Adaptive Ant Colony Optimization Algorithm Based on Real-Time Logistics Features for Instant Delivery

Ant colony optimization (ACO) algorithm is widely used in the instant delivery order scheduling because of its distributed computing capability. However, the order delivery efficiency decreases when different logistics statuses are faced. In order to improve the performance of ACO, an adaptive ACO a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 11; pp. 6358 - 6370
Main Authors Hou, Ying, Guo, Xinyu, Han, Honggui, Wang, Jingjing, Du, Yongping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2024
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2024.3454346

Cover

More Information
Summary:Ant colony optimization (ACO) algorithm is widely used in the instant delivery order scheduling because of its distributed computing capability. However, the order delivery efficiency decreases when different logistics statuses are faced. In order to improve the performance of ACO, an adaptive ACO algorithm based on real-time logistics features (AACO-RTLFs) is proposed. First, features are extracted from the event dimension, spatial dimension, and time dimension of the instant delivery to describe the real-time logistics status. Five key factors are further selected from the above three features to assist in problem modeling and ACO designing. Second, an adaptive instant delivery model is built considering the customer's acceptable delivery time. The acceptable time is calculated by emergency order mark and weather conditions in the event dimension feature. Third, an adaptive ACO algorithm is proposed to obtain the instant delivery order schedules. The parameters of the probability equation in ACO are adjusted according to the extracted key factors. Finally, the Gurobi solver in Python is used to perform numerical experiments on the classical datasets to verify the effectiveness of the instant delivery model. The proposed AACO-RTLF algorithm shows its advantages in instant delivery order scheduling when compared to the other state-of-the-art algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2024.3454346