Miniaturized Liquid Metal Composite Circuits with Energy Harvesting Coils for Battery‐Free Bioelectronics and Optogenetics
Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, on...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202417053 |
Cover
Abstract | Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm−2) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics.
A combination of biphasic liquid metal inks, high‐resolution laser patterning, and reversible polymer‐gel microchip integration is presented for fabrication of conformal, and miniaturized stretchable circuits for wearable and implantable bioelectronics. Through optimization of materials and fabrication techniques, miniaturized chip‐integrated patches that integrate ultracompact coils for energy harvesting are developed, for application in optogenetic research. |
---|---|
AbstractList | Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm−2) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics. Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm−2) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics. A combination of biphasic liquid metal inks, high‐resolution laser patterning, and reversible polymer‐gel microchip integration is presented for fabrication of conformal, and miniaturized stretchable circuits for wearable and implantable bioelectronics. Through optimization of materials and fabrication techniques, miniaturized chip‐integrated patches that integrate ultracompact coils for energy harvesting are developed, for application in optogenetic research. Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm −2 ) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics. |
Author | Almeida, Aníbal Rocha, Denis Peixoto, Paulo Tavakoli, Mahmoud Lopes, Pedro |
Author_xml | – sequence: 1 givenname: Denis orcidid: 0000-0001-9054-077X surname: Rocha fullname: Rocha, Denis organization: University of Coimbra – sequence: 2 givenname: Pedro surname: Lopes fullname: Lopes, Pedro organization: University of Coimbra – sequence: 3 givenname: Paulo surname: Peixoto fullname: Peixoto, Paulo organization: University of Coimbra – sequence: 4 givenname: Aníbal surname: Almeida fullname: Almeida, Aníbal organization: University of Coimbra – sequence: 5 givenname: Mahmoud orcidid: 0000-0002-2590-2196 surname: Tavakoli fullname: Tavakoli, Mahmoud email: mahmoud@isr.uc.pt organization: University of Coimbra |
BookMark | eNqFkD1PwzAQhi0EEuVjZbbE3OKPNG5GGiggtWIBiS1y7EsxSu1gO1RBDPwEfiO_hFRFZWS60-l5707PEdq3zgJCZ5SMKCHsQupqNWKEJVSQMd9DA5rSdMgJm-zvevp0iI5CeCGECsGTAfpYGGtkbL15B43n5rU1Gi8gyhrnbtW4YCLg3HjVmhjw2sRnfG3BLzt8K_0bhGjssidNHXDlPJ7KGMF3359fMw-Ap8ZBDSp6Z40KWFqN75volmAh9oMTdFDJOsDpbz1Gj7Prh_x2OL-_ucsv50PFRMKHSnOhy7FIS1ayDBQpNdMqg4SAqBKVkQq0EkRrmqmqBKESmk4qAowyQrmQ_Bidb_c23r22_dPFi2u97U8WnE5IOmYZ5z012lLKuxA8VEXjzUr6rqCk2BguNoaLneE-kG0Da1ND9w9dXF7NFn_ZH7XOhWg |
Cites_doi | 10.1016/j.jneumeth.2005.08.015 10.3390/ijms160715997 10.1002/adsr.202200025 10.1038/s41528-022-00232-1 10.1126/sciadv.abo3209 10.1073/pnas.1802064115 10.1088/1741-2560/4/3/S02 10.1002/adma.201706937 10.1038/s41586-018-0823-6 10.1002/adfm.202010172 10.1039/C7CS00309A 10.1126/sciadv.ade4687 10.1016/j.neuron.2016.12.031 10.1038/s41551-021-00683-3 10.1016/S0003-4878(99)00076-9 10.1039/C9TC04246F 10.1039/C4NR03295K 10.1109/TPEL.2013.2277783 10.1016/j.conb.2017.12.007 10.1109/TPAS.1982.317084 10.1038/s41467-019-09851-1 10.1038/s41598-018-28744-9 10.1073/pnas.2217734120 10.1038/s41598-020-62097-6 10.1038/s41467-021-25008-5 10.1038/s41928-018-0175-0 10.1021/acsami.0c22206 10.1038/s41593-021-00849-x 10.1126/sciadv.aaw0873 10.1016/j.neuron.2016.06.034 10.1016/j.rser.2015.07.031 10.1002/adma.202008062 10.1126/scitranslmed.3003100 10.1039/C5EE01593F 10.1109/TMAG.2010.2091495 10.1109/TIE.2009.2015359 10.1088/1742-6596/495/1/012019 10.3389/fbioe.2019.00466 10.1038/nbt.3415 10.1038/s41467-018-07764-z 10.1126/science.1143254 10.1109/TBCAS.2018.2876069 10.1038/nature09159 10.1073/pnas.1718721115 10.1109/TAP.2011.2163763 10.1088/1741-2560/10/6/066014 10.3390/nano11123251 10.1002/adfm.202106329 10.3390/jfb13010002 10.1088/1741-2560/3/3/001 10.1002/admi.201701596 10.2217/bem-2017-0003 10.1038/nature11028 10.1002/adfm.202311219 10.1016/j.cbpa.2017.04.005 10.1126/sciadv.abl5511 10.3389/fphys.2021.720190 10.1038/am.2017.189 10.3390/ma10111329 10.1073/pnas.1920073117 10.1038/srep06125 10.1109/TAP.2012.2215296 10.1002/smll.202202841 10.1002/adma.202203266 10.1088/2058-8585/aafa3b 10.1002/admi.202101913 10.1039/C5TC00330J 10.1109/4.792620 10.1002/advs.202370033 10.1109/TIE.2008.2010110 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202417053 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202417053 ADFM202417053 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Liquid3D project, HORIZON EUROPE European Research Council funderid: 101045072 – fundername: Fundação para a Ciência e a Tecnologia funderid: UI/BD/154471/2023 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c2743-cd37db576b2b29ec0bd2dc9e40e7f4c90fedc70dd19cfbe7c4168f0e2120137a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 02:49:01 EDT 2025 Wed Oct 01 06:39:13 EDT 2025 Tue Mar 25 09:49:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2743-cd37db576b2b29ec0bd2dc9e40e7f4c90fedc70dd19cfbe7c4168f0e2120137a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2590-2196 0000-0001-9054-077X |
PQID | 3180652933 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3180652933 crossref_primary_10_1002_adfm_202417053 wiley_primary_10_1002_adfm_202417053_ADFM202417053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 24 2012; 484 2017; 1 2023; 5 2023; 7 2019; 10 2010; 466 2023; 9 2013; 61 2000; 44 2015; 33 1982; 101 2019; 565 2023; 2 2011; 59 2014; 29 2024; 34 2020; 10 2014; 495 2013; 5 2017; 9 2018; 47 2009; 56 2020; 7 2018; 9 2018; 8 2021; 32 2021; 31 2014; 4 2018; 5 2021; 33 2013; 10 2017; 39 2018; 1 2024; 8 2005; 148 2022; 34 1986 2007; 4 2018; 30 2014; 6 2019; 7 2023; 10 2011; 333 2019; 4 2015; 16 2015; 3 2023; 120 2015; 51 2006; 3 2016; 91 2015; 8 2021; 13 2007; 317 2021; 12 2017; 93 2021; 11 2022; 6 2020 2017; 10 2018; 115 2022; 9 1999; 34 2022; 13 2020; 117 2018; 50 2014 2011; 47 2018; 12 2022; 18 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 DeMaw D. (e_1_2_7_65_1) 1986 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 Kim D.‐H. (e_1_2_7_18_1) 2011; 333 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 Wypych G. (e_1_2_7_58_1) 2014 e_1_2_7_38_1 Silver H. W. (e_1_2_7_64_1) 2020 |
References_xml | – volume: 29 start-page: 1058 year: 2014 publication-title: IEEE Trans. Power Electron. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 1801 year: 2009 publication-title: IEEE Trans. Ind. Electron. – volume: 7 year: 2019 publication-title: J. Mater. Chem. C – volume: 18 year: 2022 publication-title: Small – volume: 10 start-page: 1329 year: 2017 publication-title: Materials – volume: 5 year: 2023 publication-title: Sci. Adv. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 466 start-page: 622 year: 2010 publication-title: Nature – volume: 101 start-page: 4064 year: 1982 publication-title: IEEE Trans. Power App. Syst. – volume: 9 start-page: 5349 year: 2018 publication-title: Nat. Commun. – volume: 47 start-page: 1522 year: 2011 publication-title: IEEE Trans. Magn. – volume: 93 start-page: 509 year: 2017 publication-title: Neuron – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 6 year: 2014 publication-title: Nanoscale – volume: 56 start-page: 2140 year: 2009 publication-title: IEEE Trans. Ind. Electron. – volume: 44 start-page: 125 year: 2000 publication-title: Ann. Occup. Hyg. – start-page: 73 year: 2014 end-page: 116 – year: 1986 – volume: 12 start-page: 4666 year: 2021 publication-title: Nat. Commun. – volume: 59 start-page: 3544 year: 2011 publication-title: IEEE Trans. Antennas Propag. – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 495 year: 2014 publication-title: J. Phys. Conf. Ser. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 115 start-page: 6632 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 91 start-page: 529 year: 2016 publication-title: Neuron – volume: 11 start-page: 3251 year: 2021 publication-title: Nanomaterials – volume: 117 start-page: 2835 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 39 start-page: 1 year: 2017 publication-title: Curr. Opin. Chem. Biol. – volume: 1 start-page: 85 year: 2017 publication-title: Bioelectron. Med. – volume: 7 start-page: 466 year: 2020 publication-title: Front. Bioeng. Biotechnol. – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 3 start-page: 189 year: 2006 publication-title: J. Neural. Eng. – volume: 148 start-page: 1 year: 2005 publication-title: J. Neurosci. Methods – volume: 7 start-page: 405 year: 2023 publication-title: Nat. Biomed. Eng. – volume: 8 year: 2024 publication-title: Sci. Adv. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 10 year: 2013 publication-title: J. Neural. Eng. – volume: 1 start-page: 652 year: 2018 publication-title: Nat. Electron. – volume: 9 year: 2022 publication-title: Adv. Mater. Interfaces – volume: 47 start-page: 2518 year: 2018 publication-title: Chem. Soc. Rev. – volume: 16 year: 2015 publication-title: Int. J. Mol. Sci. – volume: 13 start-page: 2 year: 2022 publication-title: J. Funct. Biomater. – volume: 6 start-page: 99 year: 2022 publication-title: npj Flexible Electron. – volume: 10 start-page: 5539 year: 2020 publication-title: Sci Rep. – volume: 50 start-page: 42 year: 2018 publication-title: Curr. Opin. Neurobiol. – volume: 24 start-page: 1035 year: 2021 publication-title: Nat. Neurosci. – volume: 34 start-page: 1419 year: 1999 publication-title: IEEE J. Solid‐State Circuits – volume: 12 start-page: 1256 year: 2018 publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 4 start-page: 6125 year: 2014 publication-title: Sci. Rep. – volume: 61 start-page: 482 year: 2013 publication-title: IEEE Trans. Antennas Propag. – volume: 3 start-page: 3834 year: 2015 publication-title: J Mater. Chem. C Mater. – volume: 51 start-page: 1525 year: 2015 publication-title: Renew. Sustain. Energy Rev. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 2677 year: 2015 publication-title: Energy Environ. Sci. – volume: 115 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 year: 2023 publication-title: Adv. Sensor Res. – volume: 5 year: 2013 publication-title: Sci. Transl. Med. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: S143 year: 2007 publication-title: J. Neural. Eng. – volume: 10 start-page: 1821 year: 2019 publication-title: Nat. Commun. – volume: 9 year: 2017 publication-title: NPG Asia Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – year: 2020 – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 12 year: 2021 publication-title: Front. Physiol. – volume: 33 start-page: 1280 year: 2015 publication-title: Nat. Biotechnol. – volume: 484 start-page: 381 year: 2012 publication-title: Nature – volume: 4 year: 2019 publication-title: Flex. Print. Electron. – volume: 333 start-page: 83 year: 2011 publication-title: Science – volume: 565 start-page: 361 year: 2019 publication-title: Nature – volume: 317 start-page: 83 year: 2007 publication-title: Science – ident: e_1_2_7_31_1 doi: 10.1016/j.jneumeth.2005.08.015 – ident: e_1_2_7_70_1 doi: 10.3390/ijms160715997 – ident: e_1_2_7_2_1 doi: 10.1002/adsr.202200025 – ident: e_1_2_7_40_1 doi: 10.1038/s41528-022-00232-1 – ident: e_1_2_7_44_1 doi: 10.1126/sciadv.abo3209 – ident: e_1_2_7_11_1 doi: 10.1073/pnas.1802064115 – ident: e_1_2_7_26_1 doi: 10.1088/1741-2560/4/3/S02 – ident: e_1_2_7_49_1 doi: 10.1002/adma.201706937 – ident: e_1_2_7_7_1 doi: 10.1038/s41586-018-0823-6 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.202010172 – ident: e_1_2_7_73_1 doi: 10.1039/C7CS00309A – ident: e_1_2_7_4_1 doi: 10.1126/sciadv.ade4687 – ident: e_1_2_7_35_1 doi: 10.1016/j.neuron.2016.12.031 – ident: e_1_2_7_8_1 doi: 10.1038/s41551-021-00683-3 – ident: e_1_2_7_59_1 doi: 10.1016/S0003-4878(99)00076-9 – ident: e_1_2_7_46_1 doi: 10.1039/C9TC04246F – ident: e_1_2_7_43_1 doi: 10.1039/C4NR03295K – ident: e_1_2_7_37_1 doi: 10.1109/TPEL.2013.2277783 – ident: e_1_2_7_24_1 doi: 10.1016/j.conb.2017.12.007 – ident: e_1_2_7_60_1 doi: 10.1109/TPAS.1982.317084 – ident: e_1_2_7_12_1 doi: 10.1038/s41467-019-09851-1 – ident: e_1_2_7_41_1 doi: 10.1038/s41598-018-28744-9 – ident: e_1_2_7_3_1 doi: 10.1073/pnas.2217734120 – ident: e_1_2_7_1_1 doi: 10.1038/s41598-020-62097-6 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-021-25008-5 – ident: e_1_2_7_36_1 doi: 10.1038/s41928-018-0175-0 – ident: e_1_2_7_20_1 doi: 10.1021/acsami.0c22206 – ident: e_1_2_7_32_1 doi: 10.1038/s41593-021-00849-x – ident: e_1_2_7_5_1 doi: 10.1126/sciadv.aaw0873 – ident: e_1_2_7_33_1 doi: 10.1016/j.neuron.2016.06.034 – ident: e_1_2_7_61_1 doi: 10.1016/j.rser.2015.07.031 – ident: e_1_2_7_51_1 doi: 10.1002/adma.202008062 – ident: e_1_2_7_21_1 doi: 10.1126/scitranslmed.3003100 – ident: e_1_2_7_13_1 doi: 10.1039/C5EE01593F – ident: e_1_2_7_17_1 doi: 10.1109/TMAG.2010.2091495 – ident: e_1_2_7_76_1 – ident: e_1_2_7_62_1 doi: 10.1109/TIE.2009.2015359 – ident: e_1_2_7_63_1 doi: 10.1088/1742-6596/495/1/012019 – ident: e_1_2_7_68_1 doi: 10.3389/fbioe.2019.00466 – ident: e_1_2_7_15_1 doi: 10.1038/nbt.3415 – volume: 333 start-page: 83 year: 2011 ident: e_1_2_7_18_1 publication-title: Science – ident: e_1_2_7_14_1 doi: 10.1038/s41467-018-07764-z – ident: e_1_2_7_16_1 doi: 10.1126/science.1143254 – ident: e_1_2_7_9_1 doi: 10.1109/TBCAS.2018.2876069 – ident: e_1_2_7_25_1 doi: 10.1038/nature09159 – ident: e_1_2_7_67_1 doi: 10.1073/pnas.1718721115 – volume-title: First Steps in Radio year: 1986 ident: e_1_2_7_65_1 – volume-title: The ARRL Handbook for Radio Communications year: 2020 ident: e_1_2_7_64_1 – ident: e_1_2_7_34_1 doi: 10.1109/TAP.2011.2163763 – ident: e_1_2_7_30_1 doi: 10.1088/1741-2560/10/6/066014 – ident: e_1_2_7_74_1 doi: 10.3390/nano11123251 – ident: e_1_2_7_42_1 doi: 10.1002/adfm.202106329 – ident: e_1_2_7_72_1 doi: 10.3390/jfb13010002 – ident: e_1_2_7_29_1 doi: 10.1088/1741-2560/3/3/001 – ident: e_1_2_7_53_1 doi: 10.1002/admi.201701596 – ident: e_1_2_7_71_1 doi: 10.2217/bem-2017-0003 – ident: e_1_2_7_27_1 doi: 10.1038/nature11028 – ident: e_1_2_7_52_1 doi: 10.1002/adfm.202311219 – ident: e_1_2_7_23_1 doi: 10.1016/j.cbpa.2017.04.005 – ident: e_1_2_7_56_1 doi: 10.1126/sciadv.abl5511 – ident: e_1_2_7_28_1 doi: 10.3389/fphys.2021.720190 – ident: e_1_2_7_50_1 doi: 10.1038/am.2017.189 – ident: e_1_2_7_69_1 doi: 10.3390/ma10111329 – ident: e_1_2_7_75_1 – ident: e_1_2_7_77_1 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.1920073117 – ident: e_1_2_7_22_1 doi: 10.1038/srep06125 – ident: e_1_2_7_39_1 doi: 10.1109/TAP.2012.2215296 – ident: e_1_2_7_54_1 doi: 10.1002/smll.202202841 – start-page: 73 volume-title: Handbook of Solvents year: 2014 ident: e_1_2_7_58_1 – ident: e_1_2_7_45_1 doi: 10.1002/adma.202203266 – ident: e_1_2_7_48_1 doi: 10.1088/2058-8585/aafa3b – ident: e_1_2_7_57_1 doi: 10.1002/admi.202101913 – ident: e_1_2_7_47_1 doi: 10.1039/C5TC00330J – ident: e_1_2_7_66_1 doi: 10.1109/4.792620 – ident: e_1_2_7_55_1 doi: 10.1002/advs.202370033 – ident: e_1_2_7_38_1 doi: 10.1109/TIE.2008.2010110 |
SSID | ssj0017734 |
Score | 2.4855678 |
Snippet | Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Circuits Coils Electronic implants Electronics Energy harvesting Inductive coupling Integrated circuits Liquid metals Micropatterning Miniaturization optogenetics Search algorithms soft electronics soft fabrication Soldering Tethering Wearable technology wearables wireless power harvesting |
Title | Miniaturized Liquid Metal Composite Circuits with Energy Harvesting Coils for Battery‐Free Bioelectronics and Optogenetics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202417053 https://www.proquest.com/docview/3180652933 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1616-301X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQEwy8EW95QGIKdZzWScZSqBCiICEqdYti-wZZoLQ0yQBi4BP4Rr6E66RNCwsSjFFsK_F9Hdv3HhNyHHLZSmTsOYIBOE1XK7S5gDnM82KtQiU83xY4927EZb95NWgN5qr4K36IesPNWkbpr62BxzJrzEhDY53YSnKMQD4qEjph12uV57R3NX-U6_vVsbJwbYKXO5iyNjLe-N79e1SaQc15wFpGnO4qiaffWiWaPJ4WuTxVrz9oHP_zM2tkZQJHabvSn3WyAOkGWZ4jKdwkbz2TGkv_aV5B02vzXBhNe4CgnVpnYpO-gHbMWBUmz6jd16UXZUEhtfcOWRKP9AFbmqeMIkCmFaHny-f7R3cMQM_McHYTT0bjVNPbUT5EtbbVldkW6Xcv7juXzuTOBkdxy3aqtOdriYsYySUPQTGpOcocmgz8pKlCloBWPtPaDVUiwVcICIOEAUZQS34Ye9tkMR2msENowrEVDoCQVuIqUEjsKUQMbsIFiCDYJSdTmUWjipojqkiYeWTnM6rnc5ccTEUaTUw0i9CZIfxCtIOveSmbX0aJ2ufdXv2095dO-2SJ2_uDyxy2A7KYjws4RFCTy6NScb8AVtnylg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYKPQCH0hYQlKX4UKmngOMszua4_KwW2ICEQOIWxfYEWaAs3WQPRT30EfqMfRJmks0ucEGCYxTbSjwzns_2zDeM_Yik3st0GnhKAHht3xq0uY7wRBCk1kRGBSElOMdnqn_VPrnea6IJKRem5oeYHriRZVTrNRk4HUjvzlhDU5tRKjm6oBA1aY59pEs6ss3DiymDlB-G9cWy8inEy79ueBuF3H3e_7lfmoHNp5C18jm9Zaabr61DTW53xqXeMQ8viBzf9Tuf2acJIuXdWoW-sA-Qf2VLT3gKV9if2OWOGEDdA1g-cL_GzvIYELdzWk8o7gv4gRuZsSsLTke7_KjKKeRUeoh4PPIbbOnuCo4Ymdecnr____3XGwHwfTecFeMpeJpbfn5fDlGzKcGyWGVXvaPLg743KdvgGUmEp8YGodW4j9FSywiM0Fai2KEtIMzaJhIZWBMKa_3IZBpCg5iwkwlAJ0r8h2mwxubzYQ7rjGcSW-EAiGo1bgSVxp5KpeBnUoHqdDbYz0ZoyX3NzpHUPMwyoflMpvO5wVqNTJOJlRYJrmeIwBDw4GtZCeeVUZLuYS-ePn17S6dtttC_jAfJ4PjsdJMtSionXIW0tdh8ORrDFmKcUn-vtPgRfdr2sg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYKlSo4QClFQGnrQyVOAccJzubIX0QLS1FVpL1FsT1GVqvsdpM9FHHgEfqMfZLOJPsHl0pwjGJbiWfG89me-YaxT6nUB04XUaAEQBCH1qDNdUQgoqiwJjUqSijBuXupzq7jL72D3lwWf8sPMT1wI8to1msy8IF1-zPS0MI6yiRHD5SgIi2wl7HCLRbBom9TAqkwSdp7ZRVShFfYm9A2Crn_sP9DtzTDmvOItXE52SorJh_bRpr82BvVes_cPuJxfM7fvGYrYzzKD1sFWmMvoHzDludYCtfZXdeXnvg__S1YfuF_jbzlXUDUzmk1oagv4Md-aEa-rjgd7PLTJqOQU-EhYvEob7Cl_1lxRMi8ZfT8_ff-TzYE4Ee-PyvFU_GitPzroO6jXlN6ZfWWXWen34_PgnHRhsBIojs1Nkqsxl2MllqmYIS2EoUOsYDExSYVDqxJhLVhapyGxCAi7DgB6EKJ_bCINthi2S9hk3EnsRUOgJhW4zZQaeypVAGhkwpUp7PFdicyywctN0fesjDLnOYzn87nFtuZiDQf22iV42qG-AvhDr6WjWz-M0p-eJJ1p0_bT-n0kb26Osnyi8-X5-_YkqRawk082w5brIcjeI8Ap9YfGh3-B6gZ9WE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Miniaturized+Liquid+Metal+Composite+Circuits+with+Energy+Harvesting+Coils+for+Battery%E2%80%90Free+Bioelectronics+and+Optogenetics&rft.jtitle=Advanced+functional+materials&rft.au=Rocha%2C+Denis&rft.au=Lopes%2C+Pedro&rft.au=Peixoto%2C+Paulo&rft.au=Almeida%2C+An%C3%ADbal&rft.date=2025-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202417053&rft.externalDBID=10.1002%252Fadfm.202417053&rft.externalDocID=ADFM202417053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |