Ant Colony Optimization of Interval Type-2 Fuzzy C-Means with Subtractive Clustering and Multi-Round Sampling for Large Data
Fuzzy C-Means (FCM) is widely accepted as a clustering technique. However, it cannot often manage different uncertainties associated with data. Interval Type-2 Fuzzy C-Means (IT2FCM) is an improvement over FCM since it can model and minimize the effect of uncertainty efficiently. However, IT2FCM for...
Saved in:
| Published in | International journal of advanced computer science & applications Vol. 10; no. 1 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
West Yorkshire
Science and Information (SAI) Organization Limited
2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2158-107X 2156-5570 2156-5570 |
| DOI | 10.14569/IJACSA.2019.0100106 |
Cover
| Abstract | Fuzzy C-Means (FCM) is widely accepted as a clustering technique. However, it cannot often manage different uncertainties associated with data. Interval Type-2 Fuzzy C-Means (IT2FCM) is an improvement over FCM since it can model and minimize the effect of uncertainty efficiently. However, IT2FCM for large data often gets trapped in local optima and fails to find optimal cluster centers. To overcome this challenge an Ant Colony-based Optimization (ACO) is proposed. Another challenge encountered is determining the number of clusters to perform clustering. Subtractive clustering (SC) is an efficient technique to estimate appropriate number of clusters. Though for large datasets the convergence rate of ACO and SC becomes high and thus, it becomes challenging to cluster data and evaluate correct number of clusters. To encounter the challenges of large dataset, Multi-Round Sampling (MRS) technique is proposed. IT2FCM-ACO with SC and MRS technique performs clustering on subsets of data and determines suitable cluster centers and cluster number. The obtained clusters are then extended to the entire dataset. This eliminates the need for IT2FCM to work on the complete dataset. Thus, the objective of this paper is to optimize IT2FCM using ACO algorithm and to estimate the optimal number of clusters using SC while employing MRS to handle the challenges of voluminous data. Results obtained from several clustering evaluation measures shows the improved performance of IT2FCM-ACO-MRS compared to ITFCM-ACO and IT2FCM. Speed up for different sample size of dataset is computed and is found that IT2FCM-ACO-MRS is ≈1–5 times faster than IT2FCM and IT2FCM-ACO for medium datasets whereas for large datasets it is reported to be ≈ 30–150 times faster. |
|---|---|
| AbstractList | Fuzzy C-Means (FCM) is widely accepted as a clustering technique. However, it cannot often manage different uncertainties associated with data. Interval Type-2 Fuzzy C-Means (IT2FCM) is an improvement over FCM since it can model and minimize the effect of uncertainty efficiently. However, IT2FCM for large data often gets trapped in local optima and fails to find optimal cluster centers. To overcome this challenge an Ant Colony-based Optimization (ACO) is proposed. Another challenge encountered is determining the number of clusters to perform clustering. Subtractive clustering (SC) is an efficient technique to estimate appropriate number of clusters. Though for large datasets the convergence rate of ACO and SC becomes high and thus, it becomes challenging to cluster data and evaluate correct number of clusters. To encounter the challenges of large dataset, Multi-Round Sampling (MRS) technique is proposed. IT2FCM-ACO with SC and MRS technique performs clustering on subsets of data and determines suitable cluster centers and cluster number. The obtained clusters are then extended to the entire dataset. This eliminates the need for IT2FCM to work on the complete dataset. Thus, the objective of this paper is to optimize IT2FCM using ACO algorithm and to estimate the optimal number of clusters using SC while employing MRS to handle the challenges of voluminous data. Results obtained from several clustering evaluation measures shows the improved performance of IT2FCM-ACO-MRS compared to ITFCM-ACO and IT2FCM. Speed up for different sample size of dataset is computed and is found that IT2FCM-ACO-MRS is ≈1–5 times faster than IT2FCM and IT2FCM-ACO for medium datasets whereas for large datasets it is reported to be ≈ 30–150 times faster. |
| Author | Qaiyum, Sana Aziz, Izzatdin Kai, Adam Jaafar, Jafreezal |
| Author_xml | – sequence: 1 givenname: Sana surname: Qaiyum fullname: Qaiyum, Sana – sequence: 2 givenname: Izzatdin surname: Aziz fullname: Aziz, Izzatdin – sequence: 3 givenname: Jafreezal surname: Jaafar fullname: Jaafar, Jafreezal – sequence: 4 givenname: Adam surname: Kai fullname: Kai, Adam |
| BookMark | eNplUd9LwzAQDqLgr_0HPgR87kzSJmkfR_01mQhugm_l2qUzo0tqkiod_vF2zhfxOLgP7r6Pu-9O0aGxRiF0QcmYJlxkV9OHST6fjBmh2ZhQMqQ4QCeMchFxLsnhD04jSuTrMRp5vyZDxBkTaXyCviYm4Nw21vT4qQ16o7cQtDXY1nhqgnIf0OBF36qI4dtuu-1xHj0qMB5_6vCG510ZHFRBfyicN50fCNqsMJglfuyaoKNn2w14Dpu22TVq6_AM3Erhawhwjo5qaLwa_dYz9HJ7s8jvo9nT3TSfzKKKySRETNWsjImQaU0ryaRKM0iSVCZDIwbOEslpJuRwUkpqkklYkpJlQERd8qqUIj5DfK_bmRb6T2iaonV6A64vKCl-XCz0GioPxc7F4tfFgXe557XOvnfKh2JtO2eGVQsmuIizJE53U8l-qnLWe6fq_-L7F_0V_wZuqYQi |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.14569/IJACSA.2019.0100106 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10.14569/ijacsa.2019.0100106 10_14569_IJACSA_2019_0100106 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB PUEGO RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c274t-2ef2b30678f1c727e89a448742ef3a52475196739280f097ad0b29a06fb5cb763 |
| IEDL.DBID | BENPR |
| ISSN | 2158-107X 2156-5570 |
| IngestDate | Wed Oct 01 16:51:00 EDT 2025 Fri Jul 25 02:50:42 EDT 2025 Wed Oct 01 04:49:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c274t-2ef2b30678f1c727e89a448742ef3a52475196739280f097ad0b29a06fb5cb763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2656394386?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2656394386 |
| PQPubID | 5444811 |
| ParticipantIDs | unpaywall_primary_10_14569_ijacsa_2019_0100106 proquest_journals_2656394386 crossref_primary_10_14569_IJACSA_2019_0100106 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-00-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 2019-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2019 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.0989184 |
| Snippet | Fuzzy C-Means (FCM) is widely accepted as a clustering technique. However, it cannot often manage different uncertainties associated with data. Interval Type-2... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| SubjectTerms | Algorithms Ant colony optimization Clustering Datasets Sampling Uncertainty |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9sCJ8hStWjQHrs462TyP0barUtGloixaTpbt2BKwJCs2adVVr_xvZvKAVj1x4BbJikeRP898nzMzZuxtKAod6zjiJiwSHiY65DrzI46xHeGBATQQVCh8Po9PF-HZMlrusCFtDEnPRnV_8I-pWXylis34c7tPfTGv_PGFWqN2j3le1hKlNSpk-QH31o--aFFWTrZHabRMpORkIGfNdnvjrQv3iO3GETL2EdtdzC_yL3TvHMoXTl2oumfqdJos-wo7pBbZ-Os3ZTbUn8jPPOG3Cup-BPtLSx835VrdXKvV6k6Emu2xX0OdT5eY8t1rau2Z7cO2j__145-yJz3FhbzD5DO2Y8vnbG-4PgJ6b_KC3aIB6AzAXQNQORgMABngAbQGYMrPLYZWoMNjQJdXtyVeVxamq4YaPmAYBlUW0FYV8490YxRcKsqZxwFk5_Ce8t7hWNXqJVvMTj5NT3l_GQQ3KJxrHlgXaNI3qfMNki6bZgqlJSp76yYqCkIEVhYnSPdS4USWqELoIFMidjoyGr3oKzYqq9K-ZmBSS77IqVDb0CS-0kbYyKVFonSEwN1nfFhgue56fkjSSgQI-e4sn17mkgAhe0Dss8MBBbL3ABsZIFGeZOEkxWHvDzIeztcB7N58B__6wiEb1T8be4T0qNZvenT_BhqGFjE priority: 102 providerName: Unpaywall |
| Title | Ant Colony Optimization of Interval Type-2 Fuzzy C-Means with Subtractive Clustering and Multi-Round Sampling for Large Data |
| URI | https://www.proquest.com/docview/2656394386 http://thesai.org/Downloads/Volume10No1/Paper_6-Ant_Colony_Optimization_of_Interval_Type_2_Fuzzy.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB616QEulKcaKNUcuG67cdavA0KuaSgVDVVLpHCydtdrCRScQJ1WqfjxzDjrlgqJkw-29rDz-L4ZzwPgjZKliUwUCqvKWKjYKGHSQSgI20k9CEADyY3Cp-PoeKJOpuF0A8ZdLwyXVXY-sXXU5dxyjvwgIOIxTNUwid4tfgreGsV_V7sVGtqvVijftiPGNmEr4MlYPdg6PBqfnd9mXSTRgaidzUlQx3NN46nvpyMikR58PMnyi4wLvtJ9OWjjpft4dUdCHyzrhV5d69nsLzwaPYZHnkhitpb8E9hw9VPY7pY0oLfZZ_A7qxvMycXVK_xM_uGHb7zEeYVtOpBUDTkaFQGOljc3K8zFqSMAQ07RIjmWpm2kunKYz5Y8VoHADnVdYtu7K855LxNeaK5MpxfEgfETV5fje93o5zAZHX3Jj4VfuSAshaeNCFwVGI4ikmpgidq4JNUUwFH87KqhDgNF4kujmG4xkZVMY11KE6RaRpUJrSFf9QJ69bx2O4A2cWzxlVbGKRsPtLHShVVSxtqEpB59EN3FFov1ZI2CIxIWRLEWRMGCKLwg-rDb3X7h7eyyuNOKPuzfSuTf87591_ZS3zvv5f_PewUP-et1tmUXes2vpXtN_KMxe7CZjD7sedWi52R8ln39Azz02Ok |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lAuvFEDBeYAx203zvqxhwoFt1HSJgH1IeVmdtdrCRScQByqVPw2fhszzrqlQuLWs-WRtTM73zfjeTD2VorcRCYKuZV5zGVsJDeqHXLEdjQPBNBAUKPwaBz1L-TxJJxssN9NLwyVVTY-sXbU-cxSjnw_QOLRUbKTRO_n3zltjaK_q80KDe1XK-QH9Ygx39hx4laXGMItDgaHqO93QdA7Ok_73G8Z4BYjsooHrggMEeekaFtEc5cojTELhoyu6OgwkPjFKoqRRySiECrWuTCB0iIqTGgNXk-Ue49tyY5UGPxtfTgafzq9zvIIfC2qZ4EitNIc1Xji-_eQuKj9wXE3PetSgZnaE-06PruNjzekd3tZzvXqUk-nf-Ff7xF74IkrdNeW9phtuPIJe9gshQDvI56yX92yghRdarmCj-iPvvlGT5gVUKcf0bSBol8eQG95dbWClI8cAiZQShjQkVV149ZPB-l0SWMcEFxBlznUvcL8lPZAwZmmSnh8gJwbhlTNDoe60s_YxZ0c_nO2Wc5Kt8PAJo48TKGlcdLGbW2scGGR5LE2IZpji_HmYLP5epJHRhEQKSJbKyIjRWReES2225x-5u_1Iruxwhbbu9bIv_K-fNV2oW_Je_F_eW_Ydv98NMyGg_HJS3af3lxnenbZZvVj6V4h96nMa29gwD7ftU3_AVaeEWg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9sCJ8hStWjQHrs462TyP0barUtGloixaTpbt2BKwJCs2adVVr_xvZvKAVj1x4BbJikeRP898nzMzZuxtKAod6zjiJiwSHiY65DrzI46xHeGBATQQVCh8Po9PF-HZMlrusCFtDEnPRnV_8I-pWXylis34c7tPfTGv_PGFWqN2j3le1hKlNSpk-QH31o--aFFWTrZHabRMpORkIGfNdnvjrQv3iO3GETL2EdtdzC_yL3TvHMoXTl2oumfqdJos-wo7pBbZ-Os3ZTbUn8jPPOG3Cup-BPtLSx835VrdXKvV6k6Emu2xX0OdT5eY8t1rau2Z7cO2j__145-yJz3FhbzD5DO2Y8vnbG-4PgJ6b_KC3aIB6AzAXQNQORgMABngAbQGYMrPLYZWoMNjQJdXtyVeVxamq4YaPmAYBlUW0FYV8490YxRcKsqZxwFk5_Ce8t7hWNXqJVvMTj5NT3l_GQQ3KJxrHlgXaNI3qfMNki6bZgqlJSp76yYqCkIEVhYnSPdS4USWqELoIFMidjoyGr3oKzYqq9K-ZmBSS77IqVDb0CS-0kbYyKVFonSEwN1nfFhgue56fkjSSgQI-e4sn17mkgAhe0Dss8MBBbL3ABsZIFGeZOEkxWHvDzIeztcB7N58B__6wiEb1T8be4T0qNZvenT_BhqGFjE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ant+Colony+Optimization+of+Interval+Type-2+Fuzzy+C-Means+with+Subtractive+Clustering+and+Multi-Round+Sampling+for+Large+Data&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Qaiyum%2C+Sana&rft.au=Aziz%2C+Izzatdin&rft.au=Jaafar%2C+Jafreezal&rft.au=Kai%2C+Adam&rft.date=2019&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=10&rft.issue=1&rft_id=info:doi/10.14569%2FIJACSA.2019.0100106&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2019_0100106 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |