Miniaturized Liquid Metal Composite Circuits with Energy Harvesting Coils for Battery‐Free Bioelectronics and Optogenetics

Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, on...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 13
Main Authors Rocha, Denis, Lopes, Pedro, Peixoto, Paulo, Almeida, Aníbal, Tavakoli, Mahmoud
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202417053

Cover

Abstract Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm−2) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics. A combination of biphasic liquid metal inks, high‐resolution laser patterning, and reversible polymer‐gel microchip integration is presented for fabrication of conformal, and miniaturized stretchable circuits for wearable and implantable bioelectronics. Through optimization of materials and fabrication techniques, miniaturized chip‐integrated patches that integrate ultracompact coils for energy harvesting are developed, for application in optogenetic research.
AbstractList Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm−2) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics.
Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm−2) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics. A combination of biphasic liquid metal inks, high‐resolution laser patterning, and reversible polymer‐gel microchip integration is presented for fabrication of conformal, and miniaturized stretchable circuits for wearable and implantable bioelectronics. Through optimization of materials and fabrication techniques, miniaturized chip‐integrated patches that integrate ultracompact coils for energy harvesting are developed, for application in optogenetic research.
Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm −2 ) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics.
Author Almeida, Aníbal
Rocha, Denis
Peixoto, Paulo
Tavakoli, Mahmoud
Lopes, Pedro
Author_xml – sequence: 1
  givenname: Denis
  orcidid: 0000-0001-9054-077X
  surname: Rocha
  fullname: Rocha, Denis
  organization: University of Coimbra
– sequence: 2
  givenname: Pedro
  surname: Lopes
  fullname: Lopes, Pedro
  organization: University of Coimbra
– sequence: 3
  givenname: Paulo
  surname: Peixoto
  fullname: Peixoto, Paulo
  organization: University of Coimbra
– sequence: 4
  givenname: Aníbal
  surname: Almeida
  fullname: Almeida, Aníbal
  organization: University of Coimbra
– sequence: 5
  givenname: Mahmoud
  orcidid: 0000-0002-2590-2196
  surname: Tavakoli
  fullname: Tavakoli, Mahmoud
  email: mahmoud@isr.uc.pt
  organization: University of Coimbra
BookMark eNqFkD1PwzAQhi0EEuVjZbbE3OKPNG5GGiggtWIBiS1y7EsxSu1gO1RBDPwEfiO_hFRFZWS60-l5707PEdq3zgJCZ5SMKCHsQupqNWKEJVSQMd9DA5rSdMgJm-zvevp0iI5CeCGECsGTAfpYGGtkbL15B43n5rU1Gi8gyhrnbtW4YCLg3HjVmhjw2sRnfG3BLzt8K_0bhGjssidNHXDlPJ7KGMF3359fMw-Ap8ZBDSp6Z40KWFqN75volmAh9oMTdFDJOsDpbz1Gj7Prh_x2OL-_ucsv50PFRMKHSnOhy7FIS1ayDBQpNdMqg4SAqBKVkQq0EkRrmqmqBKESmk4qAowyQrmQ_Bidb_c23r22_dPFi2u97U8WnE5IOmYZ5z012lLKuxA8VEXjzUr6rqCk2BguNoaLneE-kG0Da1ND9w9dXF7NFn_ZH7XOhWg
Cites_doi 10.1016/j.jneumeth.2005.08.015
10.3390/ijms160715997
10.1002/adsr.202200025
10.1038/s41528-022-00232-1
10.1126/sciadv.abo3209
10.1073/pnas.1802064115
10.1088/1741-2560/4/3/S02
10.1002/adma.201706937
10.1038/s41586-018-0823-6
10.1002/adfm.202010172
10.1039/C7CS00309A
10.1126/sciadv.ade4687
10.1016/j.neuron.2016.12.031
10.1038/s41551-021-00683-3
10.1016/S0003-4878(99)00076-9
10.1039/C9TC04246F
10.1039/C4NR03295K
10.1109/TPEL.2013.2277783
10.1016/j.conb.2017.12.007
10.1109/TPAS.1982.317084
10.1038/s41467-019-09851-1
10.1038/s41598-018-28744-9
10.1073/pnas.2217734120
10.1038/s41598-020-62097-6
10.1038/s41467-021-25008-5
10.1038/s41928-018-0175-0
10.1021/acsami.0c22206
10.1038/s41593-021-00849-x
10.1126/sciadv.aaw0873
10.1016/j.neuron.2016.06.034
10.1016/j.rser.2015.07.031
10.1002/adma.202008062
10.1126/scitranslmed.3003100
10.1039/C5EE01593F
10.1109/TMAG.2010.2091495
10.1109/TIE.2009.2015359
10.1088/1742-6596/495/1/012019
10.3389/fbioe.2019.00466
10.1038/nbt.3415
10.1038/s41467-018-07764-z
10.1126/science.1143254
10.1109/TBCAS.2018.2876069
10.1038/nature09159
10.1073/pnas.1718721115
10.1109/TAP.2011.2163763
10.1088/1741-2560/10/6/066014
10.3390/nano11123251
10.1002/adfm.202106329
10.3390/jfb13010002
10.1088/1741-2560/3/3/001
10.1002/admi.201701596
10.2217/bem-2017-0003
10.1038/nature11028
10.1002/adfm.202311219
10.1016/j.cbpa.2017.04.005
10.1126/sciadv.abl5511
10.3389/fphys.2021.720190
10.1038/am.2017.189
10.3390/ma10111329
10.1073/pnas.1920073117
10.1038/srep06125
10.1109/TAP.2012.2215296
10.1002/smll.202202841
10.1002/adma.202203266
10.1088/2058-8585/aafa3b
10.1002/admi.202101913
10.1039/C5TC00330J
10.1109/4.792620
10.1002/advs.202370033
10.1109/TIE.2008.2010110
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202417053
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202417053
ADFM202417053
Genre researchArticle
GrantInformation_xml – fundername: Liquid3D project, HORIZON EUROPE European Research Council
  funderid: 101045072
– fundername: Fundação para a Ciência e a Tecnologia
  funderid: UI/BD/154471/2023
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2743-cd37db576b2b29ec0bd2dc9e40e7f4c90fedc70dd19cfbe7c4168f0e2120137a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 02:49:01 EDT 2025
Wed Oct 01 06:39:13 EDT 2025
Tue Mar 25 09:49:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2743-cd37db576b2b29ec0bd2dc9e40e7f4c90fedc70dd19cfbe7c4168f0e2120137a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2590-2196
0000-0001-9054-077X
PQID 3180652933
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_3180652933
crossref_primary_10_1002_adfm_202417053
wiley_primary_10_1002_adfm_202417053_ADFM202417053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 24
2012; 484
2017; 1
2023; 5
2023; 7
2019; 10
2010; 466
2023; 9
2013; 61
2000; 44
2015; 33
1982; 101
2019; 565
2023; 2
2011; 59
2014; 29
2024; 34
2020; 10
2014; 495
2013; 5
2017; 9
2018; 47
2009; 56
2020; 7
2018; 9
2018; 8
2021; 32
2021; 31
2014; 4
2018; 5
2021; 33
2013; 10
2017; 39
2018; 1
2024; 8
2005; 148
2022; 34
1986
2007; 4
2018; 30
2014; 6
2019; 7
2023; 10
2011; 333
2019; 4
2015; 16
2015; 3
2023; 120
2015; 51
2006; 3
2016; 91
2015; 8
2021; 13
2007; 317
2021; 12
2017; 93
2021; 11
2022; 6
2020
2017; 10
2018; 115
2022; 9
1999; 34
2022; 13
2020; 117
2018; 50
2014
2011; 47
2018; 12
2022; 18
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
DeMaw D. (e_1_2_7_65_1) 1986
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
Kim D.‐H. (e_1_2_7_18_1) 2011; 333
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
Wypych G. (e_1_2_7_58_1) 2014
e_1_2_7_38_1
Silver H. W. (e_1_2_7_64_1) 2020
References_xml – volume: 29
  start-page: 1058
  year: 2014
  publication-title: IEEE Trans. Power Electron.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 1801
  year: 2009
  publication-title: IEEE Trans. Ind. Electron.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 18
  year: 2022
  publication-title: Small
– volume: 10
  start-page: 1329
  year: 2017
  publication-title: Materials
– volume: 5
  year: 2023
  publication-title: Sci. Adv.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 466
  start-page: 622
  year: 2010
  publication-title: Nature
– volume: 101
  start-page: 4064
  year: 1982
  publication-title: IEEE Trans. Power App. Syst.
– volume: 9
  start-page: 5349
  year: 2018
  publication-title: Nat. Commun.
– volume: 47
  start-page: 1522
  year: 2011
  publication-title: IEEE Trans. Magn.
– volume: 93
  start-page: 509
  year: 2017
  publication-title: Neuron
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 56
  start-page: 2140
  year: 2009
  publication-title: IEEE Trans. Ind. Electron.
– volume: 44
  start-page: 125
  year: 2000
  publication-title: Ann. Occup. Hyg.
– start-page: 73
  year: 2014
  end-page: 116
– year: 1986
– volume: 12
  start-page: 4666
  year: 2021
  publication-title: Nat. Commun.
– volume: 59
  start-page: 3544
  year: 2011
  publication-title: IEEE Trans. Antennas Propag.
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 495
  year: 2014
  publication-title: J. Phys. Conf. Ser.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 115
  start-page: 6632
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 91
  start-page: 529
  year: 2016
  publication-title: Neuron
– volume: 11
  start-page: 3251
  year: 2021
  publication-title: Nanomaterials
– volume: 117
  start-page: 2835
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 39
  start-page: 1
  year: 2017
  publication-title: Curr. Opin. Chem. Biol.
– volume: 1
  start-page: 85
  year: 2017
  publication-title: Bioelectron. Med.
– volume: 7
  start-page: 466
  year: 2020
  publication-title: Front. Bioeng. Biotechnol.
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 3
  start-page: 189
  year: 2006
  publication-title: J. Neural. Eng.
– volume: 148
  start-page: 1
  year: 2005
  publication-title: J. Neurosci. Methods
– volume: 7
  start-page: 405
  year: 2023
  publication-title: Nat. Biomed. Eng.
– volume: 8
  year: 2024
  publication-title: Sci. Adv.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 10
  year: 2013
  publication-title: J. Neural. Eng.
– volume: 1
  start-page: 652
  year: 2018
  publication-title: Nat. Electron.
– volume: 9
  year: 2022
  publication-title: Adv. Mater. Interfaces
– volume: 47
  start-page: 2518
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 16
  year: 2015
  publication-title: Int. J. Mol. Sci.
– volume: 13
  start-page: 2
  year: 2022
  publication-title: J. Funct. Biomater.
– volume: 6
  start-page: 99
  year: 2022
  publication-title: npj Flexible Electron.
– volume: 10
  start-page: 5539
  year: 2020
  publication-title: Sci Rep.
– volume: 50
  start-page: 42
  year: 2018
  publication-title: Curr. Opin. Neurobiol.
– volume: 24
  start-page: 1035
  year: 2021
  publication-title: Nat. Neurosci.
– volume: 34
  start-page: 1419
  year: 1999
  publication-title: IEEE J. Solid‐State Circuits
– volume: 12
  start-page: 1256
  year: 2018
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 4
  start-page: 6125
  year: 2014
  publication-title: Sci. Rep.
– volume: 61
  start-page: 482
  year: 2013
  publication-title: IEEE Trans. Antennas Propag.
– volume: 3
  start-page: 3834
  year: 2015
  publication-title: J Mater. Chem. C Mater.
– volume: 51
  start-page: 1525
  year: 2015
  publication-title: Renew. Sustain. Energy Rev.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 2677
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2
  year: 2023
  publication-title: Adv. Sensor Res.
– volume: 5
  year: 2013
  publication-title: Sci. Transl. Med.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: S143
  year: 2007
  publication-title: J. Neural. Eng.
– volume: 10
  start-page: 1821
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  year: 2017
  publication-title: NPG Asia Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– year: 2020
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 12
  year: 2021
  publication-title: Front. Physiol.
– volume: 33
  start-page: 1280
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 484
  start-page: 381
  year: 2012
  publication-title: Nature
– volume: 4
  year: 2019
  publication-title: Flex. Print. Electron.
– volume: 333
  start-page: 83
  year: 2011
  publication-title: Science
– volume: 565
  start-page: 361
  year: 2019
  publication-title: Nature
– volume: 317
  start-page: 83
  year: 2007
  publication-title: Science
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jneumeth.2005.08.015
– ident: e_1_2_7_70_1
  doi: 10.3390/ijms160715997
– ident: e_1_2_7_2_1
  doi: 10.1002/adsr.202200025
– ident: e_1_2_7_40_1
  doi: 10.1038/s41528-022-00232-1
– ident: e_1_2_7_44_1
  doi: 10.1126/sciadv.abo3209
– ident: e_1_2_7_11_1
  doi: 10.1073/pnas.1802064115
– ident: e_1_2_7_26_1
  doi: 10.1088/1741-2560/4/3/S02
– ident: e_1_2_7_49_1
  doi: 10.1002/adma.201706937
– ident: e_1_2_7_7_1
  doi: 10.1038/s41586-018-0823-6
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.202010172
– ident: e_1_2_7_73_1
  doi: 10.1039/C7CS00309A
– ident: e_1_2_7_4_1
  doi: 10.1126/sciadv.ade4687
– ident: e_1_2_7_35_1
  doi: 10.1016/j.neuron.2016.12.031
– ident: e_1_2_7_8_1
  doi: 10.1038/s41551-021-00683-3
– ident: e_1_2_7_59_1
  doi: 10.1016/S0003-4878(99)00076-9
– ident: e_1_2_7_46_1
  doi: 10.1039/C9TC04246F
– ident: e_1_2_7_43_1
  doi: 10.1039/C4NR03295K
– ident: e_1_2_7_37_1
  doi: 10.1109/TPEL.2013.2277783
– ident: e_1_2_7_24_1
  doi: 10.1016/j.conb.2017.12.007
– ident: e_1_2_7_60_1
  doi: 10.1109/TPAS.1982.317084
– ident: e_1_2_7_12_1
  doi: 10.1038/s41467-019-09851-1
– ident: e_1_2_7_41_1
  doi: 10.1038/s41598-018-28744-9
– ident: e_1_2_7_3_1
  doi: 10.1073/pnas.2217734120
– ident: e_1_2_7_1_1
  doi: 10.1038/s41598-020-62097-6
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-021-25008-5
– ident: e_1_2_7_36_1
  doi: 10.1038/s41928-018-0175-0
– ident: e_1_2_7_20_1
  doi: 10.1021/acsami.0c22206
– ident: e_1_2_7_32_1
  doi: 10.1038/s41593-021-00849-x
– ident: e_1_2_7_5_1
  doi: 10.1126/sciadv.aaw0873
– ident: e_1_2_7_33_1
  doi: 10.1016/j.neuron.2016.06.034
– ident: e_1_2_7_61_1
  doi: 10.1016/j.rser.2015.07.031
– ident: e_1_2_7_51_1
  doi: 10.1002/adma.202008062
– ident: e_1_2_7_21_1
  doi: 10.1126/scitranslmed.3003100
– ident: e_1_2_7_13_1
  doi: 10.1039/C5EE01593F
– ident: e_1_2_7_17_1
  doi: 10.1109/TMAG.2010.2091495
– ident: e_1_2_7_76_1
– ident: e_1_2_7_62_1
  doi: 10.1109/TIE.2009.2015359
– ident: e_1_2_7_63_1
  doi: 10.1088/1742-6596/495/1/012019
– ident: e_1_2_7_68_1
  doi: 10.3389/fbioe.2019.00466
– ident: e_1_2_7_15_1
  doi: 10.1038/nbt.3415
– volume: 333
  start-page: 83
  year: 2011
  ident: e_1_2_7_18_1
  publication-title: Science
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-018-07764-z
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1143254
– ident: e_1_2_7_9_1
  doi: 10.1109/TBCAS.2018.2876069
– ident: e_1_2_7_25_1
  doi: 10.1038/nature09159
– ident: e_1_2_7_67_1
  doi: 10.1073/pnas.1718721115
– volume-title: First Steps in Radio
  year: 1986
  ident: e_1_2_7_65_1
– volume-title: The ARRL Handbook for Radio Communications
  year: 2020
  ident: e_1_2_7_64_1
– ident: e_1_2_7_34_1
  doi: 10.1109/TAP.2011.2163763
– ident: e_1_2_7_30_1
  doi: 10.1088/1741-2560/10/6/066014
– ident: e_1_2_7_74_1
  doi: 10.3390/nano11123251
– ident: e_1_2_7_42_1
  doi: 10.1002/adfm.202106329
– ident: e_1_2_7_72_1
  doi: 10.3390/jfb13010002
– ident: e_1_2_7_29_1
  doi: 10.1088/1741-2560/3/3/001
– ident: e_1_2_7_53_1
  doi: 10.1002/admi.201701596
– ident: e_1_2_7_71_1
  doi: 10.2217/bem-2017-0003
– ident: e_1_2_7_27_1
  doi: 10.1038/nature11028
– ident: e_1_2_7_52_1
  doi: 10.1002/adfm.202311219
– ident: e_1_2_7_23_1
  doi: 10.1016/j.cbpa.2017.04.005
– ident: e_1_2_7_56_1
  doi: 10.1126/sciadv.abl5511
– ident: e_1_2_7_28_1
  doi: 10.3389/fphys.2021.720190
– ident: e_1_2_7_50_1
  doi: 10.1038/am.2017.189
– ident: e_1_2_7_69_1
  doi: 10.3390/ma10111329
– ident: e_1_2_7_75_1
– ident: e_1_2_7_77_1
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.1920073117
– ident: e_1_2_7_22_1
  doi: 10.1038/srep06125
– ident: e_1_2_7_39_1
  doi: 10.1109/TAP.2012.2215296
– ident: e_1_2_7_54_1
  doi: 10.1002/smll.202202841
– start-page: 73
  volume-title: Handbook of Solvents
  year: 2014
  ident: e_1_2_7_58_1
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.202203266
– ident: e_1_2_7_48_1
  doi: 10.1088/2058-8585/aafa3b
– ident: e_1_2_7_57_1
  doi: 10.1002/admi.202101913
– ident: e_1_2_7_47_1
  doi: 10.1039/C5TC00330J
– ident: e_1_2_7_66_1
  doi: 10.1109/4.792620
– ident: e_1_2_7_55_1
  doi: 10.1002/advs.202370033
– ident: e_1_2_7_38_1
  doi: 10.1109/TIE.2008.2010110
SSID ssj0017734
Score 2.4855678
Snippet Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Circuits
Coils
Electronic implants
Electronics
Energy harvesting
Inductive coupling
Integrated circuits
Liquid metals
Micropatterning
Miniaturization
optogenetics
Search algorithms
soft electronics
soft fabrication
Soldering
Tethering
Wearable technology
wearables
wireless power harvesting
Title Miniaturized Liquid Metal Composite Circuits with Energy Harvesting Coils for Battery‐Free Bioelectronics and Optogenetics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202417053
https://www.proquest.com/docview/3180652933
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1616-301X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQEwy8EW95QGIKdZzWScZSqBCiICEqdYti-wZZoLQ0yQBi4BP4Rr6E66RNCwsSjFFsK_F9Hdv3HhNyHHLZSmTsOYIBOE1XK7S5gDnM82KtQiU83xY4927EZb95NWgN5qr4K36IesPNWkbpr62BxzJrzEhDY53YSnKMQD4qEjph12uV57R3NX-U6_vVsbJwbYKXO5iyNjLe-N79e1SaQc15wFpGnO4qiaffWiWaPJ4WuTxVrz9oHP_zM2tkZQJHabvSn3WyAOkGWZ4jKdwkbz2TGkv_aV5B02vzXBhNe4CgnVpnYpO-gHbMWBUmz6jd16UXZUEhtfcOWRKP9AFbmqeMIkCmFaHny-f7R3cMQM_McHYTT0bjVNPbUT5EtbbVldkW6Xcv7juXzuTOBkdxy3aqtOdriYsYySUPQTGpOcocmgz8pKlCloBWPtPaDVUiwVcICIOEAUZQS34Ye9tkMR2msENowrEVDoCQVuIqUEjsKUQMbsIFiCDYJSdTmUWjipojqkiYeWTnM6rnc5ccTEUaTUw0i9CZIfxCtIOveSmbX0aJ2ufdXv2095dO-2SJ2_uDyxy2A7KYjws4RFCTy6NScb8AVtnylg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYKPQCH0hYQlKX4UKmngOMszua4_KwW2ICEQOIWxfYEWaAs3WQPRT30EfqMfRJmks0ucEGCYxTbSjwzns_2zDeM_Yik3st0GnhKAHht3xq0uY7wRBCk1kRGBSElOMdnqn_VPrnea6IJKRem5oeYHriRZVTrNRk4HUjvzlhDU5tRKjm6oBA1aY59pEs6ss3DiymDlB-G9cWy8inEy79ueBuF3H3e_7lfmoHNp5C18jm9Zaabr61DTW53xqXeMQ8viBzf9Tuf2acJIuXdWoW-sA-Qf2VLT3gKV9if2OWOGEDdA1g-cL_GzvIYELdzWk8o7gv4gRuZsSsLTke7_KjKKeRUeoh4PPIbbOnuCo4Ymdecnr____3XGwHwfTecFeMpeJpbfn5fDlGzKcGyWGVXvaPLg743KdvgGUmEp8YGodW4j9FSywiM0Fai2KEtIMzaJhIZWBMKa_3IZBpCg5iwkwlAJ0r8h2mwxubzYQ7rjGcSW-EAiGo1bgSVxp5KpeBnUoHqdDbYz0ZoyX3NzpHUPMwyoflMpvO5wVqNTJOJlRYJrmeIwBDw4GtZCeeVUZLuYS-ePn17S6dtttC_jAfJ4PjsdJMtSionXIW0tdh8ORrDFmKcUn-vtPgRfdr2sg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYKlSo4QClFQGnrQyVOAccJzubIX0QLS1FVpL1FsT1GVqvsdpM9FHHgEfqMfZLOJPsHl0pwjGJbiWfG89me-YaxT6nUB04XUaAEQBCH1qDNdUQgoqiwJjUqSijBuXupzq7jL72D3lwWf8sPMT1wI8to1msy8IF1-zPS0MI6yiRHD5SgIi2wl7HCLRbBom9TAqkwSdp7ZRVShFfYm9A2Crn_sP9DtzTDmvOItXE52SorJh_bRpr82BvVes_cPuJxfM7fvGYrYzzKD1sFWmMvoHzDludYCtfZXdeXnvg__S1YfuF_jbzlXUDUzmk1oagv4Md-aEa-rjgd7PLTJqOQU-EhYvEob7Cl_1lxRMi8ZfT8_ff-TzYE4Ee-PyvFU_GitPzroO6jXlN6ZfWWXWen34_PgnHRhsBIojs1Nkqsxl2MllqmYIS2EoUOsYDExSYVDqxJhLVhapyGxCAi7DgB6EKJ_bCINthi2S9hk3EnsRUOgJhW4zZQaeypVAGhkwpUp7PFdicyywctN0fesjDLnOYzn87nFtuZiDQf22iV42qG-AvhDr6WjWz-M0p-eJJ1p0_bT-n0kb26Osnyi8-X5-_YkqRawk082w5brIcjeI8Ap9YfGh3-B6gZ9WE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Miniaturized+Liquid+Metal+Composite+Circuits+with+Energy+Harvesting+Coils+for+Battery%E2%80%90Free+Bioelectronics+and+Optogenetics&rft.jtitle=Advanced+functional+materials&rft.au=Rocha%2C+Denis&rft.au=Lopes%2C+Pedro&rft.au=Peixoto%2C+Paulo&rft.au=Almeida%2C+An%C3%ADbal&rft.date=2025-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202417053&rft.externalDBID=10.1002%252Fadfm.202417053&rft.externalDocID=ADFM202417053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon