  doi: 10.1016/j.media.2009.06.003
– ident: ref14
  doi: 10.1016/j.media.2020.101773
– ident: ref16
  doi: 10.1016/j.compmedimag.2020.101840
– ident: ref42
  doi: 10.1038/s41597-024-03284-2
– ident: ref41
  doi: 10.3389/fphys.2021.732711
– ident: ref29
  doi: 10.1016/j.cviu.2015.11.009
– ident: ref39
  doi: 10.1109/TMI.2022.3150005
– ident: ref22
  doi: 10.1016/j.media.2017.07.008
– ident: ref17
  doi: 10.1109/ITME.2016.0069
– ident: ref32
  doi: 10.1016/j.media.2021.102193
– ident: ref34
  doi: 10.1007/978-3-030-87240-3_40
– ident: ref6
  doi: 10.1016/j.jtcvs.2019.02.097
– ident: ref28
  doi: 10.3390/s21186087
– ident: ref35
  doi: 10.1016/j.media.2022.102724
– ident: ref1
  doi: 10.1016/S0140-6736(22)01970-5
– ident: ref24
  doi: 10.1109/TIP.2015.2496279
– ident: ref18
  doi: 10.1016/j.media.2013.09.004
– ident: ref36
  doi: 10.1109/42.848184
– ident: ref30
  doi: 10.1109/JBHI.2022.3229743
– ident: ref9
  doi: 10.1016/j.athoracsur.2022.10.021
– ident: ref5
  doi: 10.1016/j.jvs.2020.05.076
– ident: ref43
  doi: 10.1117/1.JMI.6.1.014001
– ident: ref19
  doi: 10.1109/TMRB.2021.3122337
– ident: ref20
  doi: 10.1016/j.media.2020.101931
– ident: ref27
  doi: 10.1016/j.compbiomed.2023.106886
– ident: ref12
  doi: 10.1088/1361-6560/ab0eee
– ident: ref25
  doi: 10.1007/s10851-023-01170-x
– ident: ref38
  doi: 10.18653/v1/P18-2116
– ident: ref40
  doi: 10.1038/nature14236
– ident: ref2
  doi: 10.1016/j.jvs.2019.11.013
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations 2016
  year: 2015
  ident: ref37
  article-title: Continuous control with deep reinforcement learning
SSID ssj0000816896
Score 2.4420419
Snippet Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5146
SubjectTerms Accuracy
Algorithms
Aorta - diagnostic imaging
Aortic dissection
Aortic Dissection - diagnostic imaging
Bioinformatics
centerline extraction
computed tomography
Computed Tomography Angiography - methods
Data mining
deep reinforcement learning
Feature extraction
Humans
Lumen
Shape
Topology
Tracking
Training
Vectors
Title Dynamic Local Conformal Reinforcement Network (DLCR) for Aortic Dissection Centerline Tracking
URI https://ieeexplore.ieee.org/document/10909479
https://www.ncbi.nlm.nih.gov/pubmed/40036513
https://www.proquest.com/docview/3174096218
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-CHtAuwBiDjjEZicM2KSVx7CQ-Al1VEPSAQOK0KLGfL6AWQXvhr997dlqxSUg7RLKU2HH8s_O-3wM4zoxtXWZt0mKlElX6lv6DqBOFvkx97ksfgsSuJ8X4Tl3e6_suWD3EwiBicD7DATeDLd_N7IJVZSfsRGhUadZhvayKGKy1UqiEChKhHpekRkInUXVWTOp2cnk2viBpUOpBrhWxPFyPR3EyFp3lf5GkUGPlfXYzkJ3RFkyWE47eJg-Dxbwd2Nd_cjn-9xdtw2bHgIrTuGM-whpOd2DjujOxf4Lfw1ijXlwxlRMcEchs7aO4wZBk1QZ9ophE93HxfXh1fvND0A1xOuMxxZAt_CFaQrDqOKTTQkE00bJWfhfuRr9uz8dJV4QhsSSwzpMSjUuVl5lzuvFZUVhHJxVl2WROEqyFaTFTnjN1aaslQWxsmeoGc9Omvs3zz9Cbzqa4D0I6abzWvuLso9L6hi7v0FeuKQpfyT78XOJQP8VcG3WQUVJTM34141d3-PVhl5fzzYNxJftwtISuppPC5o9mirPFS02cEgmzBfE0fdiLmK56L7fCl3dGPYAP_PLop_sVevPnBR4SNzJvv4Vd-AcyuNka
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_amMS4wGB8FNgw0g7bpJTEsZP6CHSoQNsDAonTosR-vmxqEbQX_nres1M0kJB2iGQpsWX7Z-d9vwfwLTO2cZm1SYM9lajSN_QfRJ0o9GXqc1_6ECQ2GheDG3Vxq2_bYPUQC4OIwfkMu9wMtnw3tXNWlR2xE6FRpXkPH7RSSsdwrWeVSqghESpySWokdBdVa8ekjkcXJ4Nzkgel7uZaEdPDFXkUp2PRWf6CKIUqK28znIHwnK3BeDHl6G_ypzufNV37-Cqb43-v6ROstiyoOI5nZh3e4WQDlketkf0z_O7HKvViyHROcEwgM7Z_xRWGNKs2aBTFODqQi-_94enVD0EvxPGUxxR9tvGHeAnByuOQUAsFUUXLevlNuDn7dX06SNoyDIklkXWWlGhcqrzMnNO1z4rCOrqrKMs6c5KALUyDmfKcq0tbLQlkY8tU15ibJvVNnm_B0mQ6wR0Q0knjtfY9zj8qra_p8Q59z9VF4XuyAz8XOFR3MdtGFaSU1FSMX8X4VS1-Hdjk7fznw7iTHThcQFfRXWEDSD3B6fyhIl6JxNmCuJoObEdMn3svjsLuG6MewMfB9WhYDc_Hl3uwwhOJXrv7sDS7n-MX4k1mzddwIp8AvY7cZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Local+Conformal+Reinforcement+Network+%28DLCR%29+for+Aortic+Dissection+Centerline+Tracking&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhao%2C+Jingliang&rft.au=Zeng%2C+An&rft.au=Ye%2C+Jiayu&rft.au=Pan%2C+Dan&rft.date=2025-07-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=29&rft.issue=7&rft.spage=5146&rft.epage=5157&rft_id=info:doi/10.1109%2FJBHI.2025.3547744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2025_3547744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon