A Radial Basis Network-based Early Warning Algorithm for Physical Injuries in Marathon Athletes
For marathon runners, a single injury may affect their lifelong athletic career, so their injury management is very important. The current injury management for marathon runners has a certain lag, and the current injury warning is mainly based on manual teams, which is costly and poorly automated. T...
        Saved in:
      
    
          | Published in | International journal of advanced computer science & applications Vol. 14; no. 4 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        West Yorkshire
          Science and Information (SAI) Organization Limited
    
        2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2158-107X 2156-5570 2156-5570  | 
| DOI | 10.14569/IJACSA.2023.0140404 | 
Cover
| Abstract | For marathon runners, a single injury may affect their lifelong athletic career, so their injury management is very important. The current injury management for marathon runners has a certain lag, and the current injury warning is mainly based on manual teams, which is costly and poorly automated. To solve these problems, the study proposes a marathon athlete physical injury warning algorithm based on inertia weight adjustment optimized radial basis network. Particle swarm optimization technology has also been incorporated into early warning algorithms. Finally, an athlete injury and disease early warning model is constructed based on the algorithm. The results of performance tests show that the algorithm has a minimum fitness function value of 0.13, which is significantly lower than the current algorithm used for comparison. In the test with real data, the MAPE of the proposed algorithm was as low as 7.598% and the agreement of the hazard score results with the expert human assessment reached 100%. The results of the study indicate the practicality of the algorithm to assist work teams and perform early warning of physical injuries in athletes. However, the high number of iterations required is a limitation awaiting resolution. | 
    
|---|---|
| AbstractList | For marathon runners, a single injury may affect their lifelong athletic career, so their injury management is very important. The current injury management for marathon runners has a certain lag, and the current injury warning is mainly based on manual teams, which is costly and poorly automated. To solve these problems, the study proposes a marathon athlete physical injury warning algorithm based on inertia weight adjustment optimized radial basis network. Particle swarm optimization technology has also been incorporated into early warning algorithms. Finally, an athlete injury and disease early warning model is constructed based on the algorithm. The results of performance tests show that the algorithm has a minimum fitness function value of 0.13, which is significantly lower than the current algorithm used for comparison. In the test with real data, the MAPE of the proposed algorithm was as low as 7.598% and the agreement of the hazard score results with the expert human assessment reached 100%. The results of the study indicate the practicality of the algorithm to assist work teams and perform early warning of physical injuries in athletes. However, the high number of iterations required is a limitation awaiting resolution. | 
    
| Author | Jiao, Ruisheng Luo, Juan  | 
    
| Author_xml | – sequence: 1 givenname: Ruisheng surname: Jiao fullname: Jiao, Ruisheng – sequence: 2 givenname: Juan surname: Luo fullname: Luo, Juan  | 
    
| BookMark | eNplkctOwzAQRS1UJErpH7CwxDrFjzixl6EqUFQe4iHYWU7iNC6pU-xEVf6e0LBBzCxmFvdcje6cgpGtrQbgHKMZDlkkLpd3yfwlmRFE6AzhEPV9BMYEsyhgLEajw84DjOKPEzD1foP6ooJEnI6BTOCzyo2q4JXyxsMH3exr9xmkyuscLpSrOviunDV2DZNqXTvTlFtY1A4-lZ03WQ8u7aZ1RntoLLxXTjVlbWHSlJVutD8Dx4WqvJ7-zgl4u168zm-D1ePNcp6sgozEYRMQxqlWNI10xAUtwpxFkUBaUKIFiXnKRZZiLnTOMQ45KXKNKaE8DVPC4khhOgFs8G3tTnV7VVVy58xWuU5iJA9BSbNRmVfyJyj5G1TPXQzcztVfrfaN3NSts_2pknAsBGaCkV4VDqrM1d47Xfw3H77w1_wbquh5sg | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| DOI | 10.14569/IJACSA.2023.0140404 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2156-5570 | 
    
| ExternalDocumentID | 10.14569/ijacsa.2023.0140404 10_14569_IJACSA_2023_0140404  | 
    
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB PUEGO RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c274t-2583ea3b6e6893f4d56690e932e9278b89cb189ed811482fde13238b4b2576a13 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2158-107X 2156-5570  | 
    
| IngestDate | Tue Aug 19 22:07:50 EDT 2025 Fri Jul 25 05:18:12 EDT 2025 Wed Oct 01 01:54:35 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c274t-2583ea3b6e6893f4d56690e932e9278b89cb189ed811482fde13238b4b2576a13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2819915952?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2819915952 | 
    
| PQPubID | 5444811 | 
    
| ParticipantIDs | unpaywall_primary_10_14569_ijacsa_2023_0140404 proquest_journals_2819915952 crossref_primary_10_14569_IJACSA_2023_0140404  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-00-00 | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – year: 2023 text: 2023-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | West Yorkshire | 
    
| PublicationPlace_xml | – name: West Yorkshire | 
    
| PublicationTitle | International journal of advanced computer science & applications | 
    
| PublicationYear | 2023 | 
    
| Publisher | Science and Information (SAI) Organization Limited | 
    
| Publisher_xml | – name: Science and Information (SAI) Organization Limited | 
    
| SSID | ssj0000392683 | 
    
| Score | 2.2083802 | 
    
| Snippet | For marathon runners, a single injury may affect their lifelong athletic career, so their injury management is very important. The current injury management... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database  | 
    
| SubjectTerms | Algorithms Athletes Injuries Marathons Particle swarm optimization Performance tests Teams  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QEulE-x_UA-cHWWJI7XPobSqq3EagUsLCfLTpx2y5Ksml2h8g_413hiZwH1xIFbcohHyozt9zzjNwCvDI9NwgpBdSw0ZWmF-V1HVooxr6pEJ1z4aosJP5uxi3k234H-QN-Bnlb7DP5bFItvdNmOPnXzNGaTho2meuW4O6O5eo9395fqjW4XrZr4mulu6S9Vpw2sPvujBZUvLxtHtK--Rauyuge7PHOofQC7s8k0_4K95xyFoahE5Z9R7XQ8D7fsHLyQo8W1LlrUKErSqJOjCV3dtrvYb2h6f1Ov9O13vVz-sUud7sHP_q6PL075Gm3WJip-3JV-_O8_4BE8DFCX5D42H8OOrZ_AXt9GgoRV5SmonHgjpDNCghHaGSGdERKMkK0R4sA2mYYgI-f1Nbbea8miJu9QzPyqqUmOdSIOST-D2enJx-MzGvo-0MJx5DVNMpFanRpuuUNTFSsd5JSvrUOaViZjYYQsTCykLQWSuaQqraPUqTDMIHvScfocBnVT2xdApDTI2LiDwZZlmZVFwcq0EhazqYynQ6C9H9XKy3sopEXod3V-kR9_yBX6XQW_D-Gwd7YKk71VmIuUDhZmyRCibQDcHc_H0V_j7f_rBwfwAF_9IdAhDNY3G3vkYNHavAwR_QttIw9I priority: 102 providerName: Unpaywall  | 
    
| Title | A Radial Basis Network-based Early Warning Algorithm for Physical Injuries in Marathon Athletes | 
    
| URI | https://www.proquest.com/docview/2819915952 http://thesai.org/Downloads/Volume14No4/Paper_4-A_Radial_Basis_Network_based_Early_Warning_Algorithm.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2VcoALO6JQkA9c0yWLax8QClXLIhFVQEU5RXbiQFFJCylC_D2exCkgJE65RJYyE3veLH4P4FjStrTdiFmizYTlOgn2d3WyEnVoktjCpqyYtgjoxdC9GnmjCgTlXRgcqyzPxPygjqcR1sib2PDhOvZ69uns1ULVKOyulhIawkgrxCc5xdgSLNvIjFWF5bNeMLhZVF1aGg7QnJtThzrkNe2MzH06DSR48_LK7976DZQUb-TEM0a_bRGvvkHoyns6E58fYjL5EY_6G7BmgCTxC89vQkWlW7BeijQQs2e3IfTJDfIPTMiZyMYZCYq5bwvDV0xyfmNyX5RHiD951J88f3ohGsqSgXEhuUyfUdguI-OUXCNV-NM0JT5OYWicugPDfu-ue2EZVQUr0hno3LI95ijhSKqoxiqJG2tAx1tK4zjF7Q6TjEeyzbiKGaZKdhIrnbA6TLoScxPRdnahmk5TtQeEc4n5ENUgU7mep3gUubGTMIW9Spc6NbBK24WzgjwjxKQDbR0Wtg7R1qGxdQ3qpYFDs5Wy8NvxNWgsjP53vfGziDLxa739_9c7gFV8uyio1KE6f3tXhxpizOURLLH--ZH5e_RzGAz8hy_Kjs2B | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2V9lAufKMGCvgAx00br9exDxXallZJP6KqtCI3Y-96aaqwCWyqqn-O38bMrjcFIXHrD8gc3k48783YbwDeO9lzXGQqsj1lIxEXNN9FsZL1ZVFwy6VqbluM5OBCHI6T8Qr8at_C0LXK9kysD-p8llGPfIsGPhprb8I_zn9EtDWKpqvtCg0bVivkO7XFWHjYceRvb1DCVTvDT_i9P3B-sH--N4jCloEoQ0W2iHiiYm9jJ73E2l2IHAmO3vbIa7zmfeWUzlxPaZ8rkg68yD0KuFg54Yir216McR_AmoiFRvG3trs_Oj1bdnm2kX7I2gsUSyv5qPbH4f0eEhe9NTxM9z6nXVph3q2NbsK-uGV9vCO969fl3N7e2On0j_p38AQeBeLK0ibTnsKKL5_B43YpBAtnxHMwKTsjv4Mp27XVpGKj5p55ROUyZ7WfMvvStGNYOv2GEC8uvzOkzuw0pAwblle0SK9ik5KdkDX55axkKd36QF78Ai7uBd-XsFrOSr8BTGtH-ksiqfUiSbzOMpHHhfI0GxUy7kDUYmfmjVmHIZFDWJsGa0NYm4B1BzZbgE3461bmLtE60F2C_m-8yZXNKvtXvFf_j_cO1gfnJ8fmeDg6eg0P6ZdNM2cTVhc_r_0bpDcL9zbkEIOv9522vwFqcwYa | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QEulE-x_UA-cHWWJI7XPobSqq3EagUsLCfLTpx2y5Ksml2h8g_413hiZwH1xIFbcohHyozt9zzjNwCvDI9NwgpBdSw0ZWmF-V1HVooxr6pEJ1z4aosJP5uxi3k234H-QN-Bnlb7DP5bFItvdNmOPnXzNGaTho2meuW4O6O5eo9395fqjW4XrZr4mulu6S9Vpw2sPvujBZUvLxtHtK--Rauyuge7PHOofQC7s8k0_4K95xyFoahE5Z9R7XQ8D7fsHLyQo8W1LlrUKErSqJOjCV3dtrvYb2h6f1Ov9O13vVz-sUud7sHP_q6PL075Gm3WJip-3JV-_O8_4BE8DFCX5D42H8OOrZ_AXt9GgoRV5SmonHgjpDNCghHaGSGdERKMkK0R4sA2mYYgI-f1Nbbea8miJu9QzPyqqUmOdSIOST-D2enJx-MzGvo-0MJx5DVNMpFanRpuuUNTFSsd5JSvrUOaViZjYYQsTCykLQWSuaQqraPUqTDMIHvScfocBnVT2xdApDTI2LiDwZZlmZVFwcq0EhazqYynQ6C9H9XKy3sopEXod3V-kR9_yBX6XQW_D-Gwd7YKk71VmIuUDhZmyRCibQDcHc_H0V_j7f_rBwfwAF_9IdAhDNY3G3vkYNHavAwR_QttIw9I | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Radial+Basis+Network-based+Early+Warning+Algorithm+for+Physical+Injuries+in+Marathon+Athletes&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Jiao%2C+Ruisheng&rft.au=Luo%2C+Juan&rft.date=2023&rft.pub=Science+and+Information+%28SAI%29+Organization+Limited&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=14&rft.issue=4&rft_id=info:doi/10.14569%2FIJACSA.2023.0140404 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |