Study of the Load Forecasting based on AKDC and LSTM algorithms

As one of the traditional research subjects of power system, load forecasting has always been a hot research direction of related experts and scholars. This paper uses an extended algorithm combining the advantages of adaptive K-means algorithm and distributed clustering algorithm, improves the trad...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2589; no. 1; pp. 12035 - 12041
Main Authors Ding, Mingming, Wang, Zhenshu, Zhou, Xinhui, Wang, Kang
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.09.2023
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
1742-6596
DOI10.1088/1742-6596/2589/1/012035

Cover

Abstract As one of the traditional research subjects of power system, load forecasting has always been a hot research direction of related experts and scholars. This paper uses an extended algorithm combining the advantages of adaptive K-means algorithm and distributed clustering algorithm, improves the traditional K-means algorithm, and uses LSTM algorithm to build a load prediction model. LSTMS can learn the advantages of long distance time series dependence to recognize load patterns from the horizontal (time dimension). The simulation results show that the LSTM algorithm based on Adam optimizer improves the accuracy of load prediction, and the proposed algorithm is verified.
AbstractList As one of the traditional research subjects of power system, load forecasting has always been a hot research direction of related experts and scholars. This paper uses an extended algorithm combining the advantages of adaptive K-means algorithm and distributed clustering algorithm, improves the traditional K-means algorithm, and uses LSTM algorithm to build a load prediction model. LSTMS can learn the advantages of long distance time series dependence to recognize load patterns from the horizontal (time dimension). The simulation results show that the LSTM algorithm based on Adam optimizer improves the accuracy of load prediction, and the proposed algorithm is verified.
Author Zhou, Xinhui
Wang, Kang
Ding, Mingming
Wang, Zhenshu
Author_xml – sequence: 1
  givenname: Mingming
  surname: Ding
  fullname: Ding, Mingming
  organization: School of Electrical Engineering, Shandong University , China
– sequence: 2
  givenname: Zhenshu
  surname: Wang
  fullname: Wang, Zhenshu
  organization: School of Electrical Engineering, Shandong University , China
– sequence: 3
  givenname: Xinhui
  surname: Zhou
  fullname: Zhou, Xinhui
  organization: School of Electrical Engineering, Shandong University , China
– sequence: 4
  givenname: Kang
  surname: Wang
  fullname: Wang, Kang
  organization: School of Electrical Engineering, Shandong University , China
BookMark eNqVkF9LwzAUxYMouE0_gwHfhNkkbZrkSUZ1_qsobO8ha9Kto2tq0iL79rZUJoIg3vtwAzm_w71nDI4rWxkALjC6xojzALOITGMq4oBQLgIcIExQSI_A6PBzfHhzfgrG3m8RCrtiI3CzaFq9hzaHzcbA1CoN59aZTPmmqNZwpbzR0FZw9nybQFVpmC6WL1CVa-uKZrPzZ-AkV6U3519zApbzu2XyME1f7x-TWTrNCIvolGLGIoVChnkW0WilQmW6sSJda0K0YlRwQeMc8Rjzbn2MlSGxYEpQnYlwAvhg21a12n-ospS1K3bK7SVGss9B9hfK_lrZ5yCxHHLo0MsBrZ19b41v5Na2ruqWlYTHgnDKUNyp2KDKnPXemfwf_uFAFrb-tv6buvqFenpLFj-FstZ5-AmOF4ic
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1088/1742-6596/2589/1/012035
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest One Academic
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10.1088/1742-6596/2589/1/012035
10_1088_1742_6596_2589_1_012035
JPCS_2589_1_012035
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
CITATION
OVT
PHGZM
PHGZT
PQGLB
PUEGO
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1WK
AALHV
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
C1A
EJD
FEDTE
H13
HVGLF
JCGBZ
M48
Q02
S3P
UNPAY
ID FETCH-LOGICAL-c2745-51774a03718c454ba3ae54bb2b2bd22da7598956f0861803511ae2697a95dc93
IEDL.DBID IOP
ISSN 1742-6588
1742-6596
IngestDate Sun Sep 07 10:57:38 EDT 2025
Sun Oct 05 00:01:15 EDT 2025
Wed Oct 01 03:08:00 EDT 2025
Wed Aug 21 03:40:51 EDT 2024
Wed Sep 27 04:07:33 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2745-51774a03718c454ba3ae54bb2b2bd22da7598956f0861803511ae2697a95dc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/2589/1/012035
PQID 2869285706
PQPubID 4998668
PageCount 7
ParticipantIDs crossref_primary_10_1088_1742_6596_2589_1_012035
unpaywall_primary_10_1088_1742_6596_2589_1_012035
proquest_journals_2869285706
iop_journals_10_1088_1742_6596_2589_1_012035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 20230901
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Wei (JPCS_2589_1_012035bib4) 2021; 33
H. U M M, X. L. (JPCS_2589_1_012035bib12) 2019[C]
Chen (JPCS_2589_1_012035bib5) 2018; 36
Liqin (JPCS_2589_1_012035bib8) 2022; 2378
Gong (JPCS_2589_1_012035bib1) 2021; 41
Chen (JPCS_2589_1_012035bib3) 2020; 44
(JPCS_2589_1_012035bib6) 1999
Wei (JPCS_2589_1_012035bib9) 2022; 2166
H. M, F. S (JPCS_2589_1_012035bib11) 1999
Peiqiang (JPCS_2589_1_012035bib10) 2005; 25
Jixiang (JPCS_2589_1_012035bib7) 2019; 0
Pang (JPCS_2589_1_012035bib2) 2021; 40
References_xml – year: 1999
  ident: JPCS_2589_1_012035bib11
  article-title: Daily load curve clustering and prediction by neural model tool box for power systems with non-stochastic load components
  publication-title: 1999 European Control Conference (ECC), 1999[C]
– volume: 40
  start-page: 175
  year: 2021
  ident: JPCS_2589_1_012035bib2
  article-title: Short-term power load forecasting based on LSTM recurrent neural network
  publication-title: Electric Power Engineering Technology
– volume: 0
  start-page: 131
  year: 2019
  ident: JPCS_2589_1_012035bib7
  article-title: Short-term Load Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model[J]
  publication-title: Automation of Electric Power Systems
– year: 1999
  ident: JPCS_2589_1_012035bib6
– volume: 44
  start-page: 614
  year: 2020
  ident: JPCS_2589_1_012035bib3
  article-title: Ultra Short-term Power Load Forecasting Based on Combined LSTM-XGBoost Model
  publication-title: Power System Technology
– volume: 41
  start-page: 81
  year: 2021
  ident: JPCS_2589_1_012035bib1
  article-title: Short-term power load forecasting method based on Attention-BiLSTM-LSTM neural network
  publication-title: journal of Computer Applications
– volume: 25
  start-page: 73
  year: 2005
  ident: JPCS_2589_1_012035bib10
  article-title: The Characteristics Classification and Synthesis of Power Load Based on Fuzzy Clustering[J]
  publication-title: Proceedings of the Csee
– volume: 33
  start-page: 1866
  year: 2021
  ident: JPCS_2589_1_012035bib4
  article-title: Short-term Power Load Forecasting Based on LSTM Neural Network Optimized by Improved PSO
  publication-title: in Journal of System Simulation
– volume: 2378
  year: 2022
  ident: JPCS_2589_1_012035bib8
  article-title: Analysis of Power Load Characteristics Based on Adaptive Ensemble Clustering Algorithm[J]
  publication-title: Journal of Physics: Conference Series
– year: 2019[C]
  ident: JPCS_2589_1_012035bib12
  article-title: Composite Load Model and Transfer Function Based Load Model for High Motor Composition Load
  publication-title: 2019 IEEE Electrical Power and Energy Conference (EPEC)
– volume: 36
  start-page: 39
  year: 2018
  ident: JPCS_2589_1_012035bib5
  article-title: Short-Term Electrical Load Forecasting Based on Deep Learning LSTM Networks
  publication-title: in Electronics Design&Application
– volume: 2166
  year: 2022
  ident: JPCS_2589_1_012035bib9
  article-title: Research on Load Characteristic Data Clustering Based on Transfer Learning[J]
  publication-title: Journal of Physics: Conference Series
SSID ssj0033337
Score 2.3420103
Snippet As one of the traditional research subjects of power system, load forecasting has always been a hot research direction of related experts and scholars. This...
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12035
SubjectTerms Adaptive algorithms
Clustering
Forecasting
Pattern recognition
Physics
Prediction models
Time dependence
SummonAdditionalLinks – databaseName: ProQuest One Academic
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgUVUuqPShbqGVJXqstYljJ_ahQrAFIR4rVLYSN2tiO7TSNgndRRX_nnEebPdSSA6RolGUzDgz39jj-Qj5XKhI5VYUTEtImEDMwTTonKE79koVkeUQ5jsuJunJD3F6La_XyKTfCxPKKnuf2DhqV9kwRz7iKtU8dGNP9-tbFlijwupqT6EBHbWC-9q0GFsnGzx0xhqQjcOjyeX33jcneGTtFknOMPaqvuIL08Dunk5HXCo9ikdhW2nDAreMV-u_qnoFir68K2u4_wuz2T9R6fgV2ergJD1o7b9N1nz5mrxoyjrt_A1C8dA9llYFRZxHzytwNHBxWpiHamcaQpijVUkPzr6NKZSOnl9NLyjMbvDLFz9_z9-S6fHRdHzCOsoEZjG9lEzGCOcgtOFTVkiRQwIeLznH03HuIJNaYUpUYCYTq2YVETxPdQZaOquTd2RQVqV_T6izEnKbZNInmci9yIUq0HYRZNYLERVDEvV6MXXbGMM0C9pKmaBKE1RpgipNbFpVDskX1J_pfpL50-J7K-Knl-OrVQlTO3yP3d4cS9HlYBmS-NFEz33PD_9_5A7ZDJzzbaHZLhks_tz5j4hMFvmnbrg9AE8_1lA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BEYKXsQ0Q3WCyxB4Xmjh2Yj9WHQjxpUoUCZ6ss-MAWpdUtBWCvx67aRhBmjZQHiJF5-hy5-R-l_sC-J6LUGjD8kByjAPmMEcgUerAfY6tEHloKPr_HadnyeEFO7rklwvQqWthGvF755w5wEyDhMukQ7mQnajjiz1jvghL_mLYgqWLs373qip79JSzSZPPq-qMrr_fqWGPFm_LUQNqrkyLET7c43D4wuocrEG_5rdKNvm1N53oPfP4qpXjGx7oI3yYI1DSrbbMJ1iwxWdYnmWCmvG6Q---4Swpc-KgITkpMSN-fKfBsU-QJt7qZaQsSPf4Z49gkZGT88EpweF1eXc7ufk93oDBwf6gdxjMpywExnmkPOCRQ4DoO_cJwzjTGKN1J03dkVGaYcqlcF5U7pyfSMwCj2hpIlOUPDMy3oRWURZ2C0hmOGoTp9zGKdOWaSZyp-4QU2MZC_M2hLWo1ajqpaFmMXAhlBeL8mJRXiwqUpVY2vDDqUTN36vxv8l3G-RH_d55k0KNMsfHdq3hP6RUJJL6bv9JG6Jnrf8vn1_eseYrrPrZ9VXC2ja0JndTu-MQzkR_m-_qJxl846w
  priority: 102
  providerName: Unpaywall
Title Study of the Load Forecasting based on AKDC and LSTM algorithms
URI https://iopscience.iop.org/article/10.1088/1742-6596/2589/1/012035
https://www.proquest.com/docview/2869285706
https://doi.org/10.1088/1742-6596/2589/1/012035
UnpaywallVersion publishedVersion
Volume 2589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVIOP
  databaseName: AUTh Library subscriptions: IOP Publishing
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: IOP
  dateStart: 20040601
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLboJgQv3CcKo7IEj6RNfEmOH0tZmcbWVawT48myHQcQJanWVgh-PcdNAisSAkQiJVF0HB1_cezP8bkQ8qyAGKwTRaSk4ZFAzhEpo2yE3bEHKGLHTPjfcTJJD8_F0YW8uOoLUy2arr-Pl3Wg4BrCxiAOBsihWZRKlQ6YBDVIBsH_k8sO2eWA_Dg48Z1O296Y45bVTpGhEEBr4_X7B22NUB3UYot83liXC_P1i5nPr4xD49vEtTWozU8-9dcr23fffgnu-H9VvENuNTSVDusSd8k1X94j1zfmom55Hyl-iEpLq4Iif6THlclpyPHpzDJYUdMwNOa0Kunw9csRNWVOj89mJ9TM31eXH1cfPi8fkNn4YDY6jJpUDJHDaauMZII00YTwfuCEFNZw4_FkGe45Y7nJpAKcahU4Q0pgszppPEtVZpTMneJ7ZKesSv-Q0NxJYx3PpOeZsF5YAQW2idhkzgsRF10St-jrRR1wQ28WygF0gEUHWHSARSe6hqVLniOQuvn4ln8Wf7olfjQdnW1L6EWOeuy3L_2nKINUsZASIO2S5EdD-Fs9H_2bno_JzZDbvjZo2yc7q8u1f4IMaGV7pAPjVz2y--JgMn3T2zR4PJ7yt3jvfDIdvvsONiH1Pg
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1QuiKe6UMAScCPaxLET-1Chsm217T5U0UXqzZrYDiAtSSBbVf1x_DfGebDsBbg0OUSKRpH1eeL5xp4HIW9yGcrM8DxQAuKAI-cIFKgswOXYSZmHhoHf75jNk_EnfnYpLrfIzz4XxodV9mtis1Db0vg98iGTiWK-Gnvyvvoe-K5R_nS1b6EBXWsFe9CUGOsSOybu5hpduPrg9Ajn-y1jJ8eL0TjougwEBj0yEYgIGRD4ynXScMEziMHhI2N4W8YspEJJ9CJyJP-RbA7ewLFEpaCENb4WE1qAHR5zhb7fzofj-fnH3hTEeKVtRiYL0NTLPsAMvc7unUqGTEg1jIY-i7VpOrc2j3e-ltUG8929Kiq4uYbl8g8jePKA3O_YKz1s1e0h2XLFI3K3iSI19WNk_r5YLS1zirSSTkuw1Lf-NFD74GrqLaalZUEPJ0cjCoWl04vFjMLyMwK9-vKtfkIWt4HdU7JdlIXbI9QaAZmJU-HilGeOZ1zmqCohpMZxHuYDEva46Kqtw6Gb83MptYdSeyi1h1JHuoVyQN4hfrr7J-t_i7_eED87H11sSujK4jj2--lYi651c0Ci31P0v-N89vdPviK748Vsqqen88lzcs-3u29j3PbJ9urHlXuBpGiVvexUjxJ9y8r-C9B2EFM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7aRTBe2LhMdGxgCR5Jkzh2Yj9OHdXYuq3SirQ3y3acgShJtbZC8Ot3nMugSGggkofk4TiyPzv2d-xzAXhbiEgYy4pAcp0EDDlHILU0AU7HTogislT7_Y6z8_T4Izu54ldrMLzzhalm7dTfx9cmUHADYWsQJ0Lk0DRIuUxDyoUM49D7fyY8nOXFOmzW4Uq8I9_FuJuRE7yyxjHSFxSis_P688dWVql1rMkKAd1aljP9_ZueTn9Zi4bbcN21ojFB-dJfLkzf_vgtwOP_N3MHHrd0lRw2pZ7AmiufwoPabNTOnyHV99FpSVUQ5JFkVOmc-FyfVs-9NTXxS2ROqpIcnh4NiC5zMrqcnBE9va5uPi8-fZ0_h8nw_WRwHLQpGQKL6isPeIx0Ufswf8IyzoxOtMOHoXjnlOY641KgylWgphSL-pRSO5rKTEueW5nswkZZle4FkNxybWyScZdkzDhmmChwbEQ6s46xqOhB1PWAmjWBN1R9YC6E8tAoD43y0KhYNdD04B2CqdqfcH6_-JsV8ZPx4HJVQiHWPdjvOv6nKBWppD41QNqD-G4w_G099_6tnq_h4fhoqEYfzk9fwiOf7r6xcduHjcXN0h0gKVqYV_WIvwU-nfV1
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BEYKXsQ0Q3WCyxB4Xmjh2Yj9WHQjxpUoUCZ6ss-MAWpdUtBWCvx67aRhBmjZQHiJF5-hy5-R-l_sC-J6LUGjD8kByjAPmMEcgUerAfY6tEHloKPr_HadnyeEFO7rklwvQqWthGvF755w5wEyDhMukQ7mQnajjiz1jvghL_mLYgqWLs373qip79JSzSZPPq-qMrr_fqWGPFm_LUQNqrkyLET7c43D4wuocrEG_5rdKNvm1N53oPfP4qpXjGx7oI3yYI1DSrbbMJ1iwxWdYnmWCmvG6Q---4Swpc-KgITkpMSN-fKfBsU-QJt7qZaQsSPf4Z49gkZGT88EpweF1eXc7ufk93oDBwf6gdxjMpywExnmkPOCRQ4DoO_cJwzjTGKN1J03dkVGaYcqlcF5U7pyfSMwCj2hpIlOUPDMy3oRWURZ2C0hmOGoTp9zGKdOWaSZyp-4QU2MZC_M2hLWo1ajqpaFmMXAhlBeL8mJRXiwqUpVY2vDDqUTN36vxv8l3G-RH_d55k0KNMsfHdq3hP6RUJJL6bv9JG6Jnrf8vn1_eseYrrPrZ9VXC2ja0JndTu-MQzkR_m-_qJxl846w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+the+Load+Forecasting+based+on+AKDC+and+LSTM+algorithms&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Ding%2C+Mingming&rft.au=Wang%2C+Zhenshu&rft.au=Zhou%2C+Xinhui&rft.au=Wang%2C+Kang&rft.date=2023-09-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2589&rft.issue=1&rft.spage=12035&rft_id=info:doi/10.1088%2F1742-6596%2F2589%2F1%2F012035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2589_1_012035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon