Comparison of direct energy deposition and powder bed fusion technology in the preparation of Ti–6Al–4V alloy

The Ti–6Al–4V alloy is the most widely used titanium-based alloy in aerospace and biomedical applications. Due to the complex shapes required for components in these application areas, additive manufacturing has become a promising option with its advantageous speed and precision. This study examined...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research and technology Vol. 35; pp. 3825 - 3840
Main Authors Medová, Daniela, Knaislová, Anna, Strakosova, Angelina, Molnárová, Orsolya, Čapek, Jaroslav, Voňavková, Ilona, Vojtěch, Dalibor
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2025
Subjects
Online AccessGet full text
ISSN2238-7854
DOI10.1016/j.jmrt.2025.01.231

Cover

Abstract The Ti–6Al–4V alloy is the most widely used titanium-based alloy in aerospace and biomedical applications. Due to the complex shapes required for components in these application areas, additive manufacturing has become a promising option with its advantageous speed and precision. This study examined the impact of direct energy deposition (DED) and powder bed fusion (PBF) technologies on the resulting properties of the Ti–6Al–4V alloy. DED-produced samples showed almost fully dense structure, while PBF-produced ones were characterized by 0.3 % residual porosity. In all states, the α or α′ phase predominated in the material microstructure. The Ti–6Al–4V alloy produced by different additive manufacturing methods showed comparable hardness values in both, as-printed (380 HV) and as-printed + heat-treated (370 HV) states. However, the samples printed by the PBF method exhibited higher tensile strength and yield strength than those printed by the DED method. These values before and after stress-relief heat treatment differed by approximately 100 MPa. Conversely, the DED-printed material is more stable at elevated temperatures (up to 800 °C) compared to the one printed by PBF.
AbstractList The Ti–6Al–4V alloy is the most widely used titanium-based alloy in aerospace and biomedical applications. Due to the complex shapes required for components in these application areas, additive manufacturing has become a promising option with its advantageous speed and precision. This study examined the impact of direct energy deposition (DED) and powder bed fusion (PBF) technologies on the resulting properties of the Ti–6Al–4V alloy. DED-produced samples showed almost fully dense structure, while PBF-produced ones were characterized by 0.3 % residual porosity. In all states, the α or α′ phase predominated in the material microstructure. The Ti–6Al–4V alloy produced by different additive manufacturing methods showed comparable hardness values in both, as-printed (380 HV) and as-printed + heat-treated (370 HV) states. However, the samples printed by the PBF method exhibited higher tensile strength and yield strength than those printed by the DED method. These values before and after stress-relief heat treatment differed by approximately 100 MPa. Conversely, the DED-printed material is more stable at elevated temperatures (up to 800 °C) compared to the one printed by PBF.
Author Čapek, Jaroslav
Vojtěch, Dalibor
Medová, Daniela
Voňavková, Ilona
Molnárová, Orsolya
Strakosova, Angelina
Knaislová, Anna
Author_xml – sequence: 1
  givenname: Daniela
  surname: Medová
  fullname: Medová, Daniela
  organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic
– sequence: 2
  givenname: Anna
  orcidid: 0000-0002-3508-9725
  surname: Knaislová
  fullname: Knaislová, Anna
  organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic
– sequence: 3
  givenname: Angelina
  orcidid: 0000-0002-1276-7263
  surname: Strakosova
  fullname: Strakosova, Angelina
  email: strakosn@vscht.cz, strakosova@fzu.cz
  organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic
– sequence: 4
  givenname: Orsolya
  orcidid: 0000-0003-1829-1574
  surname: Molnárová
  fullname: Molnárová, Orsolya
  organization: Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 00, Prague 8, Czech Republic
– sequence: 5
  givenname: Jaroslav
  orcidid: 0000-0003-3481-7812
  surname: Čapek
  fullname: Čapek, Jaroslav
  organization: Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 00, Prague 8, Czech Republic
– sequence: 6
  givenname: Ilona
  orcidid: 0000-0001-6196-7811
  surname: Voňavková
  fullname: Voňavková, Ilona
  organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic
– sequence: 7
  givenname: Dalibor
  surname: Vojtěch
  fullname: Vojtěch, Dalibor
  organization: Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague. Technická 5, 166 28, Prague, Czech Republic
BookMark eNp9kE1OwzAQRr0oEqX0Aqx8gQTbiRNbYlNV_EmV2BS2lutMqKM0DnYAdccduCEnwWlZsehmrJnx-2S_CzTpXAcIXVGSUkKL6yZtdn5IGWE8JTRlGZ2gKWOZSErB83M0D6EhhFAuCyLoFL0t3a7X3gbXYVfjynowA4YO_OseV9C7YAcbd7qrcO8-K_B4AxWu38M4HcBsO9e6eNfGbgu49xDj9IGJeWv78_VdLNpY8xes29btL9FZrdsA879zhp7vbtfLh2T1dP-4XKwSw8p8SFhtONWECyEzlkstCs1lVtZcMiKNoLXkuuQZg6ISeSb5BkBTBmWpcyJBV9kMiWOu8S4ED7Uydjg8bPDatooSNRpTjRqNqdGYIlRFYxFl_9De2532-9PQzRGC-KkPC14FY6EzcHSqKmdP4b80P4w4
CitedBy_id crossref_primary_10_1016_j_msea_2025_148127
Cites_doi 10.1016/j.actamat.2022.118104
10.1016/j.matdes.2003.09.009
10.1016/j.matdes.2016.06.117
10.1016/j.msea.2021.141494
10.1016/j.rinp.2024.107781
10.1051/epjconf/201922101037
10.1016/j.msea.2023.145229
10.1007/s40544-019-0338-7
10.1016/j.jmatprotec.2018.08.041
10.1016/j.surfcoat.2023.129849
10.1007/s40964-021-00253-8
10.1016/S0925-8388(01)01571-7
10.3390/app7070657
10.1179/174328405X21003
10.1016/j.mfglet.2024.09.107
10.3390/mi13020331
10.1016/j.jallcom.2012.07.022
10.21062/ujep/353.2019/a/1213-2489/MT/19/4/668
10.1016/j.msea.2020.139695
10.3390/coatings9090530
10.3390/ma17051166
10.1007/s12008-023-01661-6
10.1007/s10853-023-08688-w
10.1016/j.jallcom.2019.04.255
10.1016/j.phpro.2012.10.056
10.1016/j.mattod.2021.03.020
10.1016/j.matdes.2018.107552
10.1016/j.jmrt.2022.08.158
10.1016/j.jmrt.2024.06.077
10.3390/met14020251
10.1016/B978-0-323-95062-6.00005-X
10.1007/s41230-018-8064-8
10.1016/j.actamat.2014.12.054
10.1016/j.vacuum.2019.02.028
10.1016/j.jmrt.2022.04.055
10.1016/j.msea.2022.143076
10.3390/ma16124287
10.1016/j.jmst.2023.11.003
10.1016/j.matpr.2020.02.364
10.1016/j.jmatprotec.2008.06.020
10.3390/met11020255
10.1111/jopr.13477
10.1016/j.jallcom.2016.02.183
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jmrt.2025.01.231
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 3840
ExternalDocumentID 10_1016_j_jmrt_2025_01_231
S2238785425002315
GroupedDBID 0R~
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ABXRA
ACGFS
ADBBV
ADCUG
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
FNPLU
GROUPED_DOAJ
GX1
HH5
HZ~
IPNFZ
IXB
KQ8
M41
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
CITATION
ID FETCH-LOGICAL-c274t-2fc51a058893249a86a5937f59209c81f95a7532e6d84395beea12e77a409ead3
IEDL.DBID IXB
ISSN 2238-7854
IngestDate Thu Apr 24 23:08:40 EDT 2025
Sun Jul 06 05:06:57 EDT 2025
Sat Apr 12 15:20:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Ti–6Al–4V alloy
Powder bed fusion
Microstructure
Thermal stability
Direct energy deposition
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-2fc51a058893249a86a5937f59209c81f95a7532e6d84395beea12e77a409ead3
ORCID 0000-0001-6196-7811
0000-0003-3481-7812
0000-0003-1829-1574
0000-0002-1276-7263
0000-0002-3508-9725
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2238785425002315
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_jmrt_2025_01_231
crossref_primary_10_1016_j_jmrt_2025_01_231
elsevier_sciencedirect_doi_10_1016_j_jmrt_2025_01_231
PublicationCentury 2000
PublicationDate March-April 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March-April 2025
PublicationDecade 2020
PublicationTitle Journal of materials research and technology
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Arrazola, Garay, Iriarte, Armendia, Marya, Le Maître (bib1) 2009; 209
Malej, Godec, Donik, Balazic, Zettler, Lienert, Pambaguian (bib37) 2023; 878
Tao, Li, Huang, Hu, Gong, Xu (bib27) 2018; 15
Philip, Mathew, Kuriachen (bib4) 2019; 7
Sahoo, Joshi, Balla, Das, Roy (bib49) 2021; 820
Çömez, Yurddaskal, Durmuş (bib58) 2023; 58
Gil, Ginebra, Manero, Planell (bib6) 2001; 329
Ma, Wang, Qin, Liu, Chen, Wang, Zhang (bib7) 2024; 183
Thompson, Bian, Shamsaei, Yadollahi (bib18) 2015; 8
Carroll, Palmer, Beese (bib54) 2015; 87
Wu, Chen, Lin, Chiang, Tsai (bib32) 2020; 790
Liu, Shin (bib8) 2019; 164
Fiołek, Zimowski, Kopia, Moskalewicz (bib46) 2019; 9
Srivastava, Kumar, Kumar, Gautam, Dogra (bib10) 2023
Wu, Liang, Mei, Mitchell, Goodwin, Voice (bib24) 2004; 25
Prajapati, Kumar, Lin, Jeng (bib13) 2022; 54
Yang, Yu, Yin, Gao, Wang, Zeng (bib34) 2016; 108
Roudnická (bib51) 2020
C. Cai, K. Zhou, Chapter 7 - metal additive manufacturing, in: C.D. Patel, C.-H. Chen (Eds.), Digital manufacturing, Elsevier2022, pp. 247-298.
Tong, Bowen, Persson, Plummer (bib2) 2017; 33
Kassym, Perveen (bib44) 2020; 26
Chen, Liu, Zhao, Cao, Hu, Xu, Shuai, Yin, Wang, Liao, Ren (bib42) 2022; 841
Wang, Lv, Shen, Liang, Xie, Tian (bib21) 2018; 32
Zhang, Ge, Li, Ren, Wu (bib48) 2022; 7
Roudnicka, Misurak, Vojtech (bib56) 2019; 19
Wang, Chao, Chen, Chen, Primig, Xu, Ringer, Liao (bib31) 2022; 235
Qian, Mei, Liang, Wu (bib36) 2005; 21
Azarniya, Colera, Mirzaali, Sovizi, Bartolomeu, St Weglowski, Wits, Yap, Ahn, Miranda, Silva, Madaah Hosseini, Ramakrishna, Zadpoor (bib3) 2019; 804
Wu, Liu, Bai, Wu, Gao, Liu, Wang, Wang (bib12) 2024; 31
Etesami, Fotovvati, Asadi (bib35) 2021; 895
Lu, Liu, Wu, Liu, Wang (bib9) 2023; 470
Roudnicka, Kacenka, Dvorsky, Drahokoupil, Vojtech (bib38) 2024
Alammar, Kois, Revilla-León, Att (bib14) 2022; 31
Antolak-Dudka, Czujko, Durejko, Stępniowski, Ziętala, Łukasiewicz (bib5) 2024; 17
Wang, Zhu, Liu, Zhang (bib16) 2023; 2
Cao, Zhang, Ryder, Lados (bib50) 2018; 70
Kistler, Corbin, Nassar, Reutzel, Beese (bib23) 2019; 264
Yu, Rombouts, Maes, Motmans (bib53) 2012; 39
Nguyen, Pramanik, Basak, Dong, Prakash, Debnath, Shankar, Jawahir, Dixit, Buddhi (bib20) 2022; 18
Bai, Chen, Du, Zhao, Wang, Li (bib25) 2024; 61
Wang, Wang, Chen, Liu, Lu, Liu, Han (bib30) 2022; 13
Panin, Kazachenok, Kolmakov, Chizhik, Heifetz, Chugui (bib26) 2019; 221
Zhang, Yang, Mao, Takesue, Soshi (bib19) 2024; 41
Ye, Xiao, Cao, Wu, Zhao, Li (bib57) 2019; 163
Yao, Ramesh, Xiao, Chen, Zhuang (bib11) 2023; 16
Oh, Lee, Kim, Kim (bib22) 2022; 20
Wysocki, Maj, Sitek, Buhagiar, Kurzydłowski, Święszkowski (bib45) 2017; 7
Wu, Lu, Gan, Huang, Zhao, Lin, Guo, Lin (bib33) 2016; 672
Vrancken, Thijs, Kruth, Van Humbeeck (bib29) 2012; 541
Vojtěch (bib52) 2006
Karimi, Sadeghi, Ålgårdh, Keshavarzkermani, Esmaeilizadeh, Toyserkani, Andersson (bib40) 2021; 46
Lekoadi, Tlotleng, Annan, Maledi, Masina (bib43) 2021; 11
Svetlizky, Das, Zheng, Vyatskikh, Bose, Bandyopadhyay, Schoenung, Lavernia, Eliaz (bib17) 2021; 49
Srivastava (10.1016/j.jmrt.2025.01.231_bib10) 2023
10.1016/j.jmrt.2025.01.231_bib15
Liu (10.1016/j.jmrt.2025.01.231_bib8) 2019; 164
Kassym (10.1016/j.jmrt.2025.01.231_bib44) 2020; 26
Cao (10.1016/j.jmrt.2025.01.231_bib50) 2018; 70
Tao (10.1016/j.jmrt.2025.01.231_bib27) 2018; 15
Karimi (10.1016/j.jmrt.2025.01.231_bib40) 2021; 46
Fiołek (10.1016/j.jmrt.2025.01.231_bib46) 2019; 9
Wysocki (10.1016/j.jmrt.2025.01.231_bib45) 2017; 7
Wang (10.1016/j.jmrt.2025.01.231_bib16) 2023; 2
Çömez (10.1016/j.jmrt.2025.01.231_bib58) 2023; 58
Yu (10.1016/j.jmrt.2025.01.231_bib53) 2012; 39
Roudnicka (10.1016/j.jmrt.2025.01.231_bib56) 2019; 19
Lekoadi (10.1016/j.jmrt.2025.01.231_bib43) 2021; 11
Qian (10.1016/j.jmrt.2025.01.231_bib36) 2005; 21
Ye (10.1016/j.jmrt.2025.01.231_bib57) 2019; 163
Lu (10.1016/j.jmrt.2025.01.231_bib9) 2023; 470
Kistler (10.1016/j.jmrt.2025.01.231_bib23) 2019; 264
Thompson (10.1016/j.jmrt.2025.01.231_bib18) 2015; 8
Wu (10.1016/j.jmrt.2025.01.231_bib12) 2024; 31
Wang (10.1016/j.jmrt.2025.01.231_bib21) 2018; 32
Alammar (10.1016/j.jmrt.2025.01.231_bib14) 2022; 31
Ma (10.1016/j.jmrt.2025.01.231_bib7) 2024; 183
Zhang (10.1016/j.jmrt.2025.01.231_bib48) 2022; 7
Sahoo (10.1016/j.jmrt.2025.01.231_bib49) 2021; 820
Carroll (10.1016/j.jmrt.2025.01.231_bib54) 2015; 87
Wu (10.1016/j.jmrt.2025.01.231_bib24) 2004; 25
Vrancken (10.1016/j.jmrt.2025.01.231_bib29) 2012; 541
Chen (10.1016/j.jmrt.2025.01.231_bib42) 2022; 841
Azarniya (10.1016/j.jmrt.2025.01.231_bib3) 2019; 804
Svetlizky (10.1016/j.jmrt.2025.01.231_bib17) 2021; 49
Philip (10.1016/j.jmrt.2025.01.231_bib4) 2019; 7
Oh (10.1016/j.jmrt.2025.01.231_bib22) 2022; 20
Bai (10.1016/j.jmrt.2025.01.231_bib25) 2024; 61
Wu (10.1016/j.jmrt.2025.01.231_bib33) 2016; 672
Zhang (10.1016/j.jmrt.2025.01.231_bib19) 2024; 41
Nguyen (10.1016/j.jmrt.2025.01.231_bib20) 2022; 18
Yang (10.1016/j.jmrt.2025.01.231_bib34) 2016; 108
Malej (10.1016/j.jmrt.2025.01.231_bib37) 2023; 878
Roudnická (10.1016/j.jmrt.2025.01.231_bib51) 2020
Wu (10.1016/j.jmrt.2025.01.231_bib32) 2020; 790
Etesami (10.1016/j.jmrt.2025.01.231_bib35) 2021; 895
Tong (10.1016/j.jmrt.2025.01.231_bib2) 2017; 33
Arrazola (10.1016/j.jmrt.2025.01.231_bib1) 2009; 209
Wang (10.1016/j.jmrt.2025.01.231_bib30) 2022; 13
Vojtěch (10.1016/j.jmrt.2025.01.231_bib52) 2006
Antolak-Dudka (10.1016/j.jmrt.2025.01.231_bib5) 2024; 17
Panin (10.1016/j.jmrt.2025.01.231_bib26) 2019; 221
Wang (10.1016/j.jmrt.2025.01.231_bib31) 2022; 235
Yao (10.1016/j.jmrt.2025.01.231_bib11) 2023; 16
Prajapati (10.1016/j.jmrt.2025.01.231_bib13) 2022; 54
Roudnicka (10.1016/j.jmrt.2025.01.231_bib38) 2024
Gil (10.1016/j.jmrt.2025.01.231_bib6) 2001; 329
References_xml – volume: 470
  year: 2023
  ident: bib9
  article-title: Corrosion and passivation behavior of Ti-6Al-4V surfaces treated with high-energy pulsed laser: a comparative study of cast and 3D-printed specimens in a NaCl solution
  publication-title: Surf Coating Technol
– volume: 46
  year: 2021
  ident: bib40
  article-title: Columnar-to-equiaxed grain transition in powder bed fusion via mimicking casting solidification and promoting in situ recrystallization
  publication-title: Addit Manuf
– volume: 895
  year: 2021
  ident: bib35
  article-title: Heat treatment of Ti-6Al-4V alloy manufactured by laser-based powder-bed fusion: process, microstructures, and mechanical properties correlations
  publication-title: J Alloys Compd
– volume: 18
  start-page: 4641
  year: 2022
  end-page: 4661
  ident: bib20
  article-title: A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties
  publication-title: J Mater Res Technol
– volume: 9
  start-page: 530
  year: 2019
  ident: bib46
  article-title: The influence of electrophoretic deposition parameters and heat treatment on the microstructure and tribological properties of nanocomposite Si3N4/PEEK 708 coatings on titanium alloy
  publication-title: Coatings
– volume: 7
  start-page: 497
  year: 2019
  end-page: 536
  ident: bib4
  article-title: Tribology of Ti6Al4V: a review
  publication-title: Friction
– volume: 61
  year: 2024
  ident: bib25
  article-title: Microstructural evolution and mechanical properties of TiC/Ti6Al4V composites manufactured by selective laser melting after solution and aging treatments
  publication-title: Results Phys
– volume: 2
  year: 2023
  ident: bib16
  article-title: Understanding melt pool characteristics in laser powder bed fusion: an overview of single- and multi-track melt pools for process optimization
  publication-title: Advan Pow Mater
– volume: 32
  year: 2018
  ident: bib21
  article-title: Influence of island scanning strategy on microstructures and mechanical properties of direct laser-deposited Ti–6Al–4V structures
  publication-title: Acta Metall Sin
– volume: 31
  start-page: 298
  year: 2024
  end-page: 310
  ident: bib12
  article-title: Microstructure and mechanical behavior of rhombic dodecahedron-structured porous β-Ti composites fabricated via laser powder bed fusion
  publication-title: J Mater Res Technol
– year: 2024
  ident: bib38
  article-title: Hydrogen embrittlement of Ti-Al6-V4 alloy manufactured by laser powder bed fusion induced by electrochemical charging
  publication-title: Metals
– volume: 209
  start-page: 2223
  year: 2009
  end-page: 2230
  ident: bib1
  article-title: Machinability of titanium alloys (Ti6Al4V and Ti555.3)
  publication-title: J Mater Process Technol
– volume: 13
  start-page: 331
  year: 2022
  ident: bib30
  article-title: Densification, tailored microstructure, and mechanical properties of selective laser melted Ti–6Al–4V alloy via annealing heat treatment
  publication-title: Micromachines
– volume: 20
  start-page: 4365
  year: 2022
  end-page: 4377
  ident: bib22
  article-title: Effect of defects on environment-assisted fracture (EAF) behavior of Ti–6Al–4V alloy fabricated by direct energy deposition (DED)
  publication-title: J Mater Res Technol
– volume: 878
  year: 2023
  ident: bib37
  article-title: Hybrid additive manufacturing of Ti6Al4V with powder-bed fusion and direct-energy deposition
  publication-title: Mater Sci Eng, A
– year: 2020
  ident: bib51
  article-title: Structure and properties of metal materials produced by 3D printing methods
– volume: 11
  start-page: 255
  year: 2021
  ident: bib43
  article-title: Evaluation of heat treatment parameters on microstructure and hardness properties of high-speed selective laser melted Ti6Al4V
  publication-title: Metals
– volume: 58
  start-page: 10201
  year: 2023
  end-page: 10216
  ident: bib58
  article-title: Effect of solutionizing and quenching treatment on Ti6Al4V alloy: a study on wear, cavitation erosion and corrosion resistance
  publication-title: J Mater Sci
– volume: 804
  start-page: 163
  year: 2019
  end-page: 191
  ident: bib3
  article-title: Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): process, microstructure, and mechanical properties
  publication-title: J Alloys Compd
– volume: 221
  year: 2019
  ident: bib26
  article-title: Microstructure and mechanical behaviour of additive manufactured Ti–6Al–4V parts under tension
  publication-title: EPJ Web Conf
– volume: 17
  start-page: 1166
  year: 2024
  ident: bib5
  article-title: Comparison of the microstructural, mechanical and corrosion resistance properties of Ti6Al4V samples manufactured by LENS and subjected to various heat treatments
  publication-title: Materials
– reference: C. Cai, K. Zhou, Chapter 7 - metal additive manufacturing, in: C.D. Patel, C.-H. Chen (Eds.), Digital manufacturing, Elsevier2022, pp. 247-298.
– volume: 329
  start-page: 142
  year: 2001
  end-page: 152
  ident: bib6
  article-title: Formation of α-Widmanstätten structure: effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy
  publication-title: J Alloys Compd
– volume: 31
  start-page: 4
  year: 2022
  end-page: 12
  ident: bib14
  article-title: Additive manufacturing technologies: current status and future perspectives
  publication-title: J Prosthodont
– volume: 19
  start-page: 668
  year: 2019
  end-page: 673
  ident: bib56
  article-title: Differences in the response of additively manufactured titanium alloy to heat treatment - comparison between SLM and EBM
  publication-title: Manufact Technol J
– volume: 15
  start-page: 243
  year: 2018
  end-page: 252
  ident: bib27
  article-title: Tensile behavior of Ti-6Al-4V alloy fabricated by selective laser melting: effects of microstructures and as-built surface quality
  publication-title: China Found
– volume: 49
  start-page: 271
  year: 2021
  end-page: 295
  ident: bib17
  article-title: Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications
  publication-title: Mater Today
– volume: 108
  start-page: 308
  year: 2016
  end-page: 318
  ident: bib34
  article-title: Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting
  publication-title: Mater Des
– volume: 54
  year: 2022
  ident: bib13
  article-title: Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties
  publication-title: Addit Manuf
– volume: 26
  start-page: 1727
  year: 2020
  end-page: 1733
  ident: bib44
  article-title: Atomization processes of metal powders for 3D printing
  publication-title: Mater Today Proc
– volume: 541
  start-page: 177
  year: 2012
  end-page: 185
  ident: bib29
  article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties
  publication-title: J Alloys Compd
– volume: 841
  year: 2022
  ident: bib42
  article-title: Microstructure evolution and mechanical properties of laser additive manufactured Ti6Al4V alloy under nitrogen-argon reactive atmosphere
  publication-title: Mater Sci Eng, A
– volume: 820
  year: 2021
  ident: bib49
  article-title: Site-specific microstructure, porosity and mechanical properties of LENS™ processed Ti–6Al–4V alloy
  publication-title: Mater Sci Eng, A
– volume: 672
  start-page: 643
  year: 2016
  end-page: 652
  ident: bib33
  article-title: Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4V alloy after post heat treatments
  publication-title: J Alloys Compd
– volume: 39
  start-page: 416
  year: 2012
  end-page: 424
  ident: bib53
  article-title: Material properties of Ti6Al4V parts produced by laser metal deposition
  publication-title: Phys Procedia
– year: 2006
  ident: bib52
  publication-title: Kovové materiály
– volume: 16
  start-page: 4287
  year: 2023
  ident: bib11
  article-title: Multimetal research in powder bed fusion: a review
  publication-title: Materials
– volume: 264
  start-page: 172
  year: 2019
  end-page: 181
  ident: bib23
  article-title: Effect of processing conditions on the microstructure, porosity, and mechanical properties of Ti-6Al-4V repair fabricated by directed energy deposition
  publication-title: J Mater Process Technol
– volume: 7
  start-page: 657
  year: 2017
  ident: bib45
  article-title: Laser and electron beam additive manufacturing methods of fabricating titanium bone implants
  publication-title: Appl Sci
– volume: 41
  start-page: 868
  year: 2024
  end-page: 878
  ident: bib19
  article-title: The effect of productive and quality deposition strategies on residual stress for Directed Energy Deposition (DED) process
  publication-title: Manufact Lett
– volume: 8
  start-page: 36
  year: 2015
  end-page: 62
  ident: bib18
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics
  publication-title: Addit Manuf
– year: 2023
  ident: bib10
  article-title: Research progress in metal additive manufacturing: challenges and Opportunities
  publication-title: Int J Interact Des Manuf
– volume: 183
  start-page: 32
  year: 2024
  end-page: 62
  ident: bib7
  article-title: Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: microstructure, defects, and mechanical behavior
  publication-title: J Mater Sci Technol
– volume: 33
  start-page: 138
  year: 2017
  end-page: 148
  ident: bib2
  article-title: Mechanical properties of titanium-based Ti–6Al–4V alloys manufactured by powder bed additive manufacture
– volume: 163
  start-page: 186
  year: 2019
  end-page: 193
  ident: bib57
  article-title: Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting
  publication-title: Vacuum
– volume: 164
  year: 2019
  ident: bib8
  article-title: Additive manufacturing of Ti6Al4V alloy: a review
  publication-title: Mater Des
– volume: 21
  start-page: 597
  year: 2005
  end-page: 605
  ident: bib36
  article-title: Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples
  publication-title: Mater Sci Technol
– volume: 7
  start-page: 671
  year: 2022
  end-page: 682
  ident: bib48
  article-title: Monte Carlo simulations of solidification and solid-state phase transformation during directed energy deposition additive manufacturing
  publication-title: Prog Add Manufact
– volume: 790
  year: 2020
  ident: bib32
  article-title: Compressive fatigue properties of additive-manufactured Ti-6Al-4V cellular material with different porosities
  publication-title: Mater Sci Eng, A
– volume: 70
  start-page: 349
  year: 2018
  end-page: 357
  ident: bib50
  article-title: A review of the fatigue properties of additively manufactured Ti-6Al-4V
  publication-title: J Occup Med
– volume: 235
  year: 2022
  ident: bib31
  article-title: Formation of a transition V-rich structure during the α' to α + β phase transformation process in additively manufactured Ti-6Al-4 V
  publication-title: Acta Mater
– volume: 87
  start-page: 309
  year: 2015
  end-page: 320
  ident: bib54
  article-title: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing
  publication-title: Acta Mater
– volume: 25
  start-page: 137
  year: 2004
  end-page: 144
  ident: bib24
  article-title: Microstructures of laser-deposited Ti–6Al–4V
  publication-title: Mater Des
– year: 2020
  ident: 10.1016/j.jmrt.2025.01.231_bib51
– volume: 235
  year: 2022
  ident: 10.1016/j.jmrt.2025.01.231_bib31
  article-title: Formation of a transition V-rich structure during the α' to α + β phase transformation process in additively manufactured Ti-6Al-4 V
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2022.118104
– volume: 25
  start-page: 137
  year: 2004
  ident: 10.1016/j.jmrt.2025.01.231_bib24
  article-title: Microstructures of laser-deposited Ti–6Al–4V
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2003.09.009
– volume: 108
  start-page: 308
  year: 2016
  ident: 10.1016/j.jmrt.2025.01.231_bib34
  article-title: Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.06.117
– volume: 70
  start-page: 349
  issue: 3
  year: 2018
  ident: 10.1016/j.jmrt.2025.01.231_bib50
  article-title: A review of the fatigue properties of additively manufactured Ti-6Al-4V
  publication-title: J Occup Med
– volume: 820
  year: 2021
  ident: 10.1016/j.jmrt.2025.01.231_bib49
  article-title: Site-specific microstructure, porosity and mechanical properties of LENS™ processed Ti–6Al–4V alloy
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2021.141494
– volume: 61
  year: 2024
  ident: 10.1016/j.jmrt.2025.01.231_bib25
  article-title: Microstructural evolution and mechanical properties of TiC/Ti6Al4V composites manufactured by selective laser melting after solution and aging treatments
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2024.107781
– volume: 221
  year: 2019
  ident: 10.1016/j.jmrt.2025.01.231_bib26
  article-title: Microstructure and mechanical behaviour of additive manufactured Ti–6Al–4V parts under tension
  publication-title: EPJ Web Conf
  doi: 10.1051/epjconf/201922101037
– volume: 878
  year: 2023
  ident: 10.1016/j.jmrt.2025.01.231_bib37
  article-title: Hybrid additive manufacturing of Ti6Al4V with powder-bed fusion and direct-energy deposition
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2023.145229
– volume: 7
  start-page: 497
  issue: 6
  year: 2019
  ident: 10.1016/j.jmrt.2025.01.231_bib4
  article-title: Tribology of Ti6Al4V: a review
  publication-title: Friction
  doi: 10.1007/s40544-019-0338-7
– volume: 264
  start-page: 172
  year: 2019
  ident: 10.1016/j.jmrt.2025.01.231_bib23
  article-title: Effect of processing conditions on the microstructure, porosity, and mechanical properties of Ti-6Al-4V repair fabricated by directed energy deposition
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2018.08.041
– volume: 470
  year: 2023
  ident: 10.1016/j.jmrt.2025.01.231_bib9
  article-title: Corrosion and passivation behavior of Ti-6Al-4V surfaces treated with high-energy pulsed laser: a comparative study of cast and 3D-printed specimens in a NaCl solution
  publication-title: Surf Coating Technol
  doi: 10.1016/j.surfcoat.2023.129849
– volume: 7
  start-page: 671
  issue: 4
  year: 2022
  ident: 10.1016/j.jmrt.2025.01.231_bib48
  article-title: Monte Carlo simulations of solidification and solid-state phase transformation during directed energy deposition additive manufacturing
  publication-title: Prog Add Manufact
  doi: 10.1007/s40964-021-00253-8
– volume: 329
  start-page: 142
  issue: 1
  year: 2001
  ident: 10.1016/j.jmrt.2025.01.231_bib6
  article-title: Formation of α-Widmanstätten structure: effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(01)01571-7
– volume: 7
  start-page: 657
  issue: 7
  year: 2017
  ident: 10.1016/j.jmrt.2025.01.231_bib45
  article-title: Laser and electron beam additive manufacturing methods of fabricating titanium bone implants
  publication-title: Appl Sci
  doi: 10.3390/app7070657
– volume: 21
  start-page: 597
  issue: 5
  year: 2005
  ident: 10.1016/j.jmrt.2025.01.231_bib36
  article-title: Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples
  publication-title: Mater Sci Technol
  doi: 10.1179/174328405X21003
– volume: 41
  start-page: 868
  year: 2024
  ident: 10.1016/j.jmrt.2025.01.231_bib19
  article-title: The effect of productive and quality deposition strategies on residual stress for Directed Energy Deposition (DED) process
  publication-title: Manufact Lett
  doi: 10.1016/j.mfglet.2024.09.107
– volume: 2
  issue: 4
  year: 2023
  ident: 10.1016/j.jmrt.2025.01.231_bib16
  article-title: Understanding melt pool characteristics in laser powder bed fusion: an overview of single- and multi-track melt pools for process optimization
  publication-title: Advan Pow Mater
– volume: 13
  start-page: 331
  year: 2022
  ident: 10.1016/j.jmrt.2025.01.231_bib30
  article-title: Densification, tailored microstructure, and mechanical properties of selective laser melted Ti–6Al–4V alloy via annealing heat treatment
  publication-title: Micromachines
  doi: 10.3390/mi13020331
– volume: 541
  start-page: 177
  year: 2012
  ident: 10.1016/j.jmrt.2025.01.231_bib29
  article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2012.07.022
– volume: 19
  start-page: 668
  issue: 4
  year: 2019
  ident: 10.1016/j.jmrt.2025.01.231_bib56
  article-title: Differences in the response of additively manufactured titanium alloy to heat treatment - comparison between SLM and EBM
  publication-title: Manufact Technol J
  doi: 10.21062/ujep/353.2019/a/1213-2489/MT/19/4/668
– volume: 790
  year: 2020
  ident: 10.1016/j.jmrt.2025.01.231_bib32
  article-title: Compressive fatigue properties of additive-manufactured Ti-6Al-4V cellular material with different porosities
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2020.139695
– volume: 9
  start-page: 530
  issue: 9
  year: 2019
  ident: 10.1016/j.jmrt.2025.01.231_bib46
  article-title: The influence of electrophoretic deposition parameters and heat treatment on the microstructure and tribological properties of nanocomposite Si3N4/PEEK 708 coatings on titanium alloy
  publication-title: Coatings
  doi: 10.3390/coatings9090530
– volume: 895
  year: 2021
  ident: 10.1016/j.jmrt.2025.01.231_bib35
  article-title: Heat treatment of Ti-6Al-4V alloy manufactured by laser-based powder-bed fusion: process, microstructures, and mechanical properties correlations
  publication-title: J Alloys Compd
– volume: 17
  start-page: 1166
  issue: 5
  year: 2024
  ident: 10.1016/j.jmrt.2025.01.231_bib5
  article-title: Comparison of the microstructural, mechanical and corrosion resistance properties of Ti6Al4V samples manufactured by LENS and subjected to various heat treatments
  publication-title: Materials
  doi: 10.3390/ma17051166
– volume: 32
  year: 2018
  ident: 10.1016/j.jmrt.2025.01.231_bib21
  article-title: Influence of island scanning strategy on microstructures and mechanical properties of direct laser-deposited Ti–6Al–4V structures
  publication-title: Acta Metall Sin
– year: 2006
  ident: 10.1016/j.jmrt.2025.01.231_bib52
– year: 2023
  ident: 10.1016/j.jmrt.2025.01.231_bib10
  article-title: Research progress in metal additive manufacturing: challenges and Opportunities
  publication-title: Int J Interact Des Manuf
  doi: 10.1007/s12008-023-01661-6
– volume: 58
  start-page: 10201
  issue: 24
  year: 2023
  ident: 10.1016/j.jmrt.2025.01.231_bib58
  article-title: Effect of solutionizing and quenching treatment on Ti6Al4V alloy: a study on wear, cavitation erosion and corrosion resistance
  publication-title: J Mater Sci
  doi: 10.1007/s10853-023-08688-w
– volume: 804
  start-page: 163
  year: 2019
  ident: 10.1016/j.jmrt.2025.01.231_bib3
  article-title: Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): process, microstructure, and mechanical properties
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.04.255
– volume: 39
  start-page: 416
  year: 2012
  ident: 10.1016/j.jmrt.2025.01.231_bib53
  article-title: Material properties of Ti6Al4V parts produced by laser metal deposition
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2012.10.056
– volume: 49
  start-page: 271
  year: 2021
  ident: 10.1016/j.jmrt.2025.01.231_bib17
  article-title: Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2021.03.020
– volume: 164
  year: 2019
  ident: 10.1016/j.jmrt.2025.01.231_bib8
  article-title: Additive manufacturing of Ti6Al4V alloy: a review
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.107552
– volume: 20
  start-page: 4365
  year: 2022
  ident: 10.1016/j.jmrt.2025.01.231_bib22
  article-title: Effect of defects on environment-assisted fracture (EAF) behavior of Ti–6Al–4V alloy fabricated by direct energy deposition (DED)
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2022.08.158
– volume: 31
  start-page: 298
  year: 2024
  ident: 10.1016/j.jmrt.2025.01.231_bib12
  article-title: Microstructure and mechanical behavior of rhombic dodecahedron-structured porous β-Ti composites fabricated via laser powder bed fusion
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2024.06.077
– year: 2024
  ident: 10.1016/j.jmrt.2025.01.231_bib38
  article-title: Hydrogen embrittlement of Ti-Al6-V4 alloy manufactured by laser powder bed fusion induced by electrochemical charging
  publication-title: Metals
  doi: 10.3390/met14020251
– ident: 10.1016/j.jmrt.2025.01.231_bib15
  doi: 10.1016/B978-0-323-95062-6.00005-X
– volume: 15
  start-page: 243
  year: 2018
  ident: 10.1016/j.jmrt.2025.01.231_bib27
  article-title: Tensile behavior of Ti-6Al-4V alloy fabricated by selective laser melting: effects of microstructures and as-built surface quality
  publication-title: China Found
  doi: 10.1007/s41230-018-8064-8
– volume: 87
  start-page: 309
  year: 2015
  ident: 10.1016/j.jmrt.2025.01.231_bib54
  article-title: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.12.054
– volume: 163
  start-page: 186
  year: 2019
  ident: 10.1016/j.jmrt.2025.01.231_bib57
  article-title: Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2019.02.028
– volume: 18
  start-page: 4641
  year: 2022
  ident: 10.1016/j.jmrt.2025.01.231_bib20
  article-title: A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2022.04.055
– volume: 841
  year: 2022
  ident: 10.1016/j.jmrt.2025.01.231_bib42
  article-title: Microstructure evolution and mechanical properties of laser additive manufactured Ti6Al4V alloy under nitrogen-argon reactive atmosphere
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2022.143076
– volume: 16
  start-page: 4287
  issue: 12
  year: 2023
  ident: 10.1016/j.jmrt.2025.01.231_bib11
  article-title: Multimetal research in powder bed fusion: a review
  publication-title: Materials
  doi: 10.3390/ma16124287
– volume: 183
  start-page: 32
  year: 2024
  ident: 10.1016/j.jmrt.2025.01.231_bib7
  article-title: Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: microstructure, defects, and mechanical behavior
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2023.11.003
– volume: 26
  start-page: 1727
  year: 2020
  ident: 10.1016/j.jmrt.2025.01.231_bib44
  article-title: Atomization processes of metal powders for 3D printing
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.02.364
– volume: 46
  year: 2021
  ident: 10.1016/j.jmrt.2025.01.231_bib40
  article-title: Columnar-to-equiaxed grain transition in powder bed fusion via mimicking casting solidification and promoting in situ recrystallization
  publication-title: Addit Manuf
– volume: 54
  year: 2022
  ident: 10.1016/j.jmrt.2025.01.231_bib13
  article-title: Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties
  publication-title: Addit Manuf
– volume: 8
  start-page: 36
  year: 2015
  ident: 10.1016/j.jmrt.2025.01.231_bib18
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics
  publication-title: Addit Manuf
– volume: 33
  start-page: 138
  issue: 2
  year: 2017
  ident: 10.1016/j.jmrt.2025.01.231_bib2
  article-title: Mechanical properties of titanium-based Ti–6Al–4V alloys manufactured by powder bed additive manufacture
– volume: 209
  start-page: 2223
  issue: 5
  year: 2009
  ident: 10.1016/j.jmrt.2025.01.231_bib1
  article-title: Machinability of titanium alloys (Ti6Al4V and Ti555.3)
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.06.020
– volume: 11
  start-page: 255
  issue: 2
  year: 2021
  ident: 10.1016/j.jmrt.2025.01.231_bib43
  article-title: Evaluation of heat treatment parameters on microstructure and hardness properties of high-speed selective laser melted Ti6Al4V
  publication-title: Metals
  doi: 10.3390/met11020255
– volume: 31
  start-page: 4
  issue: S1
  year: 2022
  ident: 10.1016/j.jmrt.2025.01.231_bib14
  article-title: Additive manufacturing technologies: current status and future perspectives
  publication-title: J Prosthodont
  doi: 10.1111/jopr.13477
– volume: 672
  start-page: 643
  year: 2016
  ident: 10.1016/j.jmrt.2025.01.231_bib33
  article-title: Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4V alloy after post heat treatments
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.02.183
SSID ssj0001596081
Score 2.350032
Snippet The Ti–6Al–4V alloy is the most widely used titanium-based alloy in aerospace and biomedical applications. Due to the complex shapes required for components in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3825
SubjectTerms Direct energy deposition
Mechanical properties
Microstructure
Powder bed fusion
Thermal stability
Ti–6Al–4V alloy
Title Comparison of direct energy deposition and powder bed fusion technology in the preparation of Ti–6Al–4V alloy
URI https://dx.doi.org/10.1016/j.jmrt.2025.01.231
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3oQn1gfZQ_eJDRJs3kca7EUQS-20lvYZGcxpaYxpIg3_4P_0F_i7G5SK0gPXgIJOyGZDDvfN5kHIVcQSC8SKbekJ4TleQKsJIiQpUiQNkgXUb6KQ94_-OOpdzdjsxYZNrUwKq2y3vvNnq536_pKr9Zmr8iy3iM6tjAIGRqdcjy60FxVlaoivtnNT5yFIUbXs0rVeksJ1LUzJs1r_lKqlEpXd-90-87f_mnD54z2yV4NFunAPM8BaUF-SHY3WggekdfhepAgXUpq3oaCruijApqcLMpzQYvlm4CSJiCoXKkoGa3WgXWa4dkz0KIE0w3c3G-SfX18-oMFHr0nqn7Svx-T6eh2Mhxb9RgFK0XKWVmuTJnDbRYiNEGyxUOfMwQlkkWuHaWhIyPGkbS44IsQ4QlLALjjQhBw5H5oaP0T0s6XOZwSmjLVsE-3Ew08hBrcZzIVSLFEX0AgoEOcRnlxWvcYV6MuFnGTTDaPlcJjpfDYdmJUeIdcr2UK02Fj62rWfJP4l53E6AK2yJ39U-6c7Kgzk3V2QdpVuYJLhCFV0tX0vaut7RsFc94r
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPagH4zPicw_eTENbun0ckUhAgYtguG2W7myEYKlNifHmf_Af-kuc7QMxMRy8NOljmnY62flmOvMNIdfgKSeQoTCUI6XhOBKMsRdglKJAmaBsRPk6D9nru-2hcz9iowpplr0wuqyyWPvzNT1brYsjtUKbtXgyqT2iY_M9n6HRacejG803EQ2Y2rQ7o9ufRAtDkJ4NK9UChpYommfyOq_pS6JrKu2MvtOuW387qBWn09ojuwVapI38gfZJBaIDsrPCIXhIXpvLSYJ0rmj-OhSylj4qoSzKoiKSNJ6_SUjoGCRVC50mo-kys04nuPcMNE4gpwPP7zeYfH18uo0Zbp0nqv_Svx-RYetu0GwbxRwFI8SYMzVsFTJLmMxHbILRlvBdwRCVKBbYZhD6lgqYwKjFBlf6iE_YGEBYNniewOAPLa1-TDaieQQnhIZMM_ZlfKKeg1hDuEyFEmMsWZfgSagSq1QeDwuScT3rYsbLarIp1wrnWuHctDgqvEpuljJxTrGx9mpWfhP-y1A4-oA1cqf_lLsiW-1Br8u7nf7DGdnWZ_IStHOykSYLuEBMko4vM5v7BgXV4Fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+direct+energy+deposition+and+powder+bed+fusion+technology+in+the+preparation+of+Ti%E2%80%936Al%E2%80%934V+alloy&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Medov%C3%A1%2C+Daniela&rft.au=Knaislov%C3%A1%2C+Anna&rft.au=Strakosova%2C+Angelina&rft.au=Moln%C3%A1rov%C3%A1%2C+Orsolya&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=2238-7854&rft.volume=35&rft.spage=3825&rft.epage=3840&rft_id=info:doi/10.1016%2Fj.jmrt.2025.01.231&rft.externalDocID=S2238785425002315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon