Improved GMMKNN Hybrid Recommendation Algorithm

This paper proposes a hybrid recommendation algorithm that combines the advantages of Gaussian Mixture Model (GMM) and K-Nearest Neighbors (KNN) algorithms. The algorithm first applies GMM to cluster the training data, grouping users with similar interests using clustering techniques. It then utiliz...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2747; no. 1; pp. 12032 - 12044
Main Authors Hao, Yaxian, Feng, Lijiao
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.05.2024
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
1742-6596
DOI10.1088/1742-6596/2747/1/012032

Cover

Abstract This paper proposes a hybrid recommendation algorithm that combines the advantages of Gaussian Mixture Model (GMM) and K-Nearest Neighbors (KNN) algorithms. The algorithm first applies GMM to cluster the training data, grouping users with similar interests using clustering techniques. It then utilizes the KNN algorithm for prediction. During the KNN recommendation process for a target user, the algorithm searches for neighboring users with similar interests and features within the same cluster. This significantly reduces the search scope of the nearest neighbors, thanks to the assistance of the GMM algorithm. The algorithm then selects the K most similar neighbors from the target user’s cluster as the candidate pool for personalized recommendations. Additionally, the algorithm improves the weight calculation method by incorporating a Gaussian kernel function for weight estimation. Experimental results on the dataset demonstrate that the proposed improved algorithm effectively enhances the accuracy of prediction results.
AbstractList This paper proposes a hybrid recommendation algorithm that combines the advantages of Gaussian Mixture Model (GMM) and K-Nearest Neighbors (KNN) algorithms. The algorithm first applies GMM to cluster the training data, grouping users with similar interests using clustering techniques. It then utilizes the KNN algorithm for prediction. During the KNN recommendation process for a target user, the algorithm searches for neighboring users with similar interests and features within the same cluster. This significantly reduces the search scope of the nearest neighbors, thanks to the assistance of the GMM algorithm. The algorithm then selects the K most similar neighbors from the target user’s cluster as the candidate pool for personalized recommendations. Additionally, the algorithm improves the weight calculation method by incorporating a Gaussian kernel function for weight estimation. Experimental results on the dataset demonstrate that the proposed improved algorithm effectively enhances the accuracy of prediction results.
Author Hao, Yaxian
Feng, Lijiao
Author_xml – sequence: 1
  givenname: Yaxian
  surname: Hao
  fullname: Hao, Yaxian
  organization: School of Mathematics and Computer Science, Shanxi Normal University , China
– sequence: 2
  givenname: Lijiao
  surname: Feng
  fullname: Feng, Lijiao
  organization: School of Mathematics and Computer Science, Shanxi Normal University , China
BookMark eNqVj11LwzAUhoNMcJv-BgveCbP5aJPscgzdpnOKH9fhNEm1o21quin797ZUJoIg5iaBvM97zjNAvdKVFqFTgi8IljIkIqIjHo95SEUkQhJiQjGjB6i__-nt31IeoUFdrzFmzRF9FC6Kyrt3a4LZ7e3NahXMd4nPTPBgtSsKWxrYZK4MJvmL89nmtThGhynktT35uofo-eryaTofLe9mi-lkOdK0nSSBx0Aki4DT1BJDmY0SrVlsDTdiTLSVBqSRaSQBACeaN9skSQSYGhsbzIZIdr3bsoLdB-S5qnxWgN8pglUrrlol1eqpVlwR1Yk36FmHNmJvW1tv1NptfdlsqxiOqWCYY96kRJfS3tW1t-k_-llHZq76rv6bOv-Fur6fPv4Mqsqk7BNJVIXS
Cites_doi 10.1109/MC.2009.263
10.1080/01621459.1983.10477973
10.1007/BF00994018
10.1109/TIT.1967.1053964
10.11591/telkomnika.v11i10.2534
10.1080/00031305.1992.10475879
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1088/1742-6596/2747/1/012032
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10.1088/1742-6596/2747/1/012032
10_1088_1742_6596_2747_1_012032
JPCS_2747_1_012032
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
CITATION
OVT
PHGZM
PHGZT
PQGLB
PUEGO
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1WK
AALHV
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
C1A
EJD
FEDTE
H13
HVGLF
JCGBZ
M48
Q02
S3P
UNPAY
ID FETCH-LOGICAL-c2742-8a65a1834a62fe1d23e4bcc35ed6d791ce8da8d8f48aaa0bc6337bb4a02de5d03
IEDL.DBID UNPAY
ISSN 1742-6588
1742-6596
IngestDate Sun Sep 07 10:51:49 EDT 2025
Sat Jul 26 00:02:18 EDT 2025
Wed Oct 01 03:08:30 EDT 2025
Tue Aug 20 22:15:34 EDT 2024
Sun Aug 18 16:50:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2742-8a65a1834a62fe1d23e4bcc35ed6d791ce8da8d8f48aaa0bc6337bb4a02de5d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1742-6596/2747/1/012032
PQID 3052730606
PQPubID 4998668
PageCount 13
ParticipantIDs iop_journals_10_1088_1742_6596_2747_1_012032
crossref_primary_10_1088_1742_6596_2747_1_012032
unpaywall_primary_10_1088_1742_6596_2747_1_012032
proquest_journals_3052730606
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 20240501
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Hao (JPCS_2747_1_012032bib4) 2022; 17
Sarwar (JPCS_2747_1_012032bib1) 2001
Cover (JPCS_2747_1_012032bib10) 1967; 13
Dilokthanakul (JPCS_2747_1_012032bib13) 2016
Vapnik (JPCS_2747_1_012032bib7) 1995; 20
Yan (JPCS_2747_1_012032bib5) 2013; 11
Cristianini (JPCS_2747_1_012032bib8) 2000
Resnick (JPCS_2747_1_012032bib3) 1994
Efron (JPCS_2747_1_012032bib11) 1983; 78
Koren (JPCS_2747_1_012032bib2) 2009; 42
Wang (JPCS_2747_1_012032bib6) 2013; 39
Ghahramani (JPCS_2747_1_012032bib12) 1996
Shawe-Taylor (JPCS_2747_1_012032bib16) 2004
Altman (JPCS_2747_1_012032bib9) 1992; 46
Rasmussen (JPCS_2747_1_012032bib15) 2006
Abelson (JPCS_2747_1_012032bib14) 2012
References_xml – volume: 42
  start-page: 30
  year: 2009
  ident: JPCS_2747_1_012032bib2
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– volume: 78
  start-page: 316
  year: 1983
  ident: JPCS_2747_1_012032bib11
  article-title: Estimating the error rate of a prediction rule: Improvement on cross-validation
  publication-title: Publications of the American Statistical Association
  doi: 10.1080/01621459.1983.10477973
– year: 1996
  ident: JPCS_2747_1_012032bib12
– year: 2006
  ident: JPCS_2747_1_012032bib15
– volume: 20
  start-page: 273
  year: 1995
  ident: JPCS_2747_1_012032bib7
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 13
  start-page: 21
  year: 1967
  ident: JPCS_2747_1_012032bib10
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 39
  start-page: 288
  year: 2013
  ident: JPCS_2747_1_012032bib6
  article-title: A weighted k-nearest neighbor algorithm based on linear neighborhood propagation
  publication-title: Computer Engineering
– year: 2000
  ident: JPCS_2747_1_012032bib8
– volume: 11
  start-page: 6173
  year: 2013
  ident: JPCS_2747_1_012032bib5
  article-title: Weighted K-nearest neighbor classification algorithm based on Genetic Algorithm
  publication-title: TELKOMNIKA Indonesian Journal of Electrical Engineering
  doi: 10.11591/telkomnika.v11i10.2534
– volume: 46
  start-page: 175
  year: 1992
  ident: JPCS_2747_1_012032bib9
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: American Statistician
  doi: 10.1080/00031305.1992.10475879
– start-page: 285
  year: 2001
  ident: JPCS_2747_1_012032bib1
  article-title: Item-based collaborative filtering recommendation algorithms
– start-page: 175
  year: 1994
  ident: JPCS_2747_1_012032bib3
  article-title: Grouplens: An open architecture for collaborative filtering of netnews
– volume: 17
  start-page: 3507
  year: 2022
  ident: JPCS_2747_1_012032bib4
  article-title: Jointly recommendation algorithm of knn matrix factorization with weights
  publication-title: Journal of Electrical Engineering & Technology
– year: 2004
  ident: JPCS_2747_1_012032bib16
– year: 2016
  ident: JPCS_2747_1_012032bib13
– year: 2012
  ident: JPCS_2747_1_012032bib14
SSID ssj0033337
Score 2.3641727
Snippet This paper proposes a hybrid recommendation algorithm that combines the advantages of Gaussian Mixture Model (GMM) and K-Nearest Neighbors (KNN) algorithms....
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12032
SubjectTerms Clustering
Gaussian kernel
GMM
K-nearest neighbors algorithm
Kernel functions
KNN algorithm
Probabilistic models
Recommendation system
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4uiF7cxXGjoEc73ZI2PYqogzKjoIK38LJUxdnQGUR_vS-TVh1BVOyph5eSfGne-5K3hJA9pnH5Ucj9XOW5TxPrJFTA_LhQoICarGA2ObnZShvX9PSG3XzOhen1S9Vfx1dXKNhBWAbE8QA5dOynLE8Du6MKosDmfyaohqcTjvzYJvGdX1TaOMEnc0mRthHnVYzX9x8as1CT2Isx8jk77Pbh5Rna7U926HiBqGoELvzkoT4cyLp6_VLc8X9DXCTzJU31DlyLJTJhustkZhQuqp5WSODOIoz2TprNs1bLa7zYzC_PbmY7HVNe1OQdtG97j_eDu84quT4-ujps-OXVC76yvlufQ8oAVzuFNC5MpOPEUKlUwoxOdZZHynANXPOCcgAIpUoRZikphLE2TIfJGpnq9rpmnXiZoQo1SSLt3LNQAhTMRKkM0X6CyuIaCSu4Rd9V2BAjzzjnwuIgLA7C4iAi4XCokX1ETpSr7eln8d0x8dOLw8txCdHXRY1sVbP8IYraEPldiLu8GoneZ_63_dz4Wz83yVyMlMmFU26RqcHj0Gwj5RnIndE__QarA-y2
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sRfQiPrG-COjRkGSzm8dBRKValIaiFnpbJrsbFfqItkX89-42ibUXNccwLMk3O6-dmR2AUya1-FGM7VjEsU19kyQUyGySCRRIVZgx05zcToJWl971WG8JkqoXxpRVVjpxpqjlSJgzckfvS21pXe1vX-RvtpkaZbKr1QgNLEcryPPZFWM1WCbmZqw6LF81k85DpZt9_YRFiySxte2NqoovHQaW7-LAMYGa4zmmrdQnC_aq9jrKF1zR1ekwx88P7Pd_WKWbDVgv3UnrsuD_Jiyp4RaszMo6xXgbnOLMQEnrtt2-TxKr9Wk6tCwTdA4GqhyoZF32n_WvTl4GO9C9aT5dt-xyRIItTI7VjjBgqKWSYkAy5UniK5oK4TMlAxnGnlCRxEhGGY0Q0U1FoAFIU4oukYpJ19-F-nA0VHtghYoKLfF-anjE3BQxY8oLUlfbORQhaYBbAcHz4iYMPstgRxE32HGDHTfYcY8X2DXgTAPGS6kY_01-skB-17l-XKTgucwacFjhPyed744GeN88-e937v--5AGsEe3KFGWOh1CfvE_VkXZFJulxub--AM-W0t0
  priority: 102
  providerName: ProQuest
Title Improved GMMKNN Hybrid Recommendation Algorithm
URI https://iopscience.iop.org/article/10.1088/1742-6596/2747/1/012032
https://www.proquest.com/docview/3052730606
https://doi.org/10.1088/1742-6596/2747/1/012032
UnpaywallVersion publishedVersion
Volume 2747
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: IOP
  dateStart: 20040601
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB7BrqryAqWHWKCrSPDYkMN2jscFsWypNkS0q9Ina3ykIPYS7ArRX197k9CmUtXjxQ_ROHJmPJ5vMjMegEOmjPpRTN1UpqlLiQ0SSmRuWEiUSHVcMFucPMyiwYieX7GrNfDqWphG_N44ZwYwh27E0siz7pMXeLbYk5gzt20f-i1oj7K896Use7SUq06TT7PqjK7fv6lhj9ZvZvMG1Hy-nM7x8QHH45-sTn8L8nq9ZbLJ7dFyIY7kt1-ucvyHD3oBmxUCdXrlltmGNT19Cc9WmaDy_hV45W8GrZyz4fBDljmDR1vU5Vg_dTLRVQ8mpzf-Oru7WVxPXsOof_rpZOBWXRVcacOyboIRQ6PIFKOw0IEKiaZCSsK0ilScBlInChOVFDRBRF_IiJBYCIp-qDRTPnkDrelsqnfAiTWV5pAgwoqV-QKxYDqIhG9MI8o47IBf85bPy8sz-CronSTc8oFbPnDLBx7wkg8deGdkwCtFuv8z-UGD_Dw_-dik4HNVdGC_FukPUnPQGejmGweuA8GTmP92nbv_MWcPNkIDicp0yX1oLe6W-q2BNAvRhfWkf9aF9vFpll92rXlhZnx_kZvxgnzuVtv8Oz0k5bc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEKKXqg8Q29I2UtsbURI_8jigilLowrIR4iFxMxPbKUj7SLuL0P65_raON0npXtpeyDEaWdbnz54Zz4wH4IM0tP0EZn6ms8wX3AUJNUqflRo1CpuU0hUn9_O4eymOr-TVEvxsa2FcWmV7Js4PajPW7o48IF6Spg3J3v5Uffdd1ygXXW1baGDTWsHszp8Yawo7enZ2Ty7cZPfoC633R8YODy72u37TZcDXLkzppxhLJGILjFlpI8O4FYXWXFoTmySLtE0NpiYtRYqIYaFjzpOiEBgyY6UJOY27DKuCi4ycv9XPB_npWasLOH1JXZLJfNL1aZthRm5n8y-LA-cYBlHgylg5W9CPy7fjasH0Xb8bVTi7x8HgDy14-AyeNuart1fz7Tks2dELWJunkerJSwjqOwprvK_9fi_Pve7MVYR5zskdDm3TwMnbG3wjaKc3ww24fBSwNmFlNB7ZLfASKzSdMLxwnJBhgVhKG8VFSHoVdcI6ELZAqKp-eUPNI-Zpqhx2ymGnHHYqUjV2HdghwFSzCyf_Fn-_IH58un--KKEqU3Zgu8X_QfSBjR2Ifq_J_87z1d-HfAfr3Yv-iTo5ynuv4QkjM6pOsdyGlemPO_uGzKBp8bbhmgfXj03vXxQ7EUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH5iUYEL0FLEsJRI7bGZbHbiHBEwTKEzHQmQuFnPSyhiNsGMEPx67HFCmUoIEDnl8Bw9f_ZbnLcY4AdVRvwI5n4u89wniQ0SSqR-XEiUSHRWUFuc3GqnzXNyfEEvZqDxVAszGJaqv25eXaNgB2GZEMcC40PHfkrzNLAnqiAKbP1nEgdDVczC_KRdiS3k-9OpNHJinswVRtqBjFV5Xi9_bMpKzRpOphzQxXF_iPd32O0-s0WNFbisZuFSUK7r45Goy4f_Gjx-fJqrsFy6q96eG_UZZnT_C3yapI3K2zUI3D8JrbyjVuuk3faa97YCzLOH2l5Plxc2eXvdy8HN1ehv7yucNw7P9pt-eQWDL20M12eYUjRSTzCNCx2pONFESJlQrVKV5ZHUTCFTrCAMEUMhUwO1EATDWGmqwmQd5vqDvt4AL9NEGo2SCLsHaCgQC6qjVITGjqLM4hqEFeR86Dpt8EmEnDFuseAWC26x4BF3WNTgp0GPl1J3-zr59yny487-6TQFN-DWYLta6X-kRisaPy80p70aRE-r_1Y-N9_H5y4sdA4a_Pev9skWLMXGi3IZltswN7oZ6x3jBY3Et8kWfwToaPIX
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5qRfTFW6xWCeijMddujscialFaClrQp2X2iBZ7oS2iv97dJlEjiMdrmA2bmZ2ZbzIzOwCHVGr1I5jYiUgSmwQmSSiQ2n4qUCBRUUpNc3KrHTa75OKG3lTAKXphSvl7HZxpwOzbIU1Cx4RPjueYZs9A29x589Ctwny33WncZm2PhnI2afJ9VVHR9f2bSv5orjcal6Dm4nQ4xpdn7Pc_eZ2zFegU-82KTR6OpxN-LF6_XOX4hw9aheUcgVqN7MisQUUN12FhVgkqnjbAyX4zKGmdt1qX7bbVfDFNXZaJUwcDlc9gshr9u9Fjb3I_2ITu2en1SdPOpyrYwqRl7RhDilqRCYZ-qjzpB4pwIQKqZCijxBMqlhjLOCUxIrpchEEQcU7Q9aWi0g22oDocDdU2WJEiQhuJgBuxUpcjplR5IXe1a0QR-TVwC96ycXZ5BpslveOYGT4wwwdm-MA8lvGhBkdaBixXpKefyQ9K5Bedk6syBRvLtAb1QqQfpNrQaejm6gCuBt67mH-7z51_rNmFJV9Doqxcsg7VyeNU7WlIM-H7-TF-A-ho4E4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+GMMKNN+Hybrid+Recommendation+Algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Hao%2C+Yaxian&rft.au=Feng%2C+Lijiao&rft.date=2024-05-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2747&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2747%2F1%2F012032&rft.externalDocID=JPCS_2747_1_012032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon