Comparison of direct energy deposition and powder bed fusion technology in the preparation of Ti–6Al–4V alloy
The Ti–6Al–4V alloy is the most widely used titanium-based alloy in aerospace and biomedical applications. Due to the complex shapes required for components in these application areas, additive manufacturing has become a promising option with its advantageous speed and precision. This study examined...
Saved in:
Published in | Journal of materials research and technology Vol. 35; pp. 3825 - 3840 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2238-7854 |
DOI | 10.1016/j.jmrt.2025.01.231 |
Cover
Abstract | The Ti–6Al–4V alloy is the most widely used titanium-based alloy in aerospace and biomedical applications. Due to the complex shapes required for components in these application areas, additive manufacturing has become a promising option with its advantageous speed and precision. This study examined the impact of direct energy deposition (DED) and powder bed fusion (PBF) technologies on the resulting properties of the Ti–6Al–4V alloy. DED-produced samples showed almost fully dense structure, while PBF-produced ones were characterized by 0.3 % residual porosity. In all states, the α or α′ phase predominated in the material microstructure. The Ti–6Al–4V alloy produced by different additive manufacturing methods showed comparable hardness values in both, as-printed (380 HV) and as-printed + heat-treated (370 HV) states. However, the samples printed by the PBF method exhibited higher tensile strength and yield strength than those printed by the DED method. These values before and after stress-relief heat treatment differed by approximately 100 MPa. Conversely, the DED-printed material is more stable at elevated temperatures (up to 800 °C) compared to the one printed by PBF. |
---|---|
AbstractList | The Ti–6Al–4V alloy is the most widely used titanium-based alloy in aerospace and biomedical applications. Due to the complex shapes required for components in these application areas, additive manufacturing has become a promising option with its advantageous speed and precision. This study examined the impact of direct energy deposition (DED) and powder bed fusion (PBF) technologies on the resulting properties of the Ti–6Al–4V alloy. DED-produced samples showed almost fully dense structure, while PBF-produced ones were characterized by 0.3 % residual porosity. In all states, the α or α′ phase predominated in the material microstructure. The Ti–6Al–4V alloy produced by different additive manufacturing methods showed comparable hardness values in both, as-printed (380 HV) and as-printed + heat-treated (370 HV) states. However, the samples printed by the PBF method exhibited higher tensile strength and yield strength than those printed by the DED method. These values before and after stress-relief heat treatment differed by approximately 100 MPa. Conversely, the DED-printed material is more stable at elevated temperatures (up to 800 °C) compared to the one printed by PBF. |
Author | Čapek, Jaroslav Vojtěch, Dalibor Medová, Daniela Voňavková, Ilona Molnárová, Orsolya Strakosova, Angelina Knaislová, Anna |
Author_xml | – sequence: 1 givenname: Daniela surname: Medová fullname: Medová, Daniela organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic – sequence: 2 givenname: Anna orcidid: 0000-0002-3508-9725 surname: Knaislová fullname: Knaislová, Anna organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic – sequence: 3 givenname: Angelina orcidid: 0000-0002-1276-7263 surname: Strakosova fullname: Strakosova, Angelina email: strakosn@vscht.cz, strakosova@fzu.cz organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic – sequence: 4 givenname: Orsolya orcidid: 0000-0003-1829-1574 surname: Molnárová fullname: Molnárová, Orsolya organization: Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 00, Prague 8, Czech Republic – sequence: 5 givenname: Jaroslav orcidid: 0000-0003-3481-7812 surname: Čapek fullname: Čapek, Jaroslav organization: Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 00, Prague 8, Czech Republic – sequence: 6 givenname: Ilona orcidid: 0000-0001-6196-7811 surname: Voňavková fullname: Voňavková, Ilona organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic – sequence: 7 givenname: Dalibor surname: Vojtěch fullname: Vojtěch, Dalibor organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic |
BookMark | eNp9kE1OwzAQRr0oEqX0Aqx8gQTbiRNbYlNV_EmV2BS2lutMqKM0DnYAdccduCEnwWlZsehmrJnx-2S_CzTpXAcIXVGSUkKL6yZtdn5IGWE8JTRlGZ2gKWOZSErB83M0D6EhhFAuCyLoFL0t3a7X3gbXYVfjynowA4YO_OseV9C7YAcbd7qrcO8-K_B4AxWu38M4HcBsO9e6eNfGbgu49xDj9IGJeWv78_VdLNpY8xes29btL9FZrdsA879zhp7vbtfLh2T1dP-4XKwSw8p8SFhtONWECyEzlkstCs1lVtZcMiKNoLXkuuQZg6ISeSb5BkBTBmWpcyJBV9kMiWOu8S4ED7Uydjg8bPDatooSNRpTjRqNqdGYIlRFYxFl_9De2532-9PQzRGC-KkPC14FY6EzcHSqKmdP4b80P4w4 |
CitedBy_id | crossref_primary_10_1016_j_msea_2025_148127 |
Cites_doi | 10.1016/j.actamat.2022.118104 10.1016/j.matdes.2003.09.009 10.1016/j.matdes.2016.06.117 10.1016/j.msea.2021.141494 10.1016/j.rinp.2024.107781 10.1051/epjconf/201922101037 10.1016/j.msea.2023.145229 10.1007/s40544-019-0338-7 10.1016/j.jmatprotec.2018.08.041 10.1016/j.surfcoat.2023.129849 10.1007/s40964-021-00253-8 10.1016/S0925-8388(01)01571-7 10.3390/app7070657 10.1179/174328405X21003 10.1016/j.mfglet.2024.09.107 10.3390/mi13020331 10.1016/j.jallcom.2012.07.022 10.21062/ujep/353.2019/a/1213-2489/MT/19/4/668 10.1016/j.msea.2020.139695 10.3390/coatings9090530 10.3390/ma17051166 10.1007/s12008-023-01661-6 10.1007/s10853-023-08688-w 10.1016/j.jallcom.2019.04.255 10.1016/j.phpro.2012.10.056 10.1016/j.mattod.2021.03.020 10.1016/j.matdes.2018.107552 10.1016/j.jmrt.2022.08.158 10.1016/j.jmrt.2024.06.077 10.3390/met14020251 10.1016/B978-0-323-95062-6.00005-X 10.1007/s41230-018-8064-8 10.1016/j.actamat.2014.12.054 10.1016/j.vacuum.2019.02.028 10.1016/j.jmrt.2022.04.055 10.1016/j.msea.2022.143076 10.3390/ma16124287 10.1016/j.jmst.2023.11.003 10.1016/j.matpr.2020.02.364 10.1016/j.jmatprotec.2008.06.020 10.3390/met11020255 10.1111/jopr.13477 10.1016/j.jallcom.2016.02.183 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jmrt.2025.01.231 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 3840 |
ExternalDocumentID | 10_1016_j_jmrt_2025_01_231 S2238785425002315 |
GroupedDBID | 0R~ 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ABXRA ACGFS ADBBV ADCUG ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB FNPLU GROUPED_DOAJ GX1 HH5 HZ~ IPNFZ IXB KQ8 M41 O9- OK1 RIG ROL SSZ AAYWO AAYXX CITATION |
ID | FETCH-LOGICAL-c274t-2fc51a058893249a86a5937f59209c81f95a7532e6d84395beea12e77a409ead3 |
IEDL.DBID | IXB |
ISSN | 2238-7854 |
IngestDate | Thu Apr 24 23:08:40 EDT 2025 Sun Jul 06 05:06:57 EDT 2025 Sat Apr 12 15:20:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical properties Ti–6Al–4V alloy Powder bed fusion Microstructure Thermal stability Direct energy deposition |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c274t-2fc51a058893249a86a5937f59209c81f95a7532e6d84395beea12e77a409ead3 |
ORCID | 0000-0001-6196-7811 0000-0003-3481-7812 0000-0003-1829-1574 0000-0002-1276-7263 0000-0002-3508-9725 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2238785425002315 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jmrt_2025_01_231 crossref_primary_10_1016_j_jmrt_2025_01_231 elsevier_sciencedirect_doi_10_1016_j_jmrt_2025_01_231 |
PublicationCentury | 2000 |
PublicationDate | March-April 2025 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March-April 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials research and technology |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Arrazola, Garay, Iriarte, Armendia, Marya, Le Maître (bib1) 2009; 209 Malej, Godec, Donik, Balazic, Zettler, Lienert, Pambaguian (bib37) 2023; 878 Tao, Li, Huang, Hu, Gong, Xu (bib27) 2018; 15 Philip, Mathew, Kuriachen (bib4) 2019; 7 Sahoo, Joshi, Balla, Das, Roy (bib49) 2021; 820 Çömez, Yurddaskal, Durmuş (bib58) 2023; 58 Gil, Ginebra, Manero, Planell (bib6) 2001; 329 Ma, Wang, Qin, Liu, Chen, Wang, Zhang (bib7) 2024; 183 Thompson, Bian, Shamsaei, Yadollahi (bib18) 2015; 8 Carroll, Palmer, Beese (bib54) 2015; 87 Wu, Chen, Lin, Chiang, Tsai (bib32) 2020; 790 Liu, Shin (bib8) 2019; 164 Fiołek, Zimowski, Kopia, Moskalewicz (bib46) 2019; 9 Srivastava, Kumar, Kumar, Gautam, Dogra (bib10) 2023 Wu, Liang, Mei, Mitchell, Goodwin, Voice (bib24) 2004; 25 Prajapati, Kumar, Lin, Jeng (bib13) 2022; 54 Yang, Yu, Yin, Gao, Wang, Zeng (bib34) 2016; 108 Roudnická (bib51) 2020 C. Cai, K. Zhou, Chapter 7 - metal additive manufacturing, in: C.D. Patel, C.-H. Chen (Eds.), Digital manufacturing, Elsevier2022, pp. 247-298. Tong, Bowen, Persson, Plummer (bib2) 2017; 33 Kassym, Perveen (bib44) 2020; 26 Chen, Liu, Zhao, Cao, Hu, Xu, Shuai, Yin, Wang, Liao, Ren (bib42) 2022; 841 Wang, Lv, Shen, Liang, Xie, Tian (bib21) 2018; 32 Zhang, Ge, Li, Ren, Wu (bib48) 2022; 7 Roudnicka, Misurak, Vojtech (bib56) 2019; 19 Wang, Chao, Chen, Chen, Primig, Xu, Ringer, Liao (bib31) 2022; 235 Qian, Mei, Liang, Wu (bib36) 2005; 21 Azarniya, Colera, Mirzaali, Sovizi, Bartolomeu, St Weglowski, Wits, Yap, Ahn, Miranda, Silva, Madaah Hosseini, Ramakrishna, Zadpoor (bib3) 2019; 804 Wu, Liu, Bai, Wu, Gao, Liu, Wang, Wang (bib12) 2024; 31 Etesami, Fotovvati, Asadi (bib35) 2021; 895 Lu, Liu, Wu, Liu, Wang (bib9) 2023; 470 Roudnicka, Kacenka, Dvorsky, Drahokoupil, Vojtech (bib38) 2024 Alammar, Kois, Revilla-León, Att (bib14) 2022; 31 Antolak-Dudka, Czujko, Durejko, Stępniowski, Ziętala, Łukasiewicz (bib5) 2024; 17 Wang, Zhu, Liu, Zhang (bib16) 2023; 2 Cao, Zhang, Ryder, Lados (bib50) 2018; 70 Kistler, Corbin, Nassar, Reutzel, Beese (bib23) 2019; 264 Yu, Rombouts, Maes, Motmans (bib53) 2012; 39 Nguyen, Pramanik, Basak, Dong, Prakash, Debnath, Shankar, Jawahir, Dixit, Buddhi (bib20) 2022; 18 Bai, Chen, Du, Zhao, Wang, Li (bib25) 2024; 61 Wang, Wang, Chen, Liu, Lu, Liu, Han (bib30) 2022; 13 Panin, Kazachenok, Kolmakov, Chizhik, Heifetz, Chugui (bib26) 2019; 221 Zhang, Yang, Mao, Takesue, Soshi (bib19) 2024; 41 Ye, Xiao, Cao, Wu, Zhao, Li (bib57) 2019; 163 Yao, Ramesh, Xiao, Chen, Zhuang (bib11) 2023; 16 Oh, Lee, Kim, Kim (bib22) 2022; 20 Wysocki, Maj, Sitek, Buhagiar, Kurzydłowski, Święszkowski (bib45) 2017; 7 Wu, Lu, Gan, Huang, Zhao, Lin, Guo, Lin (bib33) 2016; 672 Vrancken, Thijs, Kruth, Van Humbeeck (bib29) 2012; 541 Vojtěch (bib52) 2006 Karimi, Sadeghi, Ålgårdh, Keshavarzkermani, Esmaeilizadeh, Toyserkani, Andersson (bib40) 2021; 46 Lekoadi, Tlotleng, Annan, Maledi, Masina (bib43) 2021; 11 Svetlizky, Das, Zheng, Vyatskikh, Bose, Bandyopadhyay, Schoenung, Lavernia, Eliaz (bib17) 2021; 49 Srivastava (10.1016/j.jmrt.2025.01.231_bib10) 2023 10.1016/j.jmrt.2025.01.231_bib15 Liu (10.1016/j.jmrt.2025.01.231_bib8) 2019; 164 Kassym (10.1016/j.jmrt.2025.01.231_bib44) 2020; 26 Cao (10.1016/j.jmrt.2025.01.231_bib50) 2018; 70 Tao (10.1016/j.jmrt.2025.01.231_bib27) 2018; 15 Karimi (10.1016/j.jmrt.2025.01.231_bib40) 2021; 46 Fiołek (10.1016/j.jmrt.2025.01.231_bib46) 2019; 9 Wysocki (10.1016/j.jmrt.2025.01.231_bib45) 2017; 7 Wang (10.1016/j.jmrt.2025.01.231_bib16) 2023; 2 Çömez (10.1016/j.jmrt.2025.01.231_bib58) 2023; 58 Yu (10.1016/j.jmrt.2025.01.231_bib53) 2012; 39 Roudnicka (10.1016/j.jmrt.2025.01.231_bib56) 2019; 19 Lekoadi (10.1016/j.jmrt.2025.01.231_bib43) 2021; 11 Qian (10.1016/j.jmrt.2025.01.231_bib36) 2005; 21 Ye (10.1016/j.jmrt.2025.01.231_bib57) 2019; 163 Lu (10.1016/j.jmrt.2025.01.231_bib9) 2023; 470 Kistler (10.1016/j.jmrt.2025.01.231_bib23) 2019; 264 Thompson (10.1016/j.jmrt.2025.01.231_bib18) 2015; 8 Wu (10.1016/j.jmrt.2025.01.231_bib12) 2024; 31 Wang (10.1016/j.jmrt.2025.01.231_bib21) 2018; 32 Alammar (10.1016/j.jmrt.2025.01.231_bib14) 2022; 31 Ma (10.1016/j.jmrt.2025.01.231_bib7) 2024; 183 Zhang (10.1016/j.jmrt.2025.01.231_bib48) 2022; 7 Sahoo (10.1016/j.jmrt.2025.01.231_bib49) 2021; 820 Carroll (10.1016/j.jmrt.2025.01.231_bib54) 2015; 87 Wu (10.1016/j.jmrt.2025.01.231_bib24) 2004; 25 Vrancken (10.1016/j.jmrt.2025.01.231_bib29) 2012; 541 Chen (10.1016/j.jmrt.2025.01.231_bib42) 2022; 841 Azarniya (10.1016/j.jmrt.2025.01.231_bib3) 2019; 804 Svetlizky (10.1016/j.jmrt.2025.01.231_bib17) 2021; 49 Philip (10.1016/j.jmrt.2025.01.231_bib4) 2019; 7 Oh (10.1016/j.jmrt.2025.01.231_bib22) 2022; 20 Bai (10.1016/j.jmrt.2025.01.231_bib25) 2024; 61 Wu (10.1016/j.jmrt.2025.01.231_bib33) 2016; 672 Zhang (10.1016/j.jmrt.2025.01.231_bib19) 2024; 41 Nguyen (10.1016/j.jmrt.2025.01.231_bib20) 2022; 18 Yang (10.1016/j.jmrt.2025.01.231_bib34) 2016; 108 Malej (10.1016/j.jmrt.2025.01.231_bib37) 2023; 878 Roudnická (10.1016/j.jmrt.2025.01.231_bib51) 2020 Wu (10.1016/j.jmrt.2025.01.231_bib32) 2020; 790 Etesami (10.1016/j.jmrt.2025.01.231_bib35) 2021; 895 Tong (10.1016/j.jmrt.2025.01.231_bib2) 2017; 33 Arrazola (10.1016/j.jmrt.2025.01.231_bib1) 2009; 209 Wang (10.1016/j.jmrt.2025.01.231_bib30) 2022; 13 Vojtěch (10.1016/j.jmrt.2025.01.231_bib52) 2006 Antolak-Dudka (10.1016/j.jmrt.2025.01.231_bib5) 2024; 17 Panin (10.1016/j.jmrt.2025.01.231_bib26) 2019; 221 Wang (10.1016/j.jmrt.2025.01.231_bib31) 2022; 235 Yao (10.1016/j.jmrt.2025.01.231_bib11) 2023; 16 Prajapati (10.1016/j.jmrt.2025.01.231_bib13) 2022; 54 Roudnicka (10.1016/j.jmrt.2025.01.231_bib38) 2024 Gil (10.1016/j.jmrt.2025.01.231_bib6) 2001; 329 |
References_xml | – volume: 470 year: 2023 ident: bib9 article-title: Corrosion and passivation behavior of Ti-6Al-4V surfaces treated with high-energy pulsed laser: a comparative study of cast and 3D-printed specimens in a NaCl solution publication-title: Surf Coating Technol – volume: 46 year: 2021 ident: bib40 article-title: Columnar-to-equiaxed grain transition in powder bed fusion via mimicking casting solidification and promoting in situ recrystallization publication-title: Addit Manuf – volume: 895 year: 2021 ident: bib35 article-title: Heat treatment of Ti-6Al-4V alloy manufactured by laser-based powder-bed fusion: process, microstructures, and mechanical properties correlations publication-title: J Alloys Compd – volume: 18 start-page: 4641 year: 2022 end-page: 4661 ident: bib20 article-title: A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties publication-title: J Mater Res Technol – volume: 9 start-page: 530 year: 2019 ident: bib46 article-title: The influence of electrophoretic deposition parameters and heat treatment on the microstructure and tribological properties of nanocomposite Si3N4/PEEK 708 coatings on titanium alloy publication-title: Coatings – volume: 7 start-page: 497 year: 2019 end-page: 536 ident: bib4 article-title: Tribology of Ti6Al4V: a review publication-title: Friction – volume: 61 year: 2024 ident: bib25 article-title: Microstructural evolution and mechanical properties of TiC/Ti6Al4V composites manufactured by selective laser melting after solution and aging treatments publication-title: Results Phys – volume: 2 year: 2023 ident: bib16 article-title: Understanding melt pool characteristics in laser powder bed fusion: an overview of single- and multi-track melt pools for process optimization publication-title: Advan Pow Mater – volume: 32 year: 2018 ident: bib21 article-title: Influence of island scanning strategy on microstructures and mechanical properties of direct laser-deposited Ti–6Al–4V structures publication-title: Acta Metall Sin – volume: 31 start-page: 298 year: 2024 end-page: 310 ident: bib12 article-title: Microstructure and mechanical behavior of rhombic dodecahedron-structured porous β-Ti composites fabricated via laser powder bed fusion publication-title: J Mater Res Technol – year: 2024 ident: bib38 article-title: Hydrogen embrittlement of Ti-Al6-V4 alloy manufactured by laser powder bed fusion induced by electrochemical charging publication-title: Metals – volume: 209 start-page: 2223 year: 2009 end-page: 2230 ident: bib1 article-title: Machinability of titanium alloys (Ti6Al4V and Ti555.3) publication-title: J Mater Process Technol – volume: 13 start-page: 331 year: 2022 ident: bib30 article-title: Densification, tailored microstructure, and mechanical properties of selective laser melted Ti–6Al–4V alloy via annealing heat treatment publication-title: Micromachines – volume: 20 start-page: 4365 year: 2022 end-page: 4377 ident: bib22 article-title: Effect of defects on environment-assisted fracture (EAF) behavior of Ti–6Al–4V alloy fabricated by direct energy deposition (DED) publication-title: J Mater Res Technol – volume: 878 year: 2023 ident: bib37 article-title: Hybrid additive manufacturing of Ti6Al4V with powder-bed fusion and direct-energy deposition publication-title: Mater Sci Eng, A – year: 2020 ident: bib51 article-title: Structure and properties of metal materials produced by 3D printing methods – volume: 11 start-page: 255 year: 2021 ident: bib43 article-title: Evaluation of heat treatment parameters on microstructure and hardness properties of high-speed selective laser melted Ti6Al4V publication-title: Metals – volume: 58 start-page: 10201 year: 2023 end-page: 10216 ident: bib58 article-title: Effect of solutionizing and quenching treatment on Ti6Al4V alloy: a study on wear, cavitation erosion and corrosion resistance publication-title: J Mater Sci – volume: 804 start-page: 163 year: 2019 end-page: 191 ident: bib3 article-title: Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): process, microstructure, and mechanical properties publication-title: J Alloys Compd – volume: 221 year: 2019 ident: bib26 article-title: Microstructure and mechanical behaviour of additive manufactured Ti–6Al–4V parts under tension publication-title: EPJ Web Conf – volume: 17 start-page: 1166 year: 2024 ident: bib5 article-title: Comparison of the microstructural, mechanical and corrosion resistance properties of Ti6Al4V samples manufactured by LENS and subjected to various heat treatments publication-title: Materials – reference: C. Cai, K. Zhou, Chapter 7 - metal additive manufacturing, in: C.D. Patel, C.-H. Chen (Eds.), Digital manufacturing, Elsevier2022, pp. 247-298. – volume: 329 start-page: 142 year: 2001 end-page: 152 ident: bib6 article-title: Formation of α-Widmanstätten structure: effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy publication-title: J Alloys Compd – volume: 31 start-page: 4 year: 2022 end-page: 12 ident: bib14 article-title: Additive manufacturing technologies: current status and future perspectives publication-title: J Prosthodont – volume: 19 start-page: 668 year: 2019 end-page: 673 ident: bib56 article-title: Differences in the response of additively manufactured titanium alloy to heat treatment - comparison between SLM and EBM publication-title: Manufact Technol J – volume: 15 start-page: 243 year: 2018 end-page: 252 ident: bib27 article-title: Tensile behavior of Ti-6Al-4V alloy fabricated by selective laser melting: effects of microstructures and as-built surface quality publication-title: China Found – volume: 49 start-page: 271 year: 2021 end-page: 295 ident: bib17 article-title: Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications publication-title: Mater Today – volume: 108 start-page: 308 year: 2016 end-page: 318 ident: bib34 article-title: Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting publication-title: Mater Des – volume: 54 year: 2022 ident: bib13 article-title: Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties publication-title: Addit Manuf – volume: 26 start-page: 1727 year: 2020 end-page: 1733 ident: bib44 article-title: Atomization processes of metal powders for 3D printing publication-title: Mater Today Proc – volume: 541 start-page: 177 year: 2012 end-page: 185 ident: bib29 article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties publication-title: J Alloys Compd – volume: 841 year: 2022 ident: bib42 article-title: Microstructure evolution and mechanical properties of laser additive manufactured Ti6Al4V alloy under nitrogen-argon reactive atmosphere publication-title: Mater Sci Eng, A – volume: 820 year: 2021 ident: bib49 article-title: Site-specific microstructure, porosity and mechanical properties of LENS™ processed Ti–6Al–4V alloy publication-title: Mater Sci Eng, A – volume: 672 start-page: 643 year: 2016 end-page: 652 ident: bib33 article-title: Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4V alloy after post heat treatments publication-title: J Alloys Compd – volume: 39 start-page: 416 year: 2012 end-page: 424 ident: bib53 article-title: Material properties of Ti6Al4V parts produced by laser metal deposition publication-title: Phys Procedia – year: 2006 ident: bib52 publication-title: Kovové materiály – volume: 16 start-page: 4287 year: 2023 ident: bib11 article-title: Multimetal research in powder bed fusion: a review publication-title: Materials – volume: 264 start-page: 172 year: 2019 end-page: 181 ident: bib23 article-title: Effect of processing conditions on the microstructure, porosity, and mechanical properties of Ti-6Al-4V repair fabricated by directed energy deposition publication-title: J Mater Process Technol – volume: 7 start-page: 657 year: 2017 ident: bib45 article-title: Laser and electron beam additive manufacturing methods of fabricating titanium bone implants publication-title: Appl Sci – volume: 41 start-page: 868 year: 2024 end-page: 878 ident: bib19 article-title: The effect of productive and quality deposition strategies on residual stress for Directed Energy Deposition (DED) process publication-title: Manufact Lett – volume: 8 start-page: 36 year: 2015 end-page: 62 ident: bib18 article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics publication-title: Addit Manuf – year: 2023 ident: bib10 article-title: Research progress in metal additive manufacturing: challenges and Opportunities publication-title: Int J Interact Des Manuf – volume: 183 start-page: 32 year: 2024 end-page: 62 ident: bib7 article-title: Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: microstructure, defects, and mechanical behavior publication-title: J Mater Sci Technol – volume: 33 start-page: 138 year: 2017 end-page: 148 ident: bib2 article-title: Mechanical properties of titanium-based Ti–6Al–4V alloys manufactured by powder bed additive manufacture – volume: 163 start-page: 186 year: 2019 end-page: 193 ident: bib57 article-title: Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting publication-title: Vacuum – volume: 164 year: 2019 ident: bib8 article-title: Additive manufacturing of Ti6Al4V alloy: a review publication-title: Mater Des – volume: 21 start-page: 597 year: 2005 end-page: 605 ident: bib36 article-title: Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples publication-title: Mater Sci Technol – volume: 7 start-page: 671 year: 2022 end-page: 682 ident: bib48 article-title: Monte Carlo simulations of solidification and solid-state phase transformation during directed energy deposition additive manufacturing publication-title: Prog Add Manufact – volume: 790 year: 2020 ident: bib32 article-title: Compressive fatigue properties of additive-manufactured Ti-6Al-4V cellular material with different porosities publication-title: Mater Sci Eng, A – volume: 70 start-page: 349 year: 2018 end-page: 357 ident: bib50 article-title: A review of the fatigue properties of additively manufactured Ti-6Al-4V publication-title: J Occup Med – volume: 235 year: 2022 ident: bib31 article-title: Formation of a transition V-rich structure during the α' to α + β phase transformation process in additively manufactured Ti-6Al-4 V publication-title: Acta Mater – volume: 87 start-page: 309 year: 2015 end-page: 320 ident: bib54 article-title: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing publication-title: Acta Mater – volume: 25 start-page: 137 year: 2004 end-page: 144 ident: bib24 article-title: Microstructures of laser-deposited Ti–6Al–4V publication-title: Mater Des – year: 2020 ident: 10.1016/j.jmrt.2025.01.231_bib51 – volume: 235 year: 2022 ident: 10.1016/j.jmrt.2025.01.231_bib31 article-title: Formation of a transition V-rich structure during the α' to α + β phase transformation process in additively manufactured Ti-6Al-4 V publication-title: Acta Mater doi: 10.1016/j.actamat.2022.118104 – volume: 25 start-page: 137 year: 2004 ident: 10.1016/j.jmrt.2025.01.231_bib24 article-title: Microstructures of laser-deposited Ti–6Al–4V publication-title: Mater Des doi: 10.1016/j.matdes.2003.09.009 – volume: 108 start-page: 308 year: 2016 ident: 10.1016/j.jmrt.2025.01.231_bib34 article-title: Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting publication-title: Mater Des doi: 10.1016/j.matdes.2016.06.117 – volume: 70 start-page: 349 issue: 3 year: 2018 ident: 10.1016/j.jmrt.2025.01.231_bib50 article-title: A review of the fatigue properties of additively manufactured Ti-6Al-4V publication-title: J Occup Med – volume: 820 year: 2021 ident: 10.1016/j.jmrt.2025.01.231_bib49 article-title: Site-specific microstructure, porosity and mechanical properties of LENS™ processed Ti–6Al–4V alloy publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2021.141494 – volume: 61 year: 2024 ident: 10.1016/j.jmrt.2025.01.231_bib25 article-title: Microstructural evolution and mechanical properties of TiC/Ti6Al4V composites manufactured by selective laser melting after solution and aging treatments publication-title: Results Phys doi: 10.1016/j.rinp.2024.107781 – volume: 221 year: 2019 ident: 10.1016/j.jmrt.2025.01.231_bib26 article-title: Microstructure and mechanical behaviour of additive manufactured Ti–6Al–4V parts under tension publication-title: EPJ Web Conf doi: 10.1051/epjconf/201922101037 – volume: 878 year: 2023 ident: 10.1016/j.jmrt.2025.01.231_bib37 article-title: Hybrid additive manufacturing of Ti6Al4V with powder-bed fusion and direct-energy deposition publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2023.145229 – volume: 7 start-page: 497 issue: 6 year: 2019 ident: 10.1016/j.jmrt.2025.01.231_bib4 article-title: Tribology of Ti6Al4V: a review publication-title: Friction doi: 10.1007/s40544-019-0338-7 – volume: 264 start-page: 172 year: 2019 ident: 10.1016/j.jmrt.2025.01.231_bib23 article-title: Effect of processing conditions on the microstructure, porosity, and mechanical properties of Ti-6Al-4V repair fabricated by directed energy deposition publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2018.08.041 – volume: 470 year: 2023 ident: 10.1016/j.jmrt.2025.01.231_bib9 article-title: Corrosion and passivation behavior of Ti-6Al-4V surfaces treated with high-energy pulsed laser: a comparative study of cast and 3D-printed specimens in a NaCl solution publication-title: Surf Coating Technol doi: 10.1016/j.surfcoat.2023.129849 – volume: 7 start-page: 671 issue: 4 year: 2022 ident: 10.1016/j.jmrt.2025.01.231_bib48 article-title: Monte Carlo simulations of solidification and solid-state phase transformation during directed energy deposition additive manufacturing publication-title: Prog Add Manufact doi: 10.1007/s40964-021-00253-8 – volume: 329 start-page: 142 issue: 1 year: 2001 ident: 10.1016/j.jmrt.2025.01.231_bib6 article-title: Formation of α-Widmanstätten structure: effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy publication-title: J Alloys Compd doi: 10.1016/S0925-8388(01)01571-7 – volume: 7 start-page: 657 issue: 7 year: 2017 ident: 10.1016/j.jmrt.2025.01.231_bib45 article-title: Laser and electron beam additive manufacturing methods of fabricating titanium bone implants publication-title: Appl Sci doi: 10.3390/app7070657 – volume: 21 start-page: 597 issue: 5 year: 2005 ident: 10.1016/j.jmrt.2025.01.231_bib36 article-title: Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples publication-title: Mater Sci Technol doi: 10.1179/174328405X21003 – volume: 41 start-page: 868 year: 2024 ident: 10.1016/j.jmrt.2025.01.231_bib19 article-title: The effect of productive and quality deposition strategies on residual stress for Directed Energy Deposition (DED) process publication-title: Manufact Lett doi: 10.1016/j.mfglet.2024.09.107 – volume: 2 issue: 4 year: 2023 ident: 10.1016/j.jmrt.2025.01.231_bib16 article-title: Understanding melt pool characteristics in laser powder bed fusion: an overview of single- and multi-track melt pools for process optimization publication-title: Advan Pow Mater – volume: 13 start-page: 331 year: 2022 ident: 10.1016/j.jmrt.2025.01.231_bib30 article-title: Densification, tailored microstructure, and mechanical properties of selective laser melted Ti–6Al–4V alloy via annealing heat treatment publication-title: Micromachines doi: 10.3390/mi13020331 – volume: 541 start-page: 177 year: 2012 ident: 10.1016/j.jmrt.2025.01.231_bib29 article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2012.07.022 – volume: 19 start-page: 668 issue: 4 year: 2019 ident: 10.1016/j.jmrt.2025.01.231_bib56 article-title: Differences in the response of additively manufactured titanium alloy to heat treatment - comparison between SLM and EBM publication-title: Manufact Technol J doi: 10.21062/ujep/353.2019/a/1213-2489/MT/19/4/668 – volume: 790 year: 2020 ident: 10.1016/j.jmrt.2025.01.231_bib32 article-title: Compressive fatigue properties of additive-manufactured Ti-6Al-4V cellular material with different porosities publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2020.139695 – volume: 9 start-page: 530 issue: 9 year: 2019 ident: 10.1016/j.jmrt.2025.01.231_bib46 article-title: The influence of electrophoretic deposition parameters and heat treatment on the microstructure and tribological properties of nanocomposite Si3N4/PEEK 708 coatings on titanium alloy publication-title: Coatings doi: 10.3390/coatings9090530 – volume: 895 year: 2021 ident: 10.1016/j.jmrt.2025.01.231_bib35 article-title: Heat treatment of Ti-6Al-4V alloy manufactured by laser-based powder-bed fusion: process, microstructures, and mechanical properties correlations publication-title: J Alloys Compd – volume: 17 start-page: 1166 issue: 5 year: 2024 ident: 10.1016/j.jmrt.2025.01.231_bib5 article-title: Comparison of the microstructural, mechanical and corrosion resistance properties of Ti6Al4V samples manufactured by LENS and subjected to various heat treatments publication-title: Materials doi: 10.3390/ma17051166 – volume: 32 year: 2018 ident: 10.1016/j.jmrt.2025.01.231_bib21 article-title: Influence of island scanning strategy on microstructures and mechanical properties of direct laser-deposited Ti–6Al–4V structures publication-title: Acta Metall Sin – year: 2006 ident: 10.1016/j.jmrt.2025.01.231_bib52 – year: 2023 ident: 10.1016/j.jmrt.2025.01.231_bib10 article-title: Research progress in metal additive manufacturing: challenges and Opportunities publication-title: Int J Interact Des Manuf doi: 10.1007/s12008-023-01661-6 – volume: 58 start-page: 10201 issue: 24 year: 2023 ident: 10.1016/j.jmrt.2025.01.231_bib58 article-title: Effect of solutionizing and quenching treatment on Ti6Al4V alloy: a study on wear, cavitation erosion and corrosion resistance publication-title: J Mater Sci doi: 10.1007/s10853-023-08688-w – volume: 804 start-page: 163 year: 2019 ident: 10.1016/j.jmrt.2025.01.231_bib3 article-title: Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): process, microstructure, and mechanical properties publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.04.255 – volume: 39 start-page: 416 year: 2012 ident: 10.1016/j.jmrt.2025.01.231_bib53 article-title: Material properties of Ti6Al4V parts produced by laser metal deposition publication-title: Phys Procedia doi: 10.1016/j.phpro.2012.10.056 – volume: 49 start-page: 271 year: 2021 ident: 10.1016/j.jmrt.2025.01.231_bib17 article-title: Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications publication-title: Mater Today doi: 10.1016/j.mattod.2021.03.020 – volume: 164 year: 2019 ident: 10.1016/j.jmrt.2025.01.231_bib8 article-title: Additive manufacturing of Ti6Al4V alloy: a review publication-title: Mater Des doi: 10.1016/j.matdes.2018.107552 – volume: 20 start-page: 4365 year: 2022 ident: 10.1016/j.jmrt.2025.01.231_bib22 article-title: Effect of defects on environment-assisted fracture (EAF) behavior of Ti–6Al–4V alloy fabricated by direct energy deposition (DED) publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2022.08.158 – volume: 31 start-page: 298 year: 2024 ident: 10.1016/j.jmrt.2025.01.231_bib12 article-title: Microstructure and mechanical behavior of rhombic dodecahedron-structured porous β-Ti composites fabricated via laser powder bed fusion publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2024.06.077 – year: 2024 ident: 10.1016/j.jmrt.2025.01.231_bib38 article-title: Hydrogen embrittlement of Ti-Al6-V4 alloy manufactured by laser powder bed fusion induced by electrochemical charging publication-title: Metals doi: 10.3390/met14020251 – ident: 10.1016/j.jmrt.2025.01.231_bib15 doi: 10.1016/B978-0-323-95062-6.00005-X – volume: 15 start-page: 243 year: 2018 ident: 10.1016/j.jmrt.2025.01.231_bib27 article-title: Tensile behavior of Ti-6Al-4V alloy fabricated by selective laser melting: effects of microstructures and as-built surface quality publication-title: China Found doi: 10.1007/s41230-018-8064-8 – volume: 87 start-page: 309 year: 2015 ident: 10.1016/j.jmrt.2025.01.231_bib54 article-title: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing publication-title: Acta Mater doi: 10.1016/j.actamat.2014.12.054 – volume: 163 start-page: 186 year: 2019 ident: 10.1016/j.jmrt.2025.01.231_bib57 article-title: Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting publication-title: Vacuum doi: 10.1016/j.vacuum.2019.02.028 – volume: 18 start-page: 4641 year: 2022 ident: 10.1016/j.jmrt.2025.01.231_bib20 article-title: A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2022.04.055 – volume: 841 year: 2022 ident: 10.1016/j.jmrt.2025.01.231_bib42 article-title: Microstructure evolution and mechanical properties of laser additive manufactured Ti6Al4V alloy under nitrogen-argon reactive atmosphere publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2022.143076 – volume: 16 start-page: 4287 issue: 12 year: 2023 ident: 10.1016/j.jmrt.2025.01.231_bib11 article-title: Multimetal research in powder bed fusion: a review publication-title: Materials doi: 10.3390/ma16124287 – volume: 183 start-page: 32 year: 2024 ident: 10.1016/j.jmrt.2025.01.231_bib7 article-title: Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: microstructure, defects, and mechanical behavior publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2023.11.003 – volume: 26 start-page: 1727 year: 2020 ident: 10.1016/j.jmrt.2025.01.231_bib44 article-title: Atomization processes of metal powders for 3D printing publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.02.364 – volume: 46 year: 2021 ident: 10.1016/j.jmrt.2025.01.231_bib40 article-title: Columnar-to-equiaxed grain transition in powder bed fusion via mimicking casting solidification and promoting in situ recrystallization publication-title: Addit Manuf – volume: 54 year: 2022 ident: 10.1016/j.jmrt.2025.01.231_bib13 article-title: Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties publication-title: Addit Manuf – volume: 8 start-page: 36 year: 2015 ident: 10.1016/j.jmrt.2025.01.231_bib18 article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics publication-title: Addit Manuf – volume: 33 start-page: 138 issue: 2 year: 2017 ident: 10.1016/j.jmrt.2025.01.231_bib2 article-title: Mechanical properties of titanium-based Ti–6Al–4V alloys manufactured by powder bed additive manufacture – volume: 209 start-page: 2223 issue: 5 year: 2009 ident: 10.1016/j.jmrt.2025.01.231_bib1 article-title: Machinability of titanium alloys (Ti6Al4V and Ti555.3) publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.06.020 – volume: 11 start-page: 255 issue: 2 year: 2021 ident: 10.1016/j.jmrt.2025.01.231_bib43 article-title: Evaluation of heat treatment parameters on microstructure and hardness properties of high-speed selective laser melted Ti6Al4V publication-title: Metals doi: 10.3390/met11020255 – volume: 31 start-page: 4 issue: S1 year: 2022 ident: 10.1016/j.jmrt.2025.01.231_bib14 article-title: Additive manufacturing technologies: current status and future perspectives publication-title: J Prosthodont doi: 10.1111/jopr.13477 – volume: 672 start-page: 643 year: 2016 ident: 10.1016/j.jmrt.2025.01.231_bib33 article-title: Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4V alloy after post heat treatments publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.02.183 |
SSID | ssj0001596081 |
Score | 2.350032 |
Snippet | The Ti–6Al–4V alloy is the most widely used titanium-based alloy in aerospace and biomedical applications. Due to the complex shapes required for components in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3825 |
SubjectTerms | Direct energy deposition Mechanical properties Microstructure Powder bed fusion Thermal stability Ti–6Al–4V alloy |
Title | Comparison of direct energy deposition and powder bed fusion technology in the preparation of Ti–6Al–4V alloy |
URI | https://dx.doi.org/10.1016/j.jmrt.2025.01.231 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3oQn1gfZQ_eJDRJs3kca7EUQS-20lvYZGcxpaYxpIg3_4P_0F_i7G5SK0gPXgIJOyGZDDvfN5kHIVcQSC8SKbekJ4TleQKsJIiQpUiQNkgXUb6KQ94_-OOpdzdjsxYZNrUwKq2y3vvNnq536_pKr9Zmr8iy3iM6tjAIGRqdcjy60FxVlaoivtnNT5yFIUbXs0rVeksJ1LUzJs1r_lKqlEpXd-90-87f_mnD54z2yV4NFunAPM8BaUF-SHY3WggekdfhepAgXUpq3oaCruijApqcLMpzQYvlm4CSJiCoXKkoGa3WgXWa4dkz0KIE0w3c3G-SfX18-oMFHr0nqn7Svx-T6eh2Mhxb9RgFK0XKWVmuTJnDbRYiNEGyxUOfMwQlkkWuHaWhIyPGkbS44IsQ4QlLALjjQhBw5H5oaP0T0s6XOZwSmjLVsE-3Ew08hBrcZzIVSLFEX0AgoEOcRnlxWvcYV6MuFnGTTDaPlcJjpfDYdmJUeIdcr2UK02Fj62rWfJP4l53E6AK2yJ39U-6c7Kgzk3V2QdpVuYJLhCFV0tX0vaut7RsFc94r |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPagH4zPicw_eTENbun0ckUhAgYtguG2W7myEYKlNifHmf_Af-kuc7QMxMRy8NOljmnY62flmOvMNIdfgKSeQoTCUI6XhOBKMsRdglKJAmaBsRPk6D9nru-2hcz9iowpplr0wuqyyWPvzNT1brYsjtUKbtXgyqT2iY_M9n6HRacejG803EQ2Y2rQ7o9ufRAtDkJ4NK9UChpYommfyOq_pS6JrKu2MvtOuW387qBWn09ojuwVapI38gfZJBaIDsrPCIXhIXpvLSYJ0rmj-OhSylj4qoSzKoiKSNJ6_SUjoGCRVC50mo-kys04nuPcMNE4gpwPP7zeYfH18uo0Zbp0nqv_Svx-RYetu0GwbxRwFI8SYMzVsFTJLmMxHbILRlvBdwRCVKBbYZhD6lgqYwKjFBlf6iE_YGEBYNniewOAPLa1-TDaieQQnhIZMM_ZlfKKeg1hDuEyFEmMsWZfgSagSq1QeDwuScT3rYsbLarIp1wrnWuHctDgqvEpuljJxTrGx9mpWfhP-y1A4-oA1cqf_lLsiW-1Br8u7nf7DGdnWZ_IStHOykSYLuEBMko4vM5v7BgXV4Fk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+direct+energy+deposition+and+powder+bed+fusion+technology+in+the+preparation+of+Ti%E2%80%936Al%E2%80%934V+alloy&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Medov%C3%A1%2C+Daniela&rft.au=Knaislov%C3%A1%2C+Anna&rft.au=Strakosova%2C+Angelina&rft.au=Moln%C3%A1rov%C3%A1%2C+Orsolya&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=2238-7854&rft.volume=35&rft.spage=3825&rft.epage=3840&rft_id=info:doi/10.1016%2Fj.jmrt.2025.01.231&rft.externalDocID=S2238785425002315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon |