Dynamic Local Conformal Reinforcement Network (DLCR) for Aortic Dissection Centerline Tracking
Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 29; no. 7; pp. 5146 - 5157 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2025.3547744 |
Cover
| Abstract | Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the acute nature of AD requires a quick algorithm, however, AD scans usually contain thousands of slices, centerline extraction is very time-consuming. In this paper, a fast AD centerline extraction algorithm, which is based on a local conformal deep reinforced agent and dynamic tracking framework, is presented. The potential dependence of adjacent center points is utilized to form the novel 2.5D state and locally constrains the shape of the centerline, which improves overlap ratio and accuracy of the tracked path. Moreover, we dynamically modify the width and direction of the detection window to focus on vessel-relevant regions and improve the ability in tracking small vessels. On a public AD dataset that involves 100 CTA scans, the proposed method obtains average overlap of 97.23% and mean distance error of 1.28 voxels, which outperforms four state-of-the-art AD centerline extraction methods. The proposed algorithm is very fast with average processing time of 9.54s, indicating that this method is very suitable for clinical practice. |
|---|---|
| AbstractList | Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the acute nature of AD requires a quick algorithm, however, AD scans usually contain thousands of slices, centerline extraction is very time-consuming. In this paper, a fast AD centerline extraction algorithm, which is based on a local conformal deep reinforced agent and dynamic tracking framework, is presented. The potential dependence of adjacent center points is utilized to form the novel 2.5D state and locally constrains the shape of the centerline, which improves overlap ratio and accuracy of the tracked path. Moreover, we dynamically modify the width and direction of the detection window to focus on vessel-relevant regions and improve the ability in tracking small vessels. On a public AD dataset that involves 100 CTA scans, the proposed method obtains average overlap of 97.23% and mean distance error of 1.28 voxels, which outperforms four state-of-the-art AD centerline extraction methods. The proposed algorithm is very fast with average processing time of 9.54s, indicating that this method is very suitable for clinical practice. Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the acute nature of AD requires a quick algorithm, however, AD scans usually contain thousands of slices, centerline extraction is very time-consuming. In this paper, a fast AD centerline extraction algorithm, which is based on a local conformal deep reinforced agent and dynamic tracking framework, is presented. The potential dependence of adjacent center points is utilized to form the novel 2.5D state and locally constrains the shape of the centerline, which improves overlap ratio and accuracy of the tracked path. Moreover, we dynamically modify the width and direction of the detection window to focus on vessel-relevant regions and improve the ability in tracking small vessels. On a public AD dataset that involves 100 CTA scans, the proposed method obtains average overlap of 97.23% and mean distance error of 1.28 voxels, which outperforms four state-of-the-art AD centerline extraction methods. The proposed algorithm is very fast with average processing time of 9.54s, indicating that this method is very suitable for clinical practice.Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is challenging because (i) the lumen of AD is very narrow and irregular, yielding failure in feature extraction and interrupted topology; and (ii) the acute nature of AD requires a quick algorithm, however, AD scans usually contain thousands of slices, centerline extraction is very time-consuming. In this paper, a fast AD centerline extraction algorithm, which is based on a local conformal deep reinforced agent and dynamic tracking framework, is presented. The potential dependence of adjacent center points is utilized to form the novel 2.5D state and locally constrains the shape of the centerline, which improves overlap ratio and accuracy of the tracked path. Moreover, we dynamically modify the width and direction of the detection window to focus on vessel-relevant regions and improve the ability in tracking small vessels. On a public AD dataset that involves 100 CTA scans, the proposed method obtains average overlap of 97.23% and mean distance error of 1.28 voxels, which outperforms four state-of-the-art AD centerline extraction methods. The proposed algorithm is very fast with average processing time of 9.54s, indicating that this method is very suitable for clinical practice. |
| Author | Zhao, Jingliang Zeng, An Pan, Dan Ye, Jiayu |
| Author_xml | – sequence: 1 givenname: Jingliang orcidid: 0000-0002-1464-9105 surname: Zhao fullname: Zhao, Jingliang email: zhao04016@163.com organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: An orcidid: 0000-0002-8730-1011 surname: Zeng fullname: Zeng, An email: zengan@gdut.edu.cn organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Jiayu orcidid: 0000-0003-0368-9651 surname: Ye fullname: Ye, Jiayu email: yejiayu97@outlook.com organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Dan orcidid: 0000-0002-2370-8541 surname: Pan fullname: Pan, Dan email: pandan@gpnu.edu.cn organization: School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40036513$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAQRS0E4v0BSAhlWRYtY8eJ4yWkPFWBVMGWyHEmyJDYYKdC_XtctSBmM1f2ubM4B2TbOouEnFCYUAry4uHq7n7CgGWTNONCcL5F9hnNizFjUGz_Zir5HjkO4R3iFPFJ5rtkjwOkeUbTffI6XVrVG53MnFZdUjrbOt_HNEezihp7tEPyiMO38x_JaDor5-dJ_EgunR9ib2pCQD0YZ5Mykug7YzF59kp_GPt2RHZa1QU83uxD8nJz_VzejWdPt_fl5WysmeDDWKBsgLeMNk2mWprnuqkBkAlFG1YA5rJGylugOc90xrAVUgvIFKayhrZO00MyWt_99O5rgWGoehM0dp2y6BahSqngIHNGi4iebdBF3WNTfXrTK7-sfp1EgK4B7V0IHts_hEK1Ul-t1Fcr9dVGfeycrjsGEf_xEiQXMv0BW6p-Hw |
| CODEN | IJBHA9 |
| Cites_doi | 10.1007/978-3-031-16443-9_3 10.1007/s11548-013-0924-5 10.4250/jcvi.2020.0106 10.1142/S0219467819500116 10.1016/j.media.2018.10.005 10.3348/kjr.2020.0313 10.1007/978-88-470-1857-0 10.1109/JBHI.2021.3068420 10.1161/cir.0000000000001106 10.1007/978-3-030-00937-3_86 10.1016/j.actbio.2019.08.017 10.1007/s10439-024-03611-z 10.1002/ccd.29367 10.1016/j.media.2009.07.011 10.1016/j.media.2009.06.003 10.1016/j.media.2020.101773 10.1016/j.compmedimag.2020.101840 10.1038/s41597-024-03284-2 10.3389/fphys.2021.732711 10.1016/j.cviu.2015.11.009 10.1109/TMI.2022.3150005 10.1016/j.media.2017.07.008 10.1109/ITME.2016.0069 10.1016/j.media.2021.102193 10.1007/978-3-030-87240-3_40 10.1016/j.jtcvs.2019.02.097 10.3390/s21186087 10.1016/j.media.2022.102724 10.1016/S0140-6736(22)01970-5 10.1109/TIP.2015.2496279 10.1016/j.media.2013.09.004 10.1109/42.848184 10.1109/JBHI.2022.3229743 10.1016/j.athoracsur.2022.10.021 10.1016/j.jvs.2020.05.076 10.1117/1.JMI.6.1.014001 10.1109/TMRB.2021.3122337 10.1016/j.media.2020.101931 10.1016/j.compbiomed.2023.106886 10.1088/1361-6560/ab0eee 10.1007/s10851-023-01170-x 10.18653/v1/P18-2116 10.1038/nature14236 10.1016/j.jvs.2019.11.013 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/JBHI.2025.3547744 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 5157 |
| ExternalDocumentID | 40036513 10_1109_JBHI_2025_3547744 10909479 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Science and Technology Planning Project of Guangdong grantid: 2021A1515012300; 2019A050510041 – fundername: Science and Technology Planning Project of Guangzhou grantid: 202206010007; SL2023A04J00421 – fundername: National Natural Science Foundation of China grantid: 61976058 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c274t-7e9d04f21dd5af166cdb00e27a1d280e69be14f01645c52ef79c705ae39b0fb33 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Sep 28 08:43:55 EDT 2025 Sat Jul 05 01:32:01 EDT 2025 Wed Oct 01 05:53:00 EDT 2025 Wed Aug 27 02:13:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c274t-7e9d04f21dd5af166cdb00e27a1d280e69be14f01645c52ef79c705ae39b0fb33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8730-1011 0000-0002-2370-8541 0000-0002-1464-9105 0000-0003-0368-9651 |
| PMID | 40036513 |
| PQID | 3174096218 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_40036513 proquest_miscellaneous_3174096218 crossref_primary_10_1109_JBHI_2025_3547744 ieee_primary_10909479 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 Lillicrap (ref37) 2015 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref45 doi: 10.1007/978-3-031-16443-9_3 – ident: ref13 doi: 10.1007/s11548-013-0924-5 – ident: ref7 doi: 10.4250/jcvi.2020.0106 – ident: ref11 doi: 10.1142/S0219467819500116 – ident: ref26 doi: 10.1016/j.media.2018.10.005 – ident: ref21 doi: 10.3348/kjr.2020.0313 – ident: ref10 doi: 10.1007/978-88-470-1857-0 – ident: ref31 doi: 10.1109/JBHI.2021.3068420 – ident: ref4 doi: 10.1161/cir.0000000000001106 – ident: ref33 doi: 10.1007/978-3-030-00937-3_86 – ident: ref3 doi: 10.1016/j.actbio.2019.08.017 – ident: ref23 doi: 10.1007/s10439-024-03611-z – ident: ref8 doi: 10.1002/ccd.29367 – ident: ref15 doi: 10.1016/j.media.2009.07.011 – ident: ref44 doi: 10.1016/j.media.2009.06.003 – ident: ref14 doi: 10.1016/j.media.2020.101773 – ident: ref16 doi: 10.1016/j.compmedimag.2020.101840 – ident: ref42 doi: 10.1038/s41597-024-03284-2 – ident: ref41 doi: 10.3389/fphys.2021.732711 – ident: ref29 doi: 10.1016/j.cviu.2015.11.009 – ident: ref39 doi: 10.1109/TMI.2022.3150005 – ident: ref22 doi: 10.1016/j.media.2017.07.008 – ident: ref17 doi: 10.1109/ITME.2016.0069 – ident: ref32 doi: 10.1016/j.media.2021.102193 – ident: ref34 doi: 10.1007/978-3-030-87240-3_40 – ident: ref6 doi: 10.1016/j.jtcvs.2019.02.097 – ident: ref28 doi: 10.3390/s21186087 – ident: ref35 doi: 10.1016/j.media.2022.102724 – ident: ref1 doi: 10.1016/S0140-6736(22)01970-5 – ident: ref24 doi: 10.1109/TIP.2015.2496279 – ident: ref18 doi: 10.1016/j.media.2013.09.004 – ident: ref36 doi: 10.1109/42.848184 – ident: ref30 doi: 10.1109/JBHI.2022.3229743 – ident: ref9 doi: 10.1016/j.athoracsur.2022.10.021 – ident: ref5 doi: 10.1016/j.jvs.2020.05.076 – ident: ref43 doi: 10.1117/1.JMI.6.1.014001 – ident: ref19 doi: 10.1109/TMRB.2021.3122337 – ident: ref20 doi: 10.1016/j.media.2020.101931 – ident: ref27 doi: 10.1016/j.compbiomed.2023.106886 – ident: ref12 doi: 10.1088/1361-6560/ab0eee – ident: ref25 doi: 10.1007/s10851-023-01170-x – ident: ref38 doi: 10.18653/v1/P18-2116 – ident: ref40 doi: 10.1038/nature14236 – ident: ref2 doi: 10.1016/j.jvs.2019.11.013 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations 2016 year: 2015 ident: ref37 article-title: Continuous control with deep reinforcement learning |
| SSID | ssj0000816896 |
| Score | 2.4420419 |
| Snippet | Pre-extracted aortic dissection (AD) centerline is very useful for quantitative diagnosis and treatment of AD disease. However, centerline extraction is... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5146 |
| SubjectTerms | Accuracy Algorithms Aorta - diagnostic imaging Aortic dissection Aortic Dissection - diagnostic imaging Bioinformatics centerline extraction computed tomography Computed Tomography Angiography - methods Data mining deep reinforcement learning Feature extraction Humans Lumen Shape Topology Tracking Training Vectors |
| Title | Dynamic Local Conformal Reinforcement Network (DLCR) for Aortic Dissection Centerline Tracking |
| URI | https://ieeexplore.ieee.org/document/10909479 https://www.ncbi.nlm.nih.gov/pubmed/40036513 https://www.proquest.com/docview/3174096218 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-CHtAuwBiDjjEZicM2KSVx7CQ-Al1VEPSAQOK0KLGfL6AWQXvhr997dlqxSUg7RLKU2HH8s_O-3wM4zoxtXWZt0mKlElX6lv6DqBOFvkx97ksfgsSuJ8X4Tl3e6_suWD3EwiBicD7DATeDLd_N7IJVZSfsRGhUadZhvayKGKy1UqiEChKhHpekRkInUXVWTOp2cnk2viBpUOpBrhWxPFyPR3EyFp3lf5GkUGPlfXYzkJ3RFkyWE47eJg-Dxbwd2Nd_cjn-9xdtw2bHgIrTuGM-whpOd2DjujOxf4Lfw1ijXlwxlRMcEchs7aO4wZBk1QZ9ophE93HxfXh1fvND0A1xOuMxxZAt_CFaQrDqOKTTQkE00bJWfhfuRr9uz8dJV4QhsSSwzpMSjUuVl5lzuvFZUVhHJxVl2WROEqyFaTFTnjN1aaslQWxsmeoGc9Omvs3zz9Cbzqa4D0I6abzWvuLso9L6hi7v0FeuKQpfyT78XOJQP8VcG3WQUVJTM34141d3-PVhl5fzzYNxJftwtISuppPC5o9mirPFS02cEgmzBfE0fdiLmK56L7fCl3dGPYAP_PLop_sVevPnBR4SNzJvv4Vd-AcyuNka |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_amMS4wGB8FNgw0g7bpJTEsZP6CHSoQNsDAonTosR-vmxqEbQX_nres1M0kJB2iGQpsWX7Z-d9vwfwLTO2cZm1SYM9lajSN_QfRJ0o9GXqc1_6ECQ2GheDG3Vxq2_bYPUQC4OIwfkMu9wMtnw3tXNWlR2xE6FRpXkPH7RSSsdwrWeVSqghESpySWokdBdVa8ekjkcXJ4Nzkgel7uZaEdPDFXkUp2PRWf6CKIUqK28znIHwnK3BeDHl6G_ypzufNV37-Cqb43-v6ROstiyoOI5nZh3e4WQDlketkf0z_O7HKvViyHROcEwgM7Z_xRWGNKs2aBTFODqQi-_94enVD0EvxPGUxxR9tvGHeAnByuOQUAsFUUXLevlNuDn7dX06SNoyDIklkXWWlGhcqrzMnNO1z4rCOrqrKMs6c5KALUyDmfKcq0tbLQlkY8tU15ibJvVNnm_B0mQ6wR0Q0knjtfY9zj8qra_p8Q59z9VF4XuyAz8XOFR3MdtGFaSU1FSMX8X4VS1-Hdjk7fznw7iTHThcQFfRXWEDSD3B6fyhIl6JxNmCuJoObEdMn3svjsLuG6MewMfB9WhYDc_Hl3uwwhOJXrv7sDS7n-MX4k1mzddwIp8AvY7cZw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Local+Conformal+Reinforcement+Network+%28DLCR%29+for+Aortic+Dissection+Centerline+Tracking&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhao%2C+Jingliang&rft.au=Zeng%2C+An&rft.au=Ye%2C+Jiayu&rft.au=Pan%2C+Dan&rft.date=2025-07-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=29&rft.issue=7&rft.spage=5146&rft.epage=5157&rft_id=info:doi/10.1109%2FJBHI.2025.3547744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2025_3547744 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |