Implications of z ≳ 12 JWST galaxies for galaxy formation at high redshift
ABSTRACT Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select analogues from a cosmological simulation with a (311 cMpc)3 volume and an effective particle number of 1012 enabling the resolution o...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 526; no. 1; pp. 1324 - 1342 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
21.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0035-8711 1365-2966 |
DOI | 10.1093/mnras/stad2448 |
Cover
Abstract | ABSTRACT
Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select analogues from a cosmological simulation with a (311 cMpc)3 volume and an effective particle number of 1012 enabling the resolution of every atomic-cooling galaxy at z ≤ 20. We vary model parameters to reproduce the observed ultraviolet (UV) luminosity function at 5 < z < 13, aiming for a statistically representative high-redshift galaxy mock catalogue. Using the forward-modelled JWST photometry, we identify analogues from this catalogue and study their properties as well as possible evolutionary paths and local environment. We find faint JWST galaxies (MUV ≳ − 19.5) to remain consistent with the standard galaxy formation model and that our fiducial catalogue includes large samples of their analogues. The properties of these analogues broadly agree with conventional spectral energy distribution-fitting results, except for having systematically lower redshifts due to the evolving ultraviolet luminosity function, and for having higher specific star formation rates as a result of burstier histories in our model. On the other hand, only a handful of bright galaxy analogues can be identified for the observed z ∼ 12 galaxies. Moreover, in order to reproduce the z ≳ 16 JWST galaxy candidates, boosting star-forming efficiencies through reduced feedback regulation and increased gas depletion rate is necessary relative to models of lower redshift populations. This suggests star formation in the first galaxies could differ significantly from their lower redshift counterparts. We also find that these candidates are subject to low-redshift contamination, which is present in our fiducial results as both the dusty or quiescent galaxies at z ∼ 5. |
---|---|
AbstractList | Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select analogues from a cosmological simulation with a (311 cMpc)3 volume and an effective particle number of 1012 enabling the resolution of every atomic-cooling galaxy at z ≤ 20. We vary model parameters to reproduce the observed ultraviolet (UV) luminosity function at 5 < z < 13, aiming for a statistically representative high-redshift galaxy mock catalogue. Using the forward-modelled JWST photometry, we identify analogues from this catalogue and study their properties as well as possible evolutionary paths and local environment. We find faint JWST galaxies (MUV ≳ − 19.5) to remain consistent with the standard galaxy formation model and that our fiducial catalogue includes large samples of their analogues. The properties of these analogues broadly agree with conventional spectral energy distribution-fitting results, except for having systematically lower redshifts due to the evolving ultraviolet luminosity function, and for having higher specific star formation rates as a result of burstier histories in our model. On the other hand, only a handful of bright galaxy analogues can be identified for the observed z ∼ 12 galaxies. Moreover, in order to reproduce the z ≳ 16 JWST galaxy candidates, boosting star-forming efficiencies through reduced feedback regulation and increased gas depletion rate is necessary relative to models of lower redshift populations. This suggests star formation in the first galaxies could differ significantly from their lower redshift counterparts. We also find that these candidates are subject to low-redshift contamination, which is present in our fiducial results as both the dusty or quiescent galaxies at z ∼ 5. ABSTRACT Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select analogues from a cosmological simulation with a (311 cMpc)3 volume and an effective particle number of 1012 enabling the resolution of every atomic-cooling galaxy at z ≤ 20. We vary model parameters to reproduce the observed ultraviolet (UV) luminosity function at 5 < z < 13, aiming for a statistically representative high-redshift galaxy mock catalogue. Using the forward-modelled JWST photometry, we identify analogues from this catalogue and study their properties as well as possible evolutionary paths and local environment. We find faint JWST galaxies (MUV ≳ − 19.5) to remain consistent with the standard galaxy formation model and that our fiducial catalogue includes large samples of their analogues. The properties of these analogues broadly agree with conventional spectral energy distribution-fitting results, except for having systematically lower redshifts due to the evolving ultraviolet luminosity function, and for having higher specific star formation rates as a result of burstier histories in our model. On the other hand, only a handful of bright galaxy analogues can be identified for the observed z ∼ 12 galaxies. Moreover, in order to reproduce the z ≳ 16 JWST galaxy candidates, boosting star-forming efficiencies through reduced feedback regulation and increased gas depletion rate is necessary relative to models of lower redshift populations. This suggests star formation in the first galaxies could differ significantly from their lower redshift counterparts. We also find that these candidates are subject to low-redshift contamination, which is present in our fiducial results as both the dusty or quiescent galaxies at z ∼ 5. |
Author | Qin, Yuxiang Wyithe, J Stuart B Balu, Sreedhar |
Author_xml | – sequence: 1 givenname: Yuxiang orcidid: 0000-0002-4314-1810 surname: Qin fullname: Qin, Yuxiang email: Yuxiang.L.Qin@gmail.com – sequence: 2 givenname: Sreedhar orcidid: 0000-0002-5281-5151 surname: Balu fullname: Balu, Sreedhar – sequence: 3 givenname: J Stuart B orcidid: 0000-0001-7956-9758 surname: Wyithe fullname: Wyithe, J Stuart B |
BookMark | eNqFkMtKAzEUhoNUsK1uXWfrYtpcJzNLKV4qBRdWXA5nMkkbmUtJIljfwOfxjXwS26luBHF1_gPfdzj8IzRou9YgdE7JhJKcT5vWQ5iGCBUTIjtCQ8pTmbA8TQdoSAiXSaYoPUGjEJ4JIYKzdIgW82ZTOw3RdW3AncVv-PP9A1OG754elngFNbw6E7Dt_GHZ7mPT8xgiXrvVGntThbWz8RQdW6iDOfueY_R4fbWc3SaL-5v57HKRaKZ4TIDJ3JRlLnMhDS0NZEylpTZcUKVVrrMdIMtKp4ZRYjMiQXIFwkqhwHJb8jESh7vadyF4YwvtYv9S9ODqgpJi30jRN1L8NLLTJr-0jXcN-O3fwsVB6F42_7Ffi7l36Q |
CitedBy_id | crossref_primary_10_1088_1674_4527_ad2c3f crossref_primary_10_1093_mnras_stae567 crossref_primary_10_1088_1674_4527_ad2cd3 crossref_primary_10_1093_mnras_stae2646 crossref_primary_10_1051_0004_6361_202347384 crossref_primary_10_1093_mnras_stae2633 crossref_primary_10_1088_1475_7516_2024_07_078 crossref_primary_10_3847_2041_8213_acf85a crossref_primary_10_1088_1475_7516_2023_10_072 crossref_primary_10_3847_1538_4357_ad55eb crossref_primary_10_3847_2041_8213_acf46c crossref_primary_10_1088_1475_7516_2024_05_097 crossref_primary_10_1088_1475_7516_2024_07_072 crossref_primary_10_1103_PhysRevD_110_043537 crossref_primary_10_1051_0004_6361_202451502 crossref_primary_10_1088_1475_7516_2025_02_061 crossref_primary_10_3847_1538_4357_ad8080 crossref_primary_10_1051_0004_6361_202348091 crossref_primary_10_1093_mnrasl_slaf001 |
Cites_doi | 10.1086/591786 10.48550/arXiv.2304.11178 10.3847/1538-4357/aca678 10.1093/mnras/stad1095 10.1111/j.1365-2966.2010.18114.x 10.48550/arXiv.2305.05679 10.1093/mnras/stz230 10.1093/mnras/staa1959 10.1038/s42254-019-0127-2 10.1093/mnras/stac1963 10.1038/s41550-023-01921-1 10.1017/pasa.2019.12 10.48550/arXiv.2302.14155 10.1051/0004-6361/202244831 10.3847/1538-4357/ab8c45 10.1086/309250 10.1038/nature25180 10.1093/mnras/stac3717 10.1088/0004-637X/810/1/71 10.1046/j.1365-8711.2001.04022.x 10.1093/mnras/stw2187 10.48550/arXiv.2305.16670 10.3847/2041-8213/ac966e 10.3847/1538-4357/ac8158 10.1093/mnras/stac3472 10.1093/pasj/psy048 10.1093/mnras/sty1820 10.1088/2041-8205/714/1/L118 10.48550/arXiv.2303.03419 10.1093/mnras/stad073 10.1038/srep26896 10.1111/j.1365-2966.2009.15191.x 10.3847/0004-637X/819/2/129 10.21105/joss.02582 10.1146/annurev-astro-081913-040019 10.1093/mnras/stac1908 10.48550/arXiv.2305.00999 10.1093/mnras/stab3733 10.48550/arXiv.2306.00487 10.1093/mnras/sty552 10.3847/1538-4357/aad6dc 10.1093/mnras/stac3723 10.3847/1538-4357/ab412b 10.48550/arXiv.2205.12980 10.1086/313233 10.1088/0004-637X/803/1/34 10.1093/mnras/stw1332 10.48550/arXiv.2302.07256 10.3847/1538-4357/aaa544 10.1146/annurev-astro-082812-140951 10.1093/mnras/stu1848 10.48550/arXiv.2304.13755 10.3847/2041-8213/ac9b22 10.1093/mnras/stad1145 10.1038/s41550-023-01918-w 10.3847/2041-8213/ac9a50 10.3847/2041-8213/ac94d0 10.3847/1538-4357/835/2/113 10.1086/426067 10.1093/mnras/stad947 10.1093/mnras/stx1909 10.3847/1538-4357/ac1104 10.3847/2041-8213/ac8a4e 10.1093/mnras/stz1182 10.1093/mnrasl/slac115 10.1093/mnras/staa3261 10.1093/mnras/stac3347 10.3847/1538-4357/aa5ffe 10.48550/arXiv.2302.02429 10.1093/mnras/stab1833 10.1088/0004-637X/745/1/50 10.1093/mnras/stw3351 10.1093/mnras/stv705 10.1093/mnras/staa1178 10.1093/mnrasl/slt035 10.3847/2041-8213/aca80c 10.1093/mnras/stad035 10.3847/2041-8213/ac9586 10.3847/1538-3881/abf83e 10.1093/mnras/stu2449 10.3847/1538-4357/abbd44 10.48550/arXiv.2302.07234 10.1017/pasa.2019.18 10.1093/mnras/stac3144 10.48550/arXiv.2305.13380 10.1051/0004-6361/201833910 10.48550/arXiv.2304.06658 10.1088/2041-8205/708/2/L69 10.3847/2041-8213/acacfe 10.1093/mnras/sty1131 10.1093/mnras/stw1318 10.1093/pasj/psx074 10.3847/2041-8213/ac9283 10.1093/MNRAS/STAC825 10.1093/mnras/staa2797 10.1093/mnras/stz2233 10.1111/j.1365-2966.2010.17731.x 10.3847/1538-4357/ac4997 10.1051/0004-6361/202243088 10.48550/arXiv.2303.15431 10.1093/mnras/stz866 10.3847/1538-4357/833/1/84 10.1093/mnras/stad125 10.3847/1538-4357/aab0a7 10.3847/1538-4365/acaaa9 10.1093/mnras/stu1738 10.1093/mnras/stw674 10.1093/mnras/stad471 10.48550/arXiv.2303.11349 10.1086/305588 10.1088/0004-637X/793/2/115 10.1093/mnras/stu936 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
Copyright_xml | – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
DBID | AAYXX CITATION |
DOI | 10.1093/mnras/stad2448 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 1342 |
ExternalDocumentID | 10_1093_mnras_stad2448 10.1093/mnras/stad2448 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ |
ID | FETCH-LOGICAL-c273t-a259ebb95945e1bea8276bce3417c79c8a255bdc6e210f805a537a4f547af3fb3 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Thu Apr 24 23:09:37 EDT 2025 Wed Oct 01 04:09:43 EDT 2025 Wed Aug 28 03:17:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | intergalactic medium early Universe diffuse radiation galaxies: high-redshift dark ages, reionization, first stars cosmology: theory |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273t-a259ebb95945e1bea8276bce3417c79c8a255bdc6e210f805a537a4f547af3fb3 |
ORCID | 0000-0002-5281-5151 0000-0002-4314-1810 0000-0001-7956-9758 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1093_mnras_stad2448 crossref_primary_10_1093_mnras_stad2448 oup_primary_10_1093_mnras_stad2448 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-21 |
PublicationDateYYYYMMDD | 2023-09-21 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Charlot (2023092821231212400_bib27) 2000; 539 Yung (2023092821231212400_bib120) 2023 Bañados (2023092821231212400_bib11) 2018; 553 Harikane (2023092821231212400_bib49) 2023; 265 Strait (2023092821231212400_bib105) 2023 Bradley (2023092821231212400_bib22) 2022 Yan (2023092821231212400_bib119) 2023; 942 Mason (2023092821231212400_bib69) 2018; 856 Bolan (2023092821231212400_bib15) 2022; 517 Trinca (2023092821231212400_bib109) 2023 Atek (2023092821231212400_bib4) 2018; 479 Balu (2023092821231212400_bib9) 2022 Cullen (2023092821231212400_bib30) 2023; 520 Qin (2023092821231212400_bib90) 2017; 472 Qiu (2023092821231212400_bib95) 2020; 500 Xu (2023092821231212400_bib118) 2016; 833 Naab (2023092821231212400_bib78) 2017; 55 Leitherer (2023092821231212400_bib63) 1999; 123 Qin (2023092821231212400_bib92) 2021; 506 Brammer (2023092821231212400_bib23) 2008; 686 Tacchella (2023092821231212400_bib106) 2023 Whitler (2023092821231212400_bib113) 2020; 495 Ferrara (2023092821231212400_bib39) 2023; 522 Furtak (2023092821231212400_bib43) 2023; 519 Jung (2023092821231212400_bib58) 2020; 904 Planck Collaboration (2023092821231212400_bib86) 2020; 641 Henriques (2023092821231212400_bib51) 2015; 451 Donnan (2023092821231212400_bib35) 2023; 518 Kroupa (2023092821231212400_bib61) 2001; 322 Kennicutt (2023092821231212400_bib60) 1998; 498 Dayal (2023092821231212400_bib34) 2014; 445 Vogelsberger (2023092821231212400_bib111) 2020; 2 Inoue (2023092821231212400_bib55) 2018; 70 Zavala (2023092821231212400_bib121) 2023; 943 Leja (2023092821231212400_bib64) 2017; 837 Mason (2023092821231212400_bib70) 2023; 521 Bakx (2023092821231212400_bib8) 2023; 519 Jin (2023092821231212400_bib57) 2023; 942 Harikane (2023092821231212400_bib48) 2023 Sommovigo (2023092821231212400_bib103) 2020; 497 Bhatawdekar (2023092821231212400_bib14) 2019; 486 Popping (2023092821231212400_bib89) 2023; 669 Bouwens (2023092821231212400_bib16) 2010; 708 Mesinger (2023092821231212400_bib73) 2011; 411 Sun (2023092821231212400_bib123_1694444754637) 2023 Greig (2023092821231212400_bib46) 2022; 512 Qin (2023092821231212400_bib91) 2020; 499 Wold (2023092821231212400_bib117) 2022; 927 Bouwens (2023092821231212400_bib19) 2021; 162 Parashari (2023092821231212400_bib84) 2023 Boylan-Kolchin (2023092821231212400_bib21) 2009; 398 Curtis-Lake (2023092821231212400_bib31) 2023; 7 Ouchi (2023092821231212400_bib83) 2018; 70 Rodighiero (2023092821231212400_bib97) 2023; 518 Treu (2023092821231212400_bib107) 2022; 935 Bruton (2023092821231212400_bib24) 2023 Coe (2023092821231212400_bib28) 2019; 884 Finkelstein (2023092821231212400_bib42) 2022; 940 Witten (2023092821231212400_bib116) 2023 Greig (2023092821231212400_bib45) 2019; 484 Qiu (2023092821231212400_bib94) 2019; 489 Wise (2023092821231212400_bib115) 2012; 745 Bunker (2023092821231212400_bib25) 2023 Morales (2023092821231212400_bib74) 2021; 919 Elahi (2023092821231212400_bib37) 2019; 36 Finkelstein (2023092821231212400_bib40) 2015; 810 Kauffmann (2023092821231212400_bib59) 2022; 667 Somerville (2023092821231212400_bib102) 2015; 53 Behrens (2023092821231212400_bib12) 2018; 477 Atek (2023092821231212400_bib5) 2023; 519 Naidu (2023092821231212400_bib79) 2022 Barrufet (2023092821231212400_bib10) 2023; 522 Murray (2023092821231212400_bib76) 2020; 5 Donnan (2023092821231212400_bib36) 2023; 520 Santini (2023092821231212400_bib98) 2023; 942 Shen (2023092821231212400_bib100) 2023 Greig (2023092821231212400_bib44) 2017; 466 Ono (2023092821231212400_bib82) 2022 Robertson (2023092821231212400_bib96) 2023; 7 Behroozi (2023092821231212400_bib13) 2019; 488 Wang (2023092821231212400_bib112) 2020; 896 Elahi (2023092821231212400_bib38) 2019; 36 Davies (2023092821231212400_bib33) 2018; 864 Leethochawalit (2023092821231212400_bib62) 2022 Cora (2023092821231212400_bib29) 2018; 479 Looser (2023092821231212400_bib67) 2023 Sobacchi (2023092821231212400_bib101) 2013; 432 Whitler (2023092821231212400_bib114) 2023 McGreer (2023092821231212400_bib72) 2015; 447 Oesch (2023092821231212400_bib81) 2016; 819 Guo (2023092821231212400_bib47) 2011; 413 Treu (2023092821231212400_bib108) 2023; 942 Pérez-González (2023092821231212400_bib85) 2023 Livermore (2023092821231212400_bib66) 2017; 835 Ziparo (2023092821231212400_bib122) 2023; 520 Azeez (2023092821231212400_bib6) 2016; 6 Leonova (2023092821231212400_bib65) 2022; 515 Stevens (2023092821231212400_bib104) 2016; 461 Markov (2023092821231212400_bib68) 2023 Poole (2023092821231212400_bib88) 2016; 459 McCaffrey (2023092821231212400_bib71) 2023 Hirschmann (2023092821231212400_bib52) 2016; 461 Naidu (2023092821231212400_bib80) 2022; 940 Inoue (2023092821231212400_bib54) 2014; 442 Adams (2023092821231212400_bib1) 2023; 518 Bagley (2023092821231212400_bib7) 2022 Finkelstein (2023092821231212400_bib41) 2021 Murray (2023092821231212400_bib75) 2005; 618 Hopkins (2023092821231212400_bib53) 2014; 445 Ishigaki (2023092821231212400_bib56) 2018; 854 Daddi (2023092821231212400_bib32) 2010; 714 Adams (2023092821231212400_bib2) 2023; 518 Bouwens (2023092821231212400_bib17) 2014; 793 Pontoppidan (2023092821231212400_bib87) 2022; 936 Qin (2023092821231212400_bib93) 2022; 510 Castellano (2023092821231212400_bib26) 2022; 938 Umeda (2023092821231212400_bib110) 2023 Arrabal Haro (2023092821231212400_bib3) 2023 Bouwens (2023092821231212400_bib20) 2023; 523 Bouwens (2023092821231212400_bib18) 2015; 803 Haslbauer (2023092821231212400_bib50) 2022; 939 Mutch (2023092821231212400_bib77) 2016; 463 Schaller (2023092821231212400_bib99) 2023 |
References_xml | – year: 2023 ident: 2023092821231212400_bib109 – start-page: 3368 volume-title: MNRAS year: 2022 ident: 2023092821231212400_bib9 – volume: 686 start-page: 1503 year: 2008 ident: 2023092821231212400_bib23 publication-title: ApJ doi: 10.1086/591786 – year: 2023 ident: 2023092821231212400_bib68 doi: 10.48550/arXiv.2304.11178 – volume: 942 start-page: 59 year: 2023 ident: 2023092821231212400_bib57 publication-title: ApJ doi: 10.3847/1538-4357/aca678 – year: 2023 ident: 2023092821231212400_bib123_1694444754637 – volume: 522 start-page: 3986 year: 2023 ident: 2023092821231212400_bib39 publication-title: MNRAS doi: 10.1093/mnras/stad1095 – volume: 413 start-page: 101 year: 2011 ident: 2023092821231212400_bib47 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.18114.x – year: 2023 ident: 2023092821231212400_bib100 doi: 10.48550/arXiv.2305.05679 – volume: 484 start-page: 5094 year: 2019 ident: 2023092821231212400_bib45 publication-title: MNRAS doi: 10.1093/mnras/stz230 – volume: 497 start-page: 956 year: 2020 ident: 2023092821231212400_bib103 publication-title: MNRAS doi: 10.1093/mnras/staa1959 – volume: 2 start-page: 42 year: 2020 ident: 2023092821231212400_bib111 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0127-2 – volume: 517 start-page: 3263 year: 2022 ident: 2023092821231212400_bib15 publication-title: MNRAS doi: 10.1093/mnras/stac1963 – volume: 7 start-page: 611 year: 2023 ident: 2023092821231212400_bib96 publication-title: Nat. Astron. doi: 10.1038/s41550-023-01921-1 – volume: 36 start-page: 1 year: 2019 ident: 2023092821231212400_bib37 publication-title: Publ. Astron. Soc. Aust. doi: 10.1017/pasa.2019.12 – year: 2023 ident: 2023092821231212400_bib67 doi: 10.48550/arXiv.2302.14155 – volume: 669 start-page: L8 year: 2023 ident: 2023092821231212400_bib89 publication-title: A&A doi: 10.1051/0004-6361/202244831 – volume: 896 start-page: 23 year: 2020 ident: 2023092821231212400_bib112 publication-title: ApJ doi: 10.3847/1538-4357/ab8c45 – volume: 539 start-page: 718 year: 2000 ident: 2023092821231212400_bib27 publication-title: ApJ doi: 10.1086/309250 – volume: 553 start-page: 473 year: 2018 ident: 2023092821231212400_bib11 publication-title: Nature doi: 10.1038/nature25180 – volume: 519 start-page: 3064 year: 2023 ident: 2023092821231212400_bib43 publication-title: MNRAS doi: 10.1093/mnras/stac3717 – volume: 810 start-page: 71 year: 2015 ident: 2023092821231212400_bib40 publication-title: ApJ doi: 10.1088/0004-637X/810/1/71 – volume: 322 start-page: 231 year: 2001 ident: 2023092821231212400_bib61 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04022.x – volume: 463 start-page: 3556 year: 2016 ident: 2023092821231212400_bib77 publication-title: MNRAS doi: 10.1093/mnras/stw2187 – year: 2023 ident: 2023092821231212400_bib114 doi: 10.48550/arXiv.2305.16670 – volume: 940 start-page: L55 year: 2022 ident: 2023092821231212400_bib42 publication-title: ApJ doi: 10.3847/2041-8213/ac966e – year: 2022 ident: 2023092821231212400_bib79 – volume: 935 start-page: 110 year: 2022 ident: 2023092821231212400_bib107 publication-title: ApJ doi: 10.3847/1538-4357/ac8158 – volume: 518 start-page: 6011 year: 2023 ident: 2023092821231212400_bib35 publication-title: MNRAS doi: 10.1093/mnras/stac3472 – volume: 70 start-page: 55 year: 2018 ident: 2023092821231212400_bib55 publication-title: Publ. Astron. Soc. Japan doi: 10.1093/pasj/psy048 – volume: 479 start-page: 5184 year: 2018 ident: 2023092821231212400_bib4 publication-title: MNRAS doi: 10.1093/mnras/sty1820 – volume: 714 start-page: L118 year: 2010 ident: 2023092821231212400_bib32 publication-title: ApJ doi: 10.1088/2041-8205/714/1/L118 – start-page: L40 volume-title: ApJ year: 2023 ident: 2023092821231212400_bib24 doi: 10.48550/arXiv.2303.03419 – volume: 520 start-page: 14 year: 2023 ident: 2023092821231212400_bib30 publication-title: MNRAS doi: 10.1093/mnras/stad073 – volume: 6 start-page: 26896 year: 2016 ident: 2023092821231212400_bib6 publication-title: Sci. Rep. doi: 10.1038/srep26896 – volume: 398 start-page: 1150 year: 2009 ident: 2023092821231212400_bib21 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15191.x – volume: 819 start-page: 129 year: 2016 ident: 2023092821231212400_bib81 publication-title: ApJ doi: 10.3847/0004-637X/819/2/129 – start-page: 21 volume-title: ApJ year: 2022 ident: 2023092821231212400_bib82 – volume: 5 start-page: 2582 year: 2020 ident: 2023092821231212400_bib76 publication-title: J. Open Source Softw. doi: 10.21105/joss.02582 – volume: 55 start-page: 59 year: 2017 ident: 2023092821231212400_bib78 publication-title: ARA&A doi: 10.1146/annurev-astro-081913-040019 – volume: 515 start-page: 5790 year: 2022 ident: 2023092821231212400_bib65 publication-title: MNRAS doi: 10.1093/mnras/stac1908 – volume-title: MNRAS year: 2023 ident: 2023092821231212400_bib84 doi: 10.48550/arXiv.2305.00999 – volume: 510 start-page: 3858 year: 2022 ident: 2023092821231212400_bib93 publication-title: MNRAS doi: 10.1093/mnras/stab3733 – year: 2023 ident: 2023092821231212400_bib110 doi: 10.48550/arXiv.2306.00487 – volume: 477 start-page: 552 year: 2018 ident: 2023092821231212400_bib12 publication-title: MNRAS doi: 10.1093/mnras/sty552 – volume: 864 start-page: 142 year: 2018 ident: 2023092821231212400_bib33 publication-title: ApJ doi: 10.3847/1538-4357/aad6dc – volume: 519 start-page: 5076 year: 2023 ident: 2023092821231212400_bib8 publication-title: MNRAS doi: 10.1093/mnras/stac3723 – volume: 884 start-page: 85 year: 2019 ident: 2023092821231212400_bib28 publication-title: ApJ doi: 10.3847/1538-4357/ab412b – year: 2022 ident: 2023092821231212400_bib7 doi: 10.48550/arXiv.2205.12980 – volume: 123 start-page: 3 year: 1999 ident: 2023092821231212400_bib63 publication-title: ApJS doi: 10.1086/313233 – volume: 803 start-page: 34 year: 2015 ident: 2023092821231212400_bib18 publication-title: ApJ doi: 10.1088/0004-637X/803/1/34 – volume: 461 start-page: 859 year: 2016 ident: 2023092821231212400_bib104 publication-title: MNRAS doi: 10.1093/mnras/stw1332 – volume-title: A&A year: 2023 ident: 2023092821231212400_bib25 doi: 10.48550/arXiv.2302.07256 – volume: 854 start-page: 73 year: 2018 ident: 2023092821231212400_bib56 publication-title: ApJ doi: 10.3847/1538-4357/aaa544 – volume: 53 start-page: 51 year: 2015 ident: 2023092821231212400_bib102 publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev-astro-082812-140951 – volume: 445 start-page: 2545 year: 2014 ident: 2023092821231212400_bib34 publication-title: MNRAS doi: 10.1093/mnras/stu1848 – year: 2023 ident: 2023092821231212400_bib71 doi: 10.48550/arXiv.2304.13755 – volume: 940 start-page: L14 year: 2022 ident: 2023092821231212400_bib80 publication-title: ApJ doi: 10.3847/2041-8213/ac9b22 – volume: 523 start-page: 1036 year: 2023 ident: 2023092821231212400_bib20 publication-title: MNRAS doi: 10.1093/mnras/stad1145 – volume: 7 start-page: 622 year: 2023 ident: 2023092821231212400_bib31 publication-title: Nat. Astron. doi: 10.1038/s41550-023-01918-w – volume: 939 start-page: L31 year: 2022 ident: 2023092821231212400_bib50 publication-title: ApJ doi: 10.3847/2041-8213/ac9a50 – volume: 938 start-page: L15 year: 2022 ident: 2023092821231212400_bib26 publication-title: ApJ doi: 10.3847/2041-8213/ac94d0 – volume: 835 start-page: 113 year: 2017 ident: 2023092821231212400_bib66 publication-title: ApJ doi: 10.3847/1538-4357/835/2/113 – volume: 618 start-page: 569 year: 2005 ident: 2023092821231212400_bib75 publication-title: ApJ doi: 10.1086/426067 – year: 2023 ident: 2023092821231212400_bib116 – volume: 522 start-page: 449 year: 2023 ident: 2023092821231212400_bib10 publication-title: MNRAS doi: 10.1093/mnras/stad947 – volume: 472 start-page: 2009 year: 2017 ident: 2023092821231212400_bib90 publication-title: MNRAS doi: 10.1093/mnras/stx1909 – volume: 919 start-page: 120 year: 2021 ident: 2023092821231212400_bib74 publication-title: ApJ doi: 10.3847/1538-4357/ac1104 – volume: 936 start-page: L14 year: 2022 ident: 2023092821231212400_bib87 publication-title: ApJ doi: 10.3847/2041-8213/ac8a4e – volume: 488 start-page: 3143 year: 2019 ident: 2023092821231212400_bib13 publication-title: MNRAS doi: 10.1093/mnras/stz1182 – volume: 518 start-page: L19 year: 2023 ident: 2023092821231212400_bib97 publication-title: MNRAS doi: 10.1093/mnrasl/slac115 – volume: 500 start-page: 493 year: 2020 ident: 2023092821231212400_bib95 publication-title: MNRAS doi: 10.1093/mnras/staa3261 – volume: 518 start-page: 4755 year: 2023 ident: 2023092821231212400_bib2 publication-title: MNRAS doi: 10.1093/mnras/stac3347 – volume: 837 start-page: 170 year: 2017 ident: 2023092821231212400_bib64 publication-title: ApJ doi: 10.3847/1538-4357/aa5ffe – start-page: L14 volume-title: ApJ year: 2023 ident: 2023092821231212400_bib85 doi: 10.48550/arXiv.2302.02429 – volume: 506 start-page: 2390 year: 2021 ident: 2023092821231212400_bib92 publication-title: MNRAS doi: 10.1093/mnras/stab1833 – volume: 518 start-page: 4755 year: 2023 ident: 2023092821231212400_bib1 publication-title: MNRAS doi: 10.1093/mnras/stac3347 – volume: 745 start-page: 50 year: 2012 ident: 2023092821231212400_bib115 publication-title: ApJ doi: 10.1088/0004-637X/745/1/50 – volume: 466 start-page: 4239 year: 2017 ident: 2023092821231212400_bib44 publication-title: MNRAS doi: 10.1093/mnras/stw3351 – volume: 451 start-page: 2663 year: 2015 ident: 2023092821231212400_bib51 publication-title: MNRAS doi: 10.1093/mnras/stv705 – volume: 495 start-page: 3602 year: 2020 ident: 2023092821231212400_bib113 publication-title: MNRAS doi: 10.1093/mnras/staa1178 – volume: 432 start-page: L51 year: 2013 ident: 2023092821231212400_bib101 publication-title: MNRAS doi: 10.1093/mnrasl/slt035 – volume: 942 start-page: L9 year: 2023 ident: 2023092821231212400_bib119 publication-title: ApJ doi: 10.3847/2041-8213/aca80c – volume: 521 start-page: 497 year: 2023 ident: 2023092821231212400_bib70 publication-title: MNRAS doi: 10.1093/mnras/stad035 – volume: 942 start-page: L27 year: 2023 ident: 2023092821231212400_bib98 publication-title: ApJ doi: 10.3847/2041-8213/ac9586 – volume: 162 start-page: 47 year: 2021 ident: 2023092821231212400_bib19 publication-title: AJ doi: 10.3847/1538-3881/abf83e – volume: 447 start-page: 499 year: 2015 ident: 2023092821231212400_bib72 publication-title: MNRAS doi: 10.1093/mnras/stu2449 – volume: 904 start-page: 144 year: 2020 ident: 2023092821231212400_bib58 publication-title: ApJ doi: 10.3847/1538-4357/abbd44 – start-page: 74 volume-title: ApJ year: 2023 ident: 2023092821231212400_bib106 doi: 10.48550/arXiv.2302.07234 – volume: 36 start-page: 1 year: 2019 ident: 2023092821231212400_bib38 publication-title: Publ. Astron. Soc. Aust. doi: 10.1017/pasa.2019.18 – volume: 519 start-page: 1201 year: 2023 ident: 2023092821231212400_bib5 publication-title: MNRAS doi: 10.1093/mnras/stac3144 – year: 2023 ident: 2023092821231212400_bib99 doi: 10.48550/arXiv.2305.13380 – volume: 641 start-page: A6 year: 2020 ident: 2023092821231212400_bib86 publication-title: A&A doi: 10.1051/0004-6361/201833910 – year: 2023 ident: 2023092821231212400_bib48 doi: 10.48550/arXiv.2304.06658 – start-page: 5454 volume-title: MNRAS year: 2022 ident: 2023092821231212400_bib62 – volume: 708 start-page: L69 year: 2010 ident: 2023092821231212400_bib16 publication-title: ApJ doi: 10.1088/2041-8205/708/2/L69 – volume-title: JWST Proposal. Cycle 1, ID. #2079 year: 2021 ident: 2023092821231212400_bib41 – volume: 943 start-page: L9 year: 2023 ident: 2023092821231212400_bib121 publication-title: ApJ doi: 10.3847/2041-8213/acacfe – volume-title: ApJ year: 2022 ident: 2023092821231212400_bib22 – volume: 479 start-page: 2 year: 2018 ident: 2023092821231212400_bib29 publication-title: MNRAS doi: 10.1093/mnras/sty1131 – volume: 461 start-page: 1760 year: 2016 ident: 2023092821231212400_bib52 publication-title: MNRAS doi: 10.1093/mnras/stw1318 – volume: 70 start-page: S13 year: 2018 ident: 2023092821231212400_bib83 publication-title: Publ. Astron. Soc. Japan doi: 10.1093/pasj/psx074 – volume: 942 start-page: L28 year: 2023 ident: 2023092821231212400_bib108 publication-title: ApJ doi: 10.3847/2041-8213/ac9283 – volume: 512 start-page: 5390 year: 2022 ident: 2023092821231212400_bib46 publication-title: MNRAS doi: 10.1093/MNRAS/STAC825 – volume: 499 start-page: 550 year: 2020 ident: 2023092821231212400_bib91 publication-title: MNRAS doi: 10.1093/mnras/staa2797 – volume: 489 start-page: 1357 year: 2019 ident: 2023092821231212400_bib94 publication-title: MNRAS doi: 10.1093/mnras/stz2233 – volume: 411 start-page: 955 year: 2011 ident: 2023092821231212400_bib73 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17731.x – volume: 927 start-page: 36 year: 2022 ident: 2023092821231212400_bib117 publication-title: ApJ doi: 10.3847/1538-4357/ac4997 – volume: 667 start-page: A65 year: 2022 ident: 2023092821231212400_bib59 publication-title: A&A doi: 10.1051/0004-6361/202243088 – volume-title: Nature year: 2023 ident: 2023092821231212400_bib3 doi: 10.48550/arXiv.2303.15431 – volume: 486 start-page: 3805 year: 2019 ident: 2023092821231212400_bib14 publication-title: MNRAS doi: 10.1093/mnras/stz866 – volume: 833 start-page: 84 year: 2016 ident: 2023092821231212400_bib118 publication-title: ApJ doi: 10.3847/1538-4357/833/1/84 – volume: 520 start-page: 2445 year: 2023 ident: 2023092821231212400_bib122 publication-title: MNRAS doi: 10.1093/mnras/stad125 – volume: 856 start-page: 2 year: 2018 ident: 2023092821231212400_bib69 publication-title: ApJ doi: 10.3847/1538-4357/aab0a7 – volume: 265 start-page: 5 year: 2023 ident: 2023092821231212400_bib49 publication-title: ApJS doi: 10.3847/1538-4365/acaaa9 – volume: 445 start-page: 581 year: 2014 ident: 2023092821231212400_bib53 publication-title: MNRAS doi: 10.1093/mnras/stu1738 – volume: 459 start-page: 3025 year: 2016 ident: 2023092821231212400_bib88 publication-title: MNRAS doi: 10.1093/mnras/stw674 – year: 2023 ident: 2023092821231212400_bib120 – volume: 520 start-page: 4554 year: 2023 ident: 2023092821231212400_bib36 publication-title: MNRAS doi: 10.1093/mnras/stad471 – start-page: L23 volume-title: ApJL year: 2023 ident: 2023092821231212400_bib105 doi: 10.48550/arXiv.2303.11349 – volume: 498 start-page: 541 year: 1998 ident: 2023092821231212400_bib60 publication-title: ApJ doi: 10.1086/305588 – volume: 793 start-page: 115 year: 2014 ident: 2023092821231212400_bib17 publication-title: ApJ doi: 10.1088/0004-637X/793/2/115 – volume: 442 start-page: 1805 year: 2014 ident: 2023092821231212400_bib54 publication-title: MNRAS doi: 10.1093/mnras/stu936 |
SSID | ssj0004326 |
Score | 2.5151193 |
Snippet | ABSTRACT
Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We... Using a semi-analytic galaxy formation model, we study analogues of eight z ≳ 12 galaxies recently discovered by James Webb Space Telescope (JWST). We select... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1324 |
Title | Implications of z ≳ 12 JWST galaxies for galaxy formation at high redshift |
Volume | 526 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: KQ8 dateStart: 18270209 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0035-8711 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA2yJ19Ep7L5RRDRp7K1adL0cQzHHE4f3HBvJUlTHGyttBWc_8Df4z_yl3jTdnOKok9t6O1LEjjn3OSei9AZ5aEXAgxbwO1BoEgmLMHb2lLMdL1nEZfS5DuGN6w_dgcTOqnMorMfjvB90prHqchawJVCgCJT1msDxYWdO7qdfFZAkqKxWmHACBLAXtkzfv_9C_yYkrY1NOlto62KBuJOuW47aEPHddToZCYxncwX-BwX72XeIauj5hDIbZIWOXD42J1NgWkWo110fbV2KxwnEX7B769v2Hbw4P5uhAECxDPoYQz0tBws8KpkEYscG8dinOowe5hG-R4a9y5H3b5VNUmwFDCP3BKgX7SUPvVdqm2pBXc8JpUGdPKU5ysOAVSGimkQdxFvU0GJJ9yIup6ISCTJPqrFSawbCINUZtzV3Gdcu5JoXzOm4CFs12krhzSRtZy7QFUO4qaRxSwoT7JJUMx1sJzrJrpYxT-W3hm_Rp7CUvwRdPCfoEO0aRrCmxsdjn2Eann6pI-BNuTypNgxH4hQwps |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implications+of+z+%E2%89%B3+12+JWST+galaxies+for+galaxy+formation+at+high+redshift&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Qin%2C+Yuxiang&rft.au=Balu%2C+Sreedhar&rft.au=Wyithe%2C+J+Stuart+B&rft.date=2023-09-21&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=526&rft.issue=1&rft.spage=1324&rft.epage=1342&rft_id=info:doi/10.1093%2Fmnras%2Fstad2448&rft.externalDocID=10.1093%2Fmnras%2Fstad2448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |