Implications of z ≳ 12 JWST galaxies for galaxy formation at high redshift

ABSTRACT Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select analogues from a cosmological simulation with a (311 cMpc)3 volume and an effective particle number of 1012 enabling the resolution o...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 526; no. 1; pp. 1324 - 1342
Main Authors Qin, Yuxiang, Balu, Sreedhar, Wyithe, J Stuart B
Format Journal Article
LanguageEnglish
Published Oxford University Press 21.09.2023
Subjects
Online AccessGet full text
ISSN0035-8711
1365-2966
DOI10.1093/mnras/stad2448

Cover

Abstract ABSTRACT Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select analogues from a cosmological simulation with a (311 cMpc)3 volume and an effective particle number of 1012 enabling the resolution of every atomic-cooling galaxy at z ≤ 20. We vary model parameters to reproduce the observed ultraviolet (UV) luminosity function at 5 < z < 13, aiming for a statistically representative high-redshift galaxy mock catalogue. Using the forward-modelled JWST photometry, we identify analogues from this catalogue and study their properties as well as possible evolutionary paths and local environment. We find faint JWST galaxies (MUV ≳ − 19.5) to remain consistent with the standard galaxy formation model and that our fiducial catalogue includes large samples of their analogues. The properties of these analogues broadly agree with conventional spectral energy distribution-fitting results, except for having systematically lower redshifts due to the evolving ultraviolet luminosity function, and for having higher specific star formation rates as a result of burstier histories in our model. On the other hand, only a handful of bright galaxy analogues can be identified for the observed z ∼ 12 galaxies. Moreover, in order to reproduce the z ≳ 16 JWST galaxy candidates, boosting star-forming efficiencies through reduced feedback regulation and increased gas depletion rate is necessary relative to models of lower redshift populations. This suggests star formation in the first galaxies could differ significantly from their lower redshift counterparts. We also find that these candidates are subject to low-redshift contamination, which is present in our fiducial results as both the dusty or quiescent galaxies at z ∼ 5.
AbstractList Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select analogues from a cosmological simulation with a (311 cMpc)3 volume and an effective particle number of 1012 enabling the resolution of every atomic-cooling galaxy at z ≤ 20. We vary model parameters to reproduce the observed ultraviolet (UV) luminosity function at 5 < z < 13, aiming for a statistically representative high-redshift galaxy mock catalogue. Using the forward-modelled JWST photometry, we identify analogues from this catalogue and study their properties as well as possible evolutionary paths and local environment. We find faint JWST galaxies (MUV ≳ − 19.5) to remain consistent with the standard galaxy formation model and that our fiducial catalogue includes large samples of their analogues. The properties of these analogues broadly agree with conventional spectral energy distribution-fitting results, except for having systematically lower redshifts due to the evolving ultraviolet luminosity function, and for having higher specific star formation rates as a result of burstier histories in our model. On the other hand, only a handful of bright galaxy analogues can be identified for the observed z ∼ 12 galaxies. Moreover, in order to reproduce the z ≳ 16 JWST galaxy candidates, boosting star-forming efficiencies through reduced feedback regulation and increased gas depletion rate is necessary relative to models of lower redshift populations. This suggests star formation in the first galaxies could differ significantly from their lower redshift counterparts. We also find that these candidates are subject to low-redshift contamination, which is present in our fiducial results as both the dusty or quiescent galaxies at z ∼ 5.
ABSTRACT Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select analogues from a cosmological simulation with a (311 cMpc)3 volume and an effective particle number of 1012 enabling the resolution of every atomic-cooling galaxy at z ≤ 20. We vary model parameters to reproduce the observed ultraviolet (UV) luminosity function at 5 < z < 13, aiming for a statistically representative high-redshift galaxy mock catalogue. Using the forward-modelled JWST photometry, we identify analogues from this catalogue and study their properties as well as possible evolutionary paths and local environment. We find faint JWST galaxies (MUV ≳ − 19.5) to remain consistent with the standard galaxy formation model and that our fiducial catalogue includes large samples of their analogues. The properties of these analogues broadly agree with conventional spectral energy distribution-fitting results, except for having systematically lower redshifts due to the evolving ultraviolet luminosity function, and for having higher specific star formation rates as a result of burstier histories in our model. On the other hand, only a handful of bright galaxy analogues can be identified for the observed z ∼ 12 galaxies. Moreover, in order to reproduce the z ≳ 16 JWST galaxy candidates, boosting star-forming efficiencies through reduced feedback regulation and increased gas depletion rate is necessary relative to models of lower redshift populations. This suggests star formation in the first galaxies could differ significantly from their lower redshift counterparts. We also find that these candidates are subject to low-redshift contamination, which is present in our fiducial results as both the dusty or quiescent galaxies at z ∼ 5.
Author Qin, Yuxiang
Wyithe, J Stuart B
Balu, Sreedhar
Author_xml – sequence: 1
  givenname: Yuxiang
  orcidid: 0000-0002-4314-1810
  surname: Qin
  fullname: Qin, Yuxiang
  email: Yuxiang.L.Qin@gmail.com
– sequence: 2
  givenname: Sreedhar
  orcidid: 0000-0002-5281-5151
  surname: Balu
  fullname: Balu, Sreedhar
– sequence: 3
  givenname: J Stuart B
  orcidid: 0000-0001-7956-9758
  surname: Wyithe
  fullname: Wyithe, J Stuart B
BookMark eNqFkMtKAzEUhoNUsK1uXWfrYtpcJzNLKV4qBRdWXA5nMkkbmUtJIljfwOfxjXwS26luBHF1_gPfdzj8IzRou9YgdE7JhJKcT5vWQ5iGCBUTIjtCQ8pTmbA8TQdoSAiXSaYoPUGjEJ4JIYKzdIgW82ZTOw3RdW3AncVv-PP9A1OG754elngFNbw6E7Dt_GHZ7mPT8xgiXrvVGntThbWz8RQdW6iDOfueY_R4fbWc3SaL-5v57HKRaKZ4TIDJ3JRlLnMhDS0NZEylpTZcUKVVrrMdIMtKp4ZRYjMiQXIFwkqhwHJb8jESh7vadyF4YwvtYv9S9ODqgpJi30jRN1L8NLLTJr-0jXcN-O3fwsVB6F42_7Ffi7l36Q
CitedBy_id crossref_primary_10_1088_1674_4527_ad2c3f
crossref_primary_10_1093_mnras_stae567
crossref_primary_10_1088_1674_4527_ad2cd3
crossref_primary_10_1093_mnras_stae2646
crossref_primary_10_1051_0004_6361_202347384
crossref_primary_10_1093_mnras_stae2633
crossref_primary_10_1088_1475_7516_2024_07_078
crossref_primary_10_3847_2041_8213_acf85a
crossref_primary_10_1088_1475_7516_2023_10_072
crossref_primary_10_3847_1538_4357_ad55eb
crossref_primary_10_3847_2041_8213_acf46c
crossref_primary_10_1088_1475_7516_2024_05_097
crossref_primary_10_1088_1475_7516_2024_07_072
crossref_primary_10_1103_PhysRevD_110_043537
crossref_primary_10_1051_0004_6361_202451502
crossref_primary_10_1088_1475_7516_2025_02_061
crossref_primary_10_3847_1538_4357_ad8080
crossref_primary_10_1051_0004_6361_202348091
crossref_primary_10_1093_mnrasl_slaf001
Cites_doi 10.1086/591786
10.48550/arXiv.2304.11178
10.3847/1538-4357/aca678
10.1093/mnras/stad1095
10.1111/j.1365-2966.2010.18114.x
10.48550/arXiv.2305.05679
10.1093/mnras/stz230
10.1093/mnras/staa1959
10.1038/s42254-019-0127-2
10.1093/mnras/stac1963
10.1038/s41550-023-01921-1
10.1017/pasa.2019.12
10.48550/arXiv.2302.14155
10.1051/0004-6361/202244831
10.3847/1538-4357/ab8c45
10.1086/309250
10.1038/nature25180
10.1093/mnras/stac3717
10.1088/0004-637X/810/1/71
10.1046/j.1365-8711.2001.04022.x
10.1093/mnras/stw2187
10.48550/arXiv.2305.16670
10.3847/2041-8213/ac966e
10.3847/1538-4357/ac8158
10.1093/mnras/stac3472
10.1093/pasj/psy048
10.1093/mnras/sty1820
10.1088/2041-8205/714/1/L118
10.48550/arXiv.2303.03419
10.1093/mnras/stad073
10.1038/srep26896
10.1111/j.1365-2966.2009.15191.x
10.3847/0004-637X/819/2/129
10.21105/joss.02582
10.1146/annurev-astro-081913-040019
10.1093/mnras/stac1908
10.48550/arXiv.2305.00999
10.1093/mnras/stab3733
10.48550/arXiv.2306.00487
10.1093/mnras/sty552
10.3847/1538-4357/aad6dc
10.1093/mnras/stac3723
10.3847/1538-4357/ab412b
10.48550/arXiv.2205.12980
10.1086/313233
10.1088/0004-637X/803/1/34
10.1093/mnras/stw1332
10.48550/arXiv.2302.07256
10.3847/1538-4357/aaa544
10.1146/annurev-astro-082812-140951
10.1093/mnras/stu1848
10.48550/arXiv.2304.13755
10.3847/2041-8213/ac9b22
10.1093/mnras/stad1145
10.1038/s41550-023-01918-w
10.3847/2041-8213/ac9a50
10.3847/2041-8213/ac94d0
10.3847/1538-4357/835/2/113
10.1086/426067
10.1093/mnras/stad947
10.1093/mnras/stx1909
10.3847/1538-4357/ac1104
10.3847/2041-8213/ac8a4e
10.1093/mnras/stz1182
10.1093/mnrasl/slac115
10.1093/mnras/staa3261
10.1093/mnras/stac3347
10.3847/1538-4357/aa5ffe
10.48550/arXiv.2302.02429
10.1093/mnras/stab1833
10.1088/0004-637X/745/1/50
10.1093/mnras/stw3351
10.1093/mnras/stv705
10.1093/mnras/staa1178
10.1093/mnrasl/slt035
10.3847/2041-8213/aca80c
10.1093/mnras/stad035
10.3847/2041-8213/ac9586
10.3847/1538-3881/abf83e
10.1093/mnras/stu2449
10.3847/1538-4357/abbd44
10.48550/arXiv.2302.07234
10.1017/pasa.2019.18
10.1093/mnras/stac3144
10.48550/arXiv.2305.13380
10.1051/0004-6361/201833910
10.48550/arXiv.2304.06658
10.1088/2041-8205/708/2/L69
10.3847/2041-8213/acacfe
10.1093/mnras/sty1131
10.1093/mnras/stw1318
10.1093/pasj/psx074
10.3847/2041-8213/ac9283
10.1093/MNRAS/STAC825
10.1093/mnras/staa2797
10.1093/mnras/stz2233
10.1111/j.1365-2966.2010.17731.x
10.3847/1538-4357/ac4997
10.1051/0004-6361/202243088
10.48550/arXiv.2303.15431
10.1093/mnras/stz866
10.3847/1538-4357/833/1/84
10.1093/mnras/stad125
10.3847/1538-4357/aab0a7
10.3847/1538-4365/acaaa9
10.1093/mnras/stu1738
10.1093/mnras/stw674
10.1093/mnras/stad471
10.48550/arXiv.2303.11349
10.1086/305588
10.1088/0004-637X/793/2/115
10.1093/mnras/stu936
ContentType Journal Article
Copyright 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
Copyright_xml – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
DBID AAYXX
CITATION
DOI 10.1093/mnras/stad2448
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 1342
ExternalDocumentID 10_1093_mnras_stad2448
10.1093/mnras/stad2448
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c273t-a259ebb95945e1bea8276bce3417c79c8a255bdc6e210f805a537a4f547af3fb3
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Thu Apr 24 23:09:37 EDT 2025
Wed Oct 01 04:09:43 EDT 2025
Wed Aug 28 03:17:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords intergalactic medium
early Universe
diffuse radiation
galaxies: high-redshift
dark ages, reionization, first stars
cosmology: theory
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-a259ebb95945e1bea8276bce3417c79c8a255bdc6e210f805a537a4f547af3fb3
ORCID 0000-0002-5281-5151
0000-0002-4314-1810
0000-0001-7956-9758
PageCount 19
ParticipantIDs crossref_citationtrail_10_1093_mnras_stad2448
crossref_primary_10_1093_mnras_stad2448
oup_primary_10_1093_mnras_stad2448
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-21
PublicationDateYYYYMMDD 2023-09-21
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-21
  day: 21
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Charlot (2023092821231212400_bib27) 2000; 539
Yung (2023092821231212400_bib120) 2023
Bañados (2023092821231212400_bib11) 2018; 553
Harikane (2023092821231212400_bib49) 2023; 265
Strait (2023092821231212400_bib105) 2023
Bradley (2023092821231212400_bib22) 2022
Yan (2023092821231212400_bib119) 2023; 942
Mason (2023092821231212400_bib69) 2018; 856
Bolan (2023092821231212400_bib15) 2022; 517
Trinca (2023092821231212400_bib109) 2023
Atek (2023092821231212400_bib4) 2018; 479
Balu (2023092821231212400_bib9) 2022
Cullen (2023092821231212400_bib30) 2023; 520
Qin (2023092821231212400_bib90) 2017; 472
Qiu (2023092821231212400_bib95) 2020; 500
Xu (2023092821231212400_bib118) 2016; 833
Naab (2023092821231212400_bib78) 2017; 55
Leitherer (2023092821231212400_bib63) 1999; 123
Qin (2023092821231212400_bib92) 2021; 506
Brammer (2023092821231212400_bib23) 2008; 686
Tacchella (2023092821231212400_bib106) 2023
Whitler (2023092821231212400_bib113) 2020; 495
Ferrara (2023092821231212400_bib39) 2023; 522
Furtak (2023092821231212400_bib43) 2023; 519
Jung (2023092821231212400_bib58) 2020; 904
Planck Collaboration (2023092821231212400_bib86) 2020; 641
Henriques (2023092821231212400_bib51) 2015; 451
Donnan (2023092821231212400_bib35) 2023; 518
Kroupa (2023092821231212400_bib61) 2001; 322
Kennicutt (2023092821231212400_bib60) 1998; 498
Dayal (2023092821231212400_bib34) 2014; 445
Vogelsberger (2023092821231212400_bib111) 2020; 2
Inoue (2023092821231212400_bib55) 2018; 70
Zavala (2023092821231212400_bib121) 2023; 943
Leja (2023092821231212400_bib64) 2017; 837
Mason (2023092821231212400_bib70) 2023; 521
Bakx (2023092821231212400_bib8) 2023; 519
Jin (2023092821231212400_bib57) 2023; 942
Harikane (2023092821231212400_bib48) 2023
Sommovigo (2023092821231212400_bib103) 2020; 497
Bhatawdekar (2023092821231212400_bib14) 2019; 486
Popping (2023092821231212400_bib89) 2023; 669
Bouwens (2023092821231212400_bib16) 2010; 708
Mesinger (2023092821231212400_bib73) 2011; 411
Sun (2023092821231212400_bib123_1694444754637) 2023
Greig (2023092821231212400_bib46) 2022; 512
Qin (2023092821231212400_bib91) 2020; 499
Wold (2023092821231212400_bib117) 2022; 927
Bouwens (2023092821231212400_bib19) 2021; 162
Parashari (2023092821231212400_bib84) 2023
Boylan-Kolchin (2023092821231212400_bib21) 2009; 398
Curtis-Lake (2023092821231212400_bib31) 2023; 7
Ouchi (2023092821231212400_bib83) 2018; 70
Rodighiero (2023092821231212400_bib97) 2023; 518
Treu (2023092821231212400_bib107) 2022; 935
Bruton (2023092821231212400_bib24) 2023
Coe (2023092821231212400_bib28) 2019; 884
Finkelstein (2023092821231212400_bib42) 2022; 940
Witten (2023092821231212400_bib116) 2023
Greig (2023092821231212400_bib45) 2019; 484
Qiu (2023092821231212400_bib94) 2019; 489
Wise (2023092821231212400_bib115) 2012; 745
Bunker (2023092821231212400_bib25) 2023
Morales (2023092821231212400_bib74) 2021; 919
Elahi (2023092821231212400_bib37) 2019; 36
Finkelstein (2023092821231212400_bib40) 2015; 810
Kauffmann (2023092821231212400_bib59) 2022; 667
Somerville (2023092821231212400_bib102) 2015; 53
Behrens (2023092821231212400_bib12) 2018; 477
Atek (2023092821231212400_bib5) 2023; 519
Naidu (2023092821231212400_bib79) 2022
Barrufet (2023092821231212400_bib10) 2023; 522
Murray (2023092821231212400_bib76) 2020; 5
Donnan (2023092821231212400_bib36) 2023; 520
Santini (2023092821231212400_bib98) 2023; 942
Shen (2023092821231212400_bib100) 2023
Greig (2023092821231212400_bib44) 2017; 466
Ono (2023092821231212400_bib82) 2022
Robertson (2023092821231212400_bib96) 2023; 7
Behroozi (2023092821231212400_bib13) 2019; 488
Wang (2023092821231212400_bib112) 2020; 896
Elahi (2023092821231212400_bib38) 2019; 36
Davies (2023092821231212400_bib33) 2018; 864
Leethochawalit (2023092821231212400_bib62) 2022
Cora (2023092821231212400_bib29) 2018; 479
Looser (2023092821231212400_bib67) 2023
Sobacchi (2023092821231212400_bib101) 2013; 432
Whitler (2023092821231212400_bib114) 2023
McGreer (2023092821231212400_bib72) 2015; 447
Oesch (2023092821231212400_bib81) 2016; 819
Guo (2023092821231212400_bib47) 2011; 413
Treu (2023092821231212400_bib108) 2023; 942
Pérez-González (2023092821231212400_bib85) 2023
Livermore (2023092821231212400_bib66) 2017; 835
Ziparo (2023092821231212400_bib122) 2023; 520
Azeez (2023092821231212400_bib6) 2016; 6
Leonova (2023092821231212400_bib65) 2022; 515
Stevens (2023092821231212400_bib104) 2016; 461
Markov (2023092821231212400_bib68) 2023
Poole (2023092821231212400_bib88) 2016; 459
McCaffrey (2023092821231212400_bib71) 2023
Hirschmann (2023092821231212400_bib52) 2016; 461
Naidu (2023092821231212400_bib80) 2022; 940
Inoue (2023092821231212400_bib54) 2014; 442
Adams (2023092821231212400_bib1) 2023; 518
Bagley (2023092821231212400_bib7) 2022
Finkelstein (2023092821231212400_bib41) 2021
Murray (2023092821231212400_bib75) 2005; 618
Hopkins (2023092821231212400_bib53) 2014; 445
Ishigaki (2023092821231212400_bib56) 2018; 854
Daddi (2023092821231212400_bib32) 2010; 714
Adams (2023092821231212400_bib2) 2023; 518
Bouwens (2023092821231212400_bib17) 2014; 793
Pontoppidan (2023092821231212400_bib87) 2022; 936
Qin (2023092821231212400_bib93) 2022; 510
Castellano (2023092821231212400_bib26) 2022; 938
Umeda (2023092821231212400_bib110) 2023
Arrabal Haro (2023092821231212400_bib3) 2023
Bouwens (2023092821231212400_bib20) 2023; 523
Bouwens (2023092821231212400_bib18) 2015; 803
Haslbauer (2023092821231212400_bib50) 2022; 939
Mutch (2023092821231212400_bib77) 2016; 463
Schaller (2023092821231212400_bib99) 2023
References_xml – year: 2023
  ident: 2023092821231212400_bib109
– start-page: 3368
  volume-title: MNRAS
  year: 2022
  ident: 2023092821231212400_bib9
– volume: 686
  start-page: 1503
  year: 2008
  ident: 2023092821231212400_bib23
  publication-title: ApJ
  doi: 10.1086/591786
– year: 2023
  ident: 2023092821231212400_bib68
  doi: 10.48550/arXiv.2304.11178
– volume: 942
  start-page: 59
  year: 2023
  ident: 2023092821231212400_bib57
  publication-title: ApJ
  doi: 10.3847/1538-4357/aca678
– year: 2023
  ident: 2023092821231212400_bib123_1694444754637
– volume: 522
  start-page: 3986
  year: 2023
  ident: 2023092821231212400_bib39
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1095
– volume: 413
  start-page: 101
  year: 2011
  ident: 2023092821231212400_bib47
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.18114.x
– year: 2023
  ident: 2023092821231212400_bib100
  doi: 10.48550/arXiv.2305.05679
– volume: 484
  start-page: 5094
  year: 2019
  ident: 2023092821231212400_bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stz230
– volume: 497
  start-page: 956
  year: 2020
  ident: 2023092821231212400_bib103
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1959
– volume: 2
  start-page: 42
  year: 2020
  ident: 2023092821231212400_bib111
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0127-2
– volume: 517
  start-page: 3263
  year: 2022
  ident: 2023092821231212400_bib15
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1963
– volume: 7
  start-page: 611
  year: 2023
  ident: 2023092821231212400_bib96
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-023-01921-1
– volume: 36
  start-page: 1
  year: 2019
  ident: 2023092821231212400_bib37
  publication-title: Publ. Astron. Soc. Aust.
  doi: 10.1017/pasa.2019.12
– year: 2023
  ident: 2023092821231212400_bib67
  doi: 10.48550/arXiv.2302.14155
– volume: 669
  start-page: L8
  year: 2023
  ident: 2023092821231212400_bib89
  publication-title: A&A
  doi: 10.1051/0004-6361/202244831
– volume: 896
  start-page: 23
  year: 2020
  ident: 2023092821231212400_bib112
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8c45
– volume: 539
  start-page: 718
  year: 2000
  ident: 2023092821231212400_bib27
  publication-title: ApJ
  doi: 10.1086/309250
– volume: 553
  start-page: 473
  year: 2018
  ident: 2023092821231212400_bib11
  publication-title: Nature
  doi: 10.1038/nature25180
– volume: 519
  start-page: 3064
  year: 2023
  ident: 2023092821231212400_bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3717
– volume: 810
  start-page: 71
  year: 2015
  ident: 2023092821231212400_bib40
  publication-title: ApJ
  doi: 10.1088/0004-637X/810/1/71
– volume: 322
  start-page: 231
  year: 2001
  ident: 2023092821231212400_bib61
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04022.x
– volume: 463
  start-page: 3556
  year: 2016
  ident: 2023092821231212400_bib77
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2187
– year: 2023
  ident: 2023092821231212400_bib114
  doi: 10.48550/arXiv.2305.16670
– volume: 940
  start-page: L55
  year: 2022
  ident: 2023092821231212400_bib42
  publication-title: ApJ
  doi: 10.3847/2041-8213/ac966e
– year: 2022
  ident: 2023092821231212400_bib79
– volume: 935
  start-page: 110
  year: 2022
  ident: 2023092821231212400_bib107
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac8158
– volume: 518
  start-page: 6011
  year: 2023
  ident: 2023092821231212400_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3472
– volume: 70
  start-page: 55
  year: 2018
  ident: 2023092821231212400_bib55
  publication-title: Publ. Astron. Soc. Japan
  doi: 10.1093/pasj/psy048
– volume: 479
  start-page: 5184
  year: 2018
  ident: 2023092821231212400_bib4
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1820
– volume: 714
  start-page: L118
  year: 2010
  ident: 2023092821231212400_bib32
  publication-title: ApJ
  doi: 10.1088/2041-8205/714/1/L118
– start-page: L40
  volume-title: ApJ
  year: 2023
  ident: 2023092821231212400_bib24
  doi: 10.48550/arXiv.2303.03419
– volume: 520
  start-page: 14
  year: 2023
  ident: 2023092821231212400_bib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stad073
– volume: 6
  start-page: 26896
  year: 2016
  ident: 2023092821231212400_bib6
  publication-title: Sci. Rep.
  doi: 10.1038/srep26896
– volume: 398
  start-page: 1150
  year: 2009
  ident: 2023092821231212400_bib21
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15191.x
– volume: 819
  start-page: 129
  year: 2016
  ident: 2023092821231212400_bib81
  publication-title: ApJ
  doi: 10.3847/0004-637X/819/2/129
– start-page: 21
  volume-title: ApJ
  year: 2022
  ident: 2023092821231212400_bib82
– volume: 5
  start-page: 2582
  year: 2020
  ident: 2023092821231212400_bib76
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02582
– volume: 55
  start-page: 59
  year: 2017
  ident: 2023092821231212400_bib78
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081913-040019
– volume: 515
  start-page: 5790
  year: 2022
  ident: 2023092821231212400_bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1908
– volume-title: MNRAS
  year: 2023
  ident: 2023092821231212400_bib84
  doi: 10.48550/arXiv.2305.00999
– volume: 510
  start-page: 3858
  year: 2022
  ident: 2023092821231212400_bib93
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3733
– year: 2023
  ident: 2023092821231212400_bib110
  doi: 10.48550/arXiv.2306.00487
– volume: 477
  start-page: 552
  year: 2018
  ident: 2023092821231212400_bib12
  publication-title: MNRAS
  doi: 10.1093/mnras/sty552
– volume: 864
  start-page: 142
  year: 2018
  ident: 2023092821231212400_bib33
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad6dc
– volume: 519
  start-page: 5076
  year: 2023
  ident: 2023092821231212400_bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3723
– volume: 884
  start-page: 85
  year: 2019
  ident: 2023092821231212400_bib28
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab412b
– year: 2022
  ident: 2023092821231212400_bib7
  doi: 10.48550/arXiv.2205.12980
– volume: 123
  start-page: 3
  year: 1999
  ident: 2023092821231212400_bib63
  publication-title: ApJS
  doi: 10.1086/313233
– volume: 803
  start-page: 34
  year: 2015
  ident: 2023092821231212400_bib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/803/1/34
– volume: 461
  start-page: 859
  year: 2016
  ident: 2023092821231212400_bib104
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1332
– volume-title: A&A
  year: 2023
  ident: 2023092821231212400_bib25
  doi: 10.48550/arXiv.2302.07256
– volume: 854
  start-page: 73
  year: 2018
  ident: 2023092821231212400_bib56
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa544
– volume: 53
  start-page: 51
  year: 2015
  ident: 2023092821231212400_bib102
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev-astro-082812-140951
– volume: 445
  start-page: 2545
  year: 2014
  ident: 2023092821231212400_bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1848
– year: 2023
  ident: 2023092821231212400_bib71
  doi: 10.48550/arXiv.2304.13755
– volume: 940
  start-page: L14
  year: 2022
  ident: 2023092821231212400_bib80
  publication-title: ApJ
  doi: 10.3847/2041-8213/ac9b22
– volume: 523
  start-page: 1036
  year: 2023
  ident: 2023092821231212400_bib20
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1145
– volume: 7
  start-page: 622
  year: 2023
  ident: 2023092821231212400_bib31
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-023-01918-w
– volume: 939
  start-page: L31
  year: 2022
  ident: 2023092821231212400_bib50
  publication-title: ApJ
  doi: 10.3847/2041-8213/ac9a50
– volume: 938
  start-page: L15
  year: 2022
  ident: 2023092821231212400_bib26
  publication-title: ApJ
  doi: 10.3847/2041-8213/ac94d0
– volume: 835
  start-page: 113
  year: 2017
  ident: 2023092821231212400_bib66
  publication-title: ApJ
  doi: 10.3847/1538-4357/835/2/113
– volume: 618
  start-page: 569
  year: 2005
  ident: 2023092821231212400_bib75
  publication-title: ApJ
  doi: 10.1086/426067
– year: 2023
  ident: 2023092821231212400_bib116
– volume: 522
  start-page: 449
  year: 2023
  ident: 2023092821231212400_bib10
  publication-title: MNRAS
  doi: 10.1093/mnras/stad947
– volume: 472
  start-page: 2009
  year: 2017
  ident: 2023092821231212400_bib90
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1909
– volume: 919
  start-page: 120
  year: 2021
  ident: 2023092821231212400_bib74
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac1104
– volume: 936
  start-page: L14
  year: 2022
  ident: 2023092821231212400_bib87
  publication-title: ApJ
  doi: 10.3847/2041-8213/ac8a4e
– volume: 488
  start-page: 3143
  year: 2019
  ident: 2023092821231212400_bib13
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1182
– volume: 518
  start-page: L19
  year: 2023
  ident: 2023092821231212400_bib97
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slac115
– volume: 500
  start-page: 493
  year: 2020
  ident: 2023092821231212400_bib95
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3261
– volume: 518
  start-page: 4755
  year: 2023
  ident: 2023092821231212400_bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3347
– volume: 837
  start-page: 170
  year: 2017
  ident: 2023092821231212400_bib64
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa5ffe
– start-page: L14
  volume-title: ApJ
  year: 2023
  ident: 2023092821231212400_bib85
  doi: 10.48550/arXiv.2302.02429
– volume: 506
  start-page: 2390
  year: 2021
  ident: 2023092821231212400_bib92
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1833
– volume: 518
  start-page: 4755
  year: 2023
  ident: 2023092821231212400_bib1
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3347
– volume: 745
  start-page: 50
  year: 2012
  ident: 2023092821231212400_bib115
  publication-title: ApJ
  doi: 10.1088/0004-637X/745/1/50
– volume: 466
  start-page: 4239
  year: 2017
  ident: 2023092821231212400_bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stw3351
– volume: 451
  start-page: 2663
  year: 2015
  ident: 2023092821231212400_bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stv705
– volume: 495
  start-page: 3602
  year: 2020
  ident: 2023092821231212400_bib113
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1178
– volume: 432
  start-page: L51
  year: 2013
  ident: 2023092821231212400_bib101
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slt035
– volume: 942
  start-page: L9
  year: 2023
  ident: 2023092821231212400_bib119
  publication-title: ApJ
  doi: 10.3847/2041-8213/aca80c
– volume: 521
  start-page: 497
  year: 2023
  ident: 2023092821231212400_bib70
  publication-title: MNRAS
  doi: 10.1093/mnras/stad035
– volume: 942
  start-page: L27
  year: 2023
  ident: 2023092821231212400_bib98
  publication-title: ApJ
  doi: 10.3847/2041-8213/ac9586
– volume: 162
  start-page: 47
  year: 2021
  ident: 2023092821231212400_bib19
  publication-title: AJ
  doi: 10.3847/1538-3881/abf83e
– volume: 447
  start-page: 499
  year: 2015
  ident: 2023092821231212400_bib72
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2449
– volume: 904
  start-page: 144
  year: 2020
  ident: 2023092821231212400_bib58
  publication-title: ApJ
  doi: 10.3847/1538-4357/abbd44
– start-page: 74
  volume-title: ApJ
  year: 2023
  ident: 2023092821231212400_bib106
  doi: 10.48550/arXiv.2302.07234
– volume: 36
  start-page: 1
  year: 2019
  ident: 2023092821231212400_bib38
  publication-title: Publ. Astron. Soc. Aust.
  doi: 10.1017/pasa.2019.18
– volume: 519
  start-page: 1201
  year: 2023
  ident: 2023092821231212400_bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3144
– year: 2023
  ident: 2023092821231212400_bib99
  doi: 10.48550/arXiv.2305.13380
– volume: 641
  start-page: A6
  year: 2020
  ident: 2023092821231212400_bib86
  publication-title: A&A
  doi: 10.1051/0004-6361/201833910
– year: 2023
  ident: 2023092821231212400_bib48
  doi: 10.48550/arXiv.2304.06658
– start-page: 5454
  volume-title: MNRAS
  year: 2022
  ident: 2023092821231212400_bib62
– volume: 708
  start-page: L69
  year: 2010
  ident: 2023092821231212400_bib16
  publication-title: ApJ
  doi: 10.1088/2041-8205/708/2/L69
– volume-title: JWST Proposal. Cycle 1, ID. #2079
  year: 2021
  ident: 2023092821231212400_bib41
– volume: 943
  start-page: L9
  year: 2023
  ident: 2023092821231212400_bib121
  publication-title: ApJ
  doi: 10.3847/2041-8213/acacfe
– volume-title: ApJ
  year: 2022
  ident: 2023092821231212400_bib22
– volume: 479
  start-page: 2
  year: 2018
  ident: 2023092821231212400_bib29
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1131
– volume: 461
  start-page: 1760
  year: 2016
  ident: 2023092821231212400_bib52
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1318
– volume: 70
  start-page: S13
  year: 2018
  ident: 2023092821231212400_bib83
  publication-title: Publ. Astron. Soc. Japan
  doi: 10.1093/pasj/psx074
– volume: 942
  start-page: L28
  year: 2023
  ident: 2023092821231212400_bib108
  publication-title: ApJ
  doi: 10.3847/2041-8213/ac9283
– volume: 512
  start-page: 5390
  year: 2022
  ident: 2023092821231212400_bib46
  publication-title: MNRAS
  doi: 10.1093/MNRAS/STAC825
– volume: 499
  start-page: 550
  year: 2020
  ident: 2023092821231212400_bib91
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2797
– volume: 489
  start-page: 1357
  year: 2019
  ident: 2023092821231212400_bib94
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2233
– volume: 411
  start-page: 955
  year: 2011
  ident: 2023092821231212400_bib73
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17731.x
– volume: 927
  start-page: 36
  year: 2022
  ident: 2023092821231212400_bib117
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac4997
– volume: 667
  start-page: A65
  year: 2022
  ident: 2023092821231212400_bib59
  publication-title: A&A
  doi: 10.1051/0004-6361/202243088
– volume-title: Nature
  year: 2023
  ident: 2023092821231212400_bib3
  doi: 10.48550/arXiv.2303.15431
– volume: 486
  start-page: 3805
  year: 2019
  ident: 2023092821231212400_bib14
  publication-title: MNRAS
  doi: 10.1093/mnras/stz866
– volume: 833
  start-page: 84
  year: 2016
  ident: 2023092821231212400_bib118
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/1/84
– volume: 520
  start-page: 2445
  year: 2023
  ident: 2023092821231212400_bib122
  publication-title: MNRAS
  doi: 10.1093/mnras/stad125
– volume: 856
  start-page: 2
  year: 2018
  ident: 2023092821231212400_bib69
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab0a7
– volume: 265
  start-page: 5
  year: 2023
  ident: 2023092821231212400_bib49
  publication-title: ApJS
  doi: 10.3847/1538-4365/acaaa9
– volume: 445
  start-page: 581
  year: 2014
  ident: 2023092821231212400_bib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1738
– volume: 459
  start-page: 3025
  year: 2016
  ident: 2023092821231212400_bib88
  publication-title: MNRAS
  doi: 10.1093/mnras/stw674
– year: 2023
  ident: 2023092821231212400_bib120
– volume: 520
  start-page: 4554
  year: 2023
  ident: 2023092821231212400_bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stad471
– start-page: L23
  volume-title: ApJL
  year: 2023
  ident: 2023092821231212400_bib105
  doi: 10.48550/arXiv.2303.11349
– volume: 498
  start-page: 541
  year: 1998
  ident: 2023092821231212400_bib60
  publication-title: ApJ
  doi: 10.1086/305588
– volume: 793
  start-page: 115
  year: 2014
  ident: 2023092821231212400_bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/793/2/115
– volume: 442
  start-page: 1805
  year: 2014
  ident: 2023092821231212400_bib54
  publication-title: MNRAS
  doi: 10.1093/mnras/stu936
SSID ssj0004326
Score 2.5151193
Snippet ABSTRACT Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We...
Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 1324
Title Implications of z ≳ 12 JWST galaxies for galaxy formation at high redshift
Volume 526
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: KQ8
  dateStart: 18270209
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0035-8711
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA2yJ19Ep7L5RRDRp7K1adL0cQzHHE4f3HBvJUlTHGyttBWc_8Df4z_yl3jTdnOKok9t6O1LEjjn3OSei9AZ5aEXAgxbwO1BoEgmLMHb2lLMdL1nEZfS5DuGN6w_dgcTOqnMorMfjvB90prHqchawJVCgCJT1msDxYWdO7qdfFZAkqKxWmHACBLAXtkzfv_9C_yYkrY1NOlto62KBuJOuW47aEPHddToZCYxncwX-BwX72XeIauj5hDIbZIWOXD42J1NgWkWo110fbV2KxwnEX7B769v2Hbw4P5uhAECxDPoYQz0tBws8KpkEYscG8dinOowe5hG-R4a9y5H3b5VNUmwFDCP3BKgX7SUPvVdqm2pBXc8JpUGdPKU5ysOAVSGimkQdxFvU0GJJ9yIup6ISCTJPqrFSawbCINUZtzV3Gdcu5JoXzOm4CFs12krhzSRtZy7QFUO4qaRxSwoT7JJUMx1sJzrJrpYxT-W3hm_Rp7CUvwRdPCfoEO0aRrCmxsdjn2Eann6pI-BNuTypNgxH4hQwps
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implications+of+z+%E2%89%B3+12+JWST+galaxies+for+galaxy+formation+at+high+redshift&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Qin%2C+Yuxiang&rft.au=Balu%2C+Sreedhar&rft.au=Wyithe%2C+J+Stuart+B&rft.date=2023-09-21&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=526&rft.issue=1&rft.spage=1324&rft.epage=1342&rft_id=info:doi/10.1093%2Fmnras%2Fstad2448&rft.externalDocID=10.1093%2Fmnras%2Fstad2448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon