Ant Colony Optimization of Interval Type-2 Fuzzy C-Means with Subtractive Clustering and Multi-Round Sampling for Large Data

Fuzzy C-Means (FCM) is widely accepted as a clustering technique. However, it cannot often manage different uncertainties associated with data. Interval Type-2 Fuzzy C-Means (IT2FCM) is an improvement over FCM since it can model and minimize the effect of uncertainty efficiently. However, IT2FCM for...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 10; no. 1
Main Authors Qaiyum, Sana, Aziz, Izzatdin, Jaafar, Jafreezal, Kai, Adam
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2019
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
2156-5570
DOI10.14569/IJACSA.2019.0100106

Cover

Abstract Fuzzy C-Means (FCM) is widely accepted as a clustering technique. However, it cannot often manage different uncertainties associated with data. Interval Type-2 Fuzzy C-Means (IT2FCM) is an improvement over FCM since it can model and minimize the effect of uncertainty efficiently. However, IT2FCM for large data often gets trapped in local optima and fails to find optimal cluster centers. To overcome this challenge an Ant Colony-based Optimization (ACO) is proposed. Another challenge encountered is determining the number of clusters to perform clustering. Subtractive clustering (SC) is an efficient technique to estimate appropriate number of clusters. Though for large datasets the convergence rate of ACO and SC becomes high and thus, it becomes challenging to cluster data and evaluate correct number of clusters. To encounter the challenges of large dataset, Multi-Round Sampling (MRS) technique is proposed. IT2FCM-ACO with SC and MRS technique performs clustering on subsets of data and determines suitable cluster centers and cluster number. The obtained clusters are then extended to the entire dataset. This eliminates the need for IT2FCM to work on the complete dataset. Thus, the objective of this paper is to optimize IT2FCM using ACO algorithm and to estimate the optimal number of clusters using SC while employing MRS to handle the challenges of voluminous data. Results obtained from several clustering evaluation measures shows the improved performance of IT2FCM-ACO-MRS compared to ITFCM-ACO and IT2FCM. Speed up for different sample size of dataset is computed and is found that IT2FCM-ACO-MRS is ≈1–5 times faster than IT2FCM and IT2FCM-ACO for medium datasets whereas for large datasets it is reported to be ≈ 30–150 times faster.
AbstractList Fuzzy C-Means (FCM) is widely accepted as a clustering technique. However, it cannot often manage different uncertainties associated with data. Interval Type-2 Fuzzy C-Means (IT2FCM) is an improvement over FCM since it can model and minimize the effect of uncertainty efficiently. However, IT2FCM for large data often gets trapped in local optima and fails to find optimal cluster centers. To overcome this challenge an Ant Colony-based Optimization (ACO) is proposed. Another challenge encountered is determining the number of clusters to perform clustering. Subtractive clustering (SC) is an efficient technique to estimate appropriate number of clusters. Though for large datasets the convergence rate of ACO and SC becomes high and thus, it becomes challenging to cluster data and evaluate correct number of clusters. To encounter the challenges of large dataset, Multi-Round Sampling (MRS) technique is proposed. IT2FCM-ACO with SC and MRS technique performs clustering on subsets of data and determines suitable cluster centers and cluster number. The obtained clusters are then extended to the entire dataset. This eliminates the need for IT2FCM to work on the complete dataset. Thus, the objective of this paper is to optimize IT2FCM using ACO algorithm and to estimate the optimal number of clusters using SC while employing MRS to handle the challenges of voluminous data. Results obtained from several clustering evaluation measures shows the improved performance of IT2FCM-ACO-MRS compared to ITFCM-ACO and IT2FCM. Speed up for different sample size of dataset is computed and is found that IT2FCM-ACO-MRS is ≈1–5 times faster than IT2FCM and IT2FCM-ACO for medium datasets whereas for large datasets it is reported to be ≈ 30–150 times faster.
Author Qaiyum, Sana
Aziz, Izzatdin
Kai, Adam
Jaafar, Jafreezal
Author_xml – sequence: 1
  givenname: Sana
  surname: Qaiyum
  fullname: Qaiyum, Sana
– sequence: 2
  givenname: Izzatdin
  surname: Aziz
  fullname: Aziz, Izzatdin
– sequence: 3
  givenname: Jafreezal
  surname: Jaafar
  fullname: Jaafar, Jafreezal
– sequence: 4
  givenname: Adam
  surname: Kai
  fullname: Kai, Adam
BookMark eNplUd9LwzAQDqLgr_0HPgR87kzSJmkfR_01mQhugm_l2qUzo0tqkiod_vF2zhfxOLgP7r6Pu-9O0aGxRiF0QcmYJlxkV9OHST6fjBmh2ZhQMqQ4QCeMchFxLsnhD04jSuTrMRp5vyZDxBkTaXyCviYm4Nw21vT4qQ16o7cQtDXY1nhqgnIf0OBF36qI4dtuu-1xHj0qMB5_6vCG510ZHFRBfyicN50fCNqsMJglfuyaoKNn2w14Dpu22TVq6_AM3Erhawhwjo5qaLwa_dYz9HJ7s8jvo9nT3TSfzKKKySRETNWsjImQaU0ryaRKM0iSVCZDIwbOEslpJuRwUkpqkklYkpJlQERd8qqUIj5DfK_bmRb6T2iaonV6A64vKCl-XCz0GioPxc7F4tfFgXe557XOvnfKh2JtO2eGVQsmuIizJE53U8l-qnLWe6fq_-L7F_0V_wZuqYQi
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.14569/IJACSA.2019.0100106
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10.14569/ijacsa.2019.0100106
10_14569_IJACSA_2019_0100106
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c274t-2ef2b30678f1c727e89a448742ef3a52475196739280f097ad0b29a06fb5cb763
IEDL.DBID BENPR
ISSN 2158-107X
2156-5570
IngestDate Wed Oct 01 16:51:00 EDT 2025
Fri Jul 25 02:50:42 EDT 2025
Wed Oct 01 04:49:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-2ef2b30678f1c727e89a448742ef3a52475196739280f097ad0b29a06fb5cb763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2656394386?pq-origsite=%requestingapplication%&accountid=15518
PQID 2656394386
PQPubID 5444811
ParticipantIDs unpaywall_primary_10_14569_ijacsa_2019_0100106
proquest_journals_2656394386
crossref_primary_10_14569_IJACSA_2019_0100106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2019
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.0989184
Snippet Fuzzy C-Means (FCM) is widely accepted as a clustering technique. However, it cannot often manage different uncertainties associated with data. Interval Type-2...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Algorithms
Ant colony optimization
Clustering
Datasets
Sampling
Uncertainty
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9sCJ8hStWjQHrs462TyP0barUtGloixaTpbt2BKwJCs2adVVr_xvZvKAVj1x4BbJikeRP898nzMzZuxtKAod6zjiJiwSHiY65DrzI46xHeGBATQQVCh8Po9PF-HZMlrusCFtDEnPRnV_8I-pWXylis34c7tPfTGv_PGFWqN2j3le1hKlNSpk-QH31o--aFFWTrZHabRMpORkIGfNdnvjrQv3iO3GETL2EdtdzC_yL3TvHMoXTl2oumfqdJos-wo7pBbZ-Os3ZTbUn8jPPOG3Cup-BPtLSx835VrdXKvV6k6Emu2xX0OdT5eY8t1rau2Z7cO2j__145-yJz3FhbzD5DO2Y8vnbG-4PgJ6b_KC3aIB6AzAXQNQORgMABngAbQGYMrPLYZWoMNjQJdXtyVeVxamq4YaPmAYBlUW0FYV8490YxRcKsqZxwFk5_Ce8t7hWNXqJVvMTj5NT3l_GQQ3KJxrHlgXaNI3qfMNki6bZgqlJSp76yYqCkIEVhYnSPdS4USWqELoIFMidjoyGr3oKzYqq9K-ZmBSS77IqVDb0CS-0kbYyKVFonSEwN1nfFhgue56fkjSSgQI-e4sn17mkgAhe0Dss8MBBbL3ABsZIFGeZOEkxWHvDzIeztcB7N58B__6wiEb1T8be4T0qNZvenT_BhqGFjE
  priority: 102
  providerName: Unpaywall
Title Ant Colony Optimization of Interval Type-2 Fuzzy C-Means with Subtractive Clustering and Multi-Round Sampling for Large Data
URI https://www.proquest.com/docview/2656394386
http://thesai.org/Downloads/Volume10No1/Paper_6-Ant_Colony_Optimization_of_Interval_Type_2_Fuzzy.pdf
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB616QEulKcaKNUcuG67cdavA0KuaSgVDVVLpHCydtdrCRScQJ1WqfjxzDjrlgqJkw-29rDz-L4ZzwPgjZKliUwUCqvKWKjYKGHSQSgI20k9CEADyY3Cp-PoeKJOpuF0A8ZdLwyXVXY-sXXU5dxyjvwgIOIxTNUwid4tfgreGsV_V7sVGtqvVijftiPGNmEr4MlYPdg6PBqfnd9mXSTRgaidzUlQx3NN46nvpyMikR58PMnyi4wLvtJ9OWjjpft4dUdCHyzrhV5d69nsLzwaPYZHnkhitpb8E9hw9VPY7pY0oLfZZ_A7qxvMycXVK_xM_uGHb7zEeYVtOpBUDTkaFQGOljc3K8zFqSMAQ07RIjmWpm2kunKYz5Y8VoHADnVdYtu7K855LxNeaK5MpxfEgfETV5fje93o5zAZHX3Jj4VfuSAshaeNCFwVGI4ikmpgidq4JNUUwFH87KqhDgNF4kujmG4xkZVMY11KE6RaRpUJrSFf9QJ69bx2O4A2cWzxlVbGKRsPtLHShVVSxtqEpB59EN3FFov1ZI2CIxIWRLEWRMGCKLwg-rDb3X7h7eyyuNOKPuzfSuTf87591_ZS3zvv5f_PewUP-et1tmUXes2vpXtN_KMxe7CZjD7sedWi52R8ln39Azz02Ok
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lAuvFEDBeYAx203zvqxhwoFt1HSJgH1IeVmdtdrCRScQByqVPw2fhszzrqlQuLWs-WRtTM73zfjeTD2VorcRCYKuZV5zGVsJDeqHXLEdjQPBNBAUKPwaBz1L-TxJJxssN9NLwyVVTY-sXbU-cxSjnw_QOLRUbKTRO_n3zltjaK_q80KDe1XK-QH9Ygx39hx4laXGMItDgaHqO93QdA7Ok_73G8Z4BYjsooHrggMEeekaFtEc5cojTELhoyu6OgwkPjFKoqRRySiECrWuTCB0iIqTGgNXk-Ue49tyY5UGPxtfTgafzq9zvIIfC2qZ4EitNIc1Xji-_eQuKj9wXE3PetSgZnaE-06PruNjzekd3tZzvXqUk-nf-Ff7xF74IkrdNeW9phtuPIJe9gshQDvI56yX92yghRdarmCj-iPvvlGT5gVUKcf0bSBol8eQG95dbWClI8cAiZQShjQkVV149ZPB-l0SWMcEFxBlznUvcL8lPZAwZmmSnh8gJwbhlTNDoe60s_YxZ0c_nO2Wc5Kt8PAJo48TKGlcdLGbW2scGGR5LE2IZpji_HmYLP5epJHRhEQKSJbKyIjRWReES2225x-5u_1Iruxwhbbu9bIv_K-fNV2oW_Je_F_eW_Ydv98NMyGg_HJS3af3lxnenbZZvVj6V4h96nMa29gwD7ftU3_AVaeEWg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9sCJ8hStWjQHrs462TyP0barUtGloixaTpbt2BKwJCs2adVVr_xvZvKAVj1x4BbJikeRP898nzMzZuxtKAod6zjiJiwSHiY65DrzI46xHeGBATQQVCh8Po9PF-HZMlrusCFtDEnPRnV_8I-pWXylis34c7tPfTGv_PGFWqN2j3le1hKlNSpk-QH31o--aFFWTrZHabRMpORkIGfNdnvjrQv3iO3GETL2EdtdzC_yL3TvHMoXTl2oumfqdJos-wo7pBbZ-Os3ZTbUn8jPPOG3Cup-BPtLSx835VrdXKvV6k6Emu2xX0OdT5eY8t1rau2Z7cO2j__145-yJz3FhbzD5DO2Y8vnbG-4PgJ6b_KC3aIB6AzAXQNQORgMABngAbQGYMrPLYZWoMNjQJdXtyVeVxamq4YaPmAYBlUW0FYV8490YxRcKsqZxwFk5_Ce8t7hWNXqJVvMTj5NT3l_GQQ3KJxrHlgXaNI3qfMNki6bZgqlJSp76yYqCkIEVhYnSPdS4USWqELoIFMidjoyGr3oKzYqq9K-ZmBSS77IqVDb0CS-0kbYyKVFonSEwN1nfFhgue56fkjSSgQI-e4sn17mkgAhe0Dss8MBBbL3ABsZIFGeZOEkxWHvDzIeztcB7N58B__6wiEb1T8be4T0qNZvenT_BhqGFjE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ant+Colony+Optimization+of+Interval+Type-2+Fuzzy+C-Means+with+Subtractive+Clustering+and+Multi-Round+Sampling+for+Large+Data&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Qaiyum%2C+Sana&rft.au=Aziz%2C+Izzatdin&rft.au=Jaafar%2C+Jafreezal&rft.au=Kai%2C+Adam&rft.date=2019&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=10&rft.issue=1&rft_id=info:doi/10.14569%2FIJACSA.2019.0100106&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2019_0100106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon