Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements

Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measu...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 2; pp. 1633 - 1643
Main Authors Dheman, Kanika, Walser, Stefan, Mayer, Philipp, Eggimann, Manuel, Kozomara, Marko, Franke, Denise, Hermanns, Thomas, Sax, Hugo, Schürle, Simone, Magno, Michele
Format Journal Article
LanguageEnglish
Published New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 15.01.2024
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2023.3324819

Cover

Abstract Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.
AbstractList Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function.
Author Eggimann, Manuel
Dheman, Kanika
Kozomara, Marko
Walser, Stefan
Mayer, Philipp
Hermanns, Thomas
Schürle, Simone
Franke, Denise
Sax, Hugo
Magno, Michele
Author_xml – sequence: 1
  givenname: Kanika
  surname: Dheman
  fullname: Dheman, Kanika
  organization: Project Based Learning Center, ETH Zürich, Zurich, Switzerland
– sequence: 2
  givenname: Stefan
  orcidid: 0000-0002-3352-0489
  surname: Walser
  fullname: Walser, Stefan
  organization: Multi-Scale Robotics Lab, ETH Zürich, Zurich, Switzerland
– sequence: 3
  givenname: Philipp
  orcidid: 0000-0002-4554-7937
  surname: Mayer
  fullname: Mayer, Philipp
  organization: Integrated Systems Laboratory, ETH Zürich, Zurich, Switzerland
– sequence: 4
  givenname: Manuel
  surname: Eggimann
  fullname: Eggimann, Manuel
  organization: Integrated Systems Laboratory, ETH Zürich, Zurich, Switzerland
– sequence: 5
  givenname: Marko
  surname: Kozomara
  fullname: Kozomara, Marko
  organization: Department of Infectious Diseases, Bern University Hospital, University of Berm, Berm, Switzerland
– sequence: 6
  givenname: Denise
  surname: Franke
  fullname: Franke, Denise
  organization: Department of Infectious Diseases, Bern University Hospital, University of Berm, Berm, Switzerland
– sequence: 7
  givenname: Thomas
  surname: Hermanns
  fullname: Hermanns, Thomas
  organization: Department of Infectious Diseases, Bern University Hospital, University of Berm, Berm, Switzerland
– sequence: 8
  givenname: Hugo
  orcidid: 0000-0002-1532-2198
  surname: Sax
  fullname: Sax, Hugo
  organization: Department of Infectious Diseases, Bern University Hospital, University of Berm, Berm, Switzerland
– sequence: 9
  givenname: Simone
  orcidid: 0000-0001-5693-1603
  surname: Schürle
  fullname: Schürle, Simone
  organization: Responsive Biomedical Systems Laboratory, ETH Zurich, Zurich, Switzerland
– sequence: 10
  givenname: Michele
  orcidid: 0000-0003-0368-8923
  surname: Magno
  fullname: Magno, Michele
  organization: Project Based Learning Center, ETH Zürich, Zurich, Switzerland
BookMark eNp9kD1PwzAQhi1UJNrCD2CLxJxix3Y-xrYqXyplKAW24NgX4Sp1gu1U6r8noZ0YmO4d3udO94zQwNQGELomeEIIzm6f1ovVJMIRnVAasZRkZ2hIOE9DkrB00GeKQ0aTjws0cm6LMckSngzR56o22uyF03sINlYbYQ_BrBJKgQ3e6qrdQbBwXu-E17UJ3rX_CqbW61JIH67bprHgHKhgpmu9a0AJIyF4BuFaCzsw3l2i81JUDq5Oc4w2d4vX-UO4fLl_nE-XoYwS6sOslBErJaaCccJ4JDCQIsNccsqwiEkJoHhcFqqLBZYxT0sVK5wSCUXGREHH6Oa4t7H1dwvO59u6taY7mUcZ4QllcRJ1reTYkrZ2zkKZS-1_X_NW6ConOO915r3OvNeZn3R2JPlDNrazYg__MD-sh3vN
CitedBy_id crossref_primary_10_1088_1361_6501_ad0e56
crossref_primary_10_3390_jpm14020203
Cites_doi 10.1016/j.clnu.2004.06.004
10.1371/journal.pone.0197957
10.1109/JSEN.2021.3128555
10.1186/s12938-018-0526-0
10.1016/j.jhin.2020.07.002
10.1086/657912
10.1109/ACCESS.2022.3221816
10.1186/s12882-017-0487-8
10.3390/s23052758
10.1109/EMBC46164.2021.9631032
10.1515/bmt.2011.022
10.1016/b978-012369443-0/50063-6
10.1088/1361-6579/abaa56
10.1016/j.autneu.2015.06.003
10.1016/j.ajic.2005.01.010
10.1109/TBME.1979.326464
10.1159/000437312
10.1109/10.4599
10.1109/TBCAS.2020.3008831
10.1038/s41598-018-23786-5
10.3390/s140610895
10.1007/s40846-016-0108-1
10.1016/j.suscom.2021.100556
10.1016/S0003-9993(03)00271-5
10.1177/003335490712200205
10.1016/j.jhin.2019.04.010
10.1007/s10877-018-0123-6
10.5414/cnp68269
10.1186/s12938-019-0651-4
10.1080/16070658.1983.11689335
10.1177/1751143717740805
10.1002/nau.24577
10.1109/TBCAS.2020.3021186
10.1007/s10439-015-1397-1
10.1016/j.clnu.2004.09.012
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3324819
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1643
ExternalDocumentID 10_1109_JSEN_2023_3324819
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYXX
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3
ISSN 1530-437X
IngestDate Mon Jun 30 10:18:33 EDT 2025
Tue Jul 01 04:27:19 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3352-0489
0000-0001-5693-1603
0000-0002-4554-7937
0000-0003-0368-8923
0000-0002-1532-2198
PQID 2915734672
PQPubID 75733
PageCount 11
ParticipantIDs proquest_journals_2915734672
crossref_citationtrail_10_1109_JSEN_2023_3324819
crossref_primary_10_1109_JSEN_2023_3324819
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-15
PublicationDateYYYYMMDD 2024-01-15
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
(ref35) 2023
ref38
ref19
ref18
Medical (ref21) 2008
ref24
ref23
ref26
ref25
ref20
ref42
ref41
Dheman (ref37)
Dorothy (ref9) 2019; 2009
(ref34) 2023
ref28
ref27
ref29
ref8
ref7
(ref10) 2021
ref4
ref3
ref6
ref5
ref40
(ref22) 2018
References_xml – ident: ref16
  doi: 10.1016/j.clnu.2004.06.004
– ident: ref41
  doi: 10.1371/journal.pone.0197957
– ident: ref13
  doi: 10.1109/JSEN.2021.3128555
– ident: ref27
  doi: 10.1186/s12938-018-0526-0
– ident: ref7
  doi: 10.1016/j.jhin.2020.07.002
– ident: ref2
  doi: 10.1086/657912
– ident: ref11
  doi: 10.1109/ACCESS.2022.3221816
– ident: ref4
  doi: 10.1186/s12882-017-0487-8
– ident: ref12
  doi: 10.3390/s23052758
– ident: ref39
  doi: 10.1109/EMBC46164.2021.9631032
– ident: ref15
  doi: 10.1515/bmt.2011.022
– ident: ref40
  doi: 10.1016/b978-012369443-0/50063-6
– volume-title: Bladderscan Prime Plus
  year: 2018
  ident: ref22
– ident: ref29
  doi: 10.1088/1361-6579/abaa56
– ident: ref42
  doi: 10.1016/j.autneu.2015.06.003
– ident: ref8
  doi: 10.1016/j.ajic.2005.01.010
– ident: ref20
  doi: 10.1109/TBME.1979.326464
– ident: ref1
  doi: 10.1159/000437312
– ident: ref36
  doi: 10.1109/10.4599
– ident: ref26
  doi: 10.1109/TBCAS.2020.3008831
– volume-title: Infection Control: Catheter-Associated Urinary Tract Infection
  year: 2021
  ident: ref10
– ident: ref28
  doi: 10.1038/s41598-018-23786-5
– ident: ref18
  doi: 10.3390/s140610895
– ident: ref38
  doi: 10.1007/s40846-016-0108-1
– ident: ref33
  doi: 10.1016/j.suscom.2021.100556
– ident: ref24
  doi: 10.1016/S0003-9993(03)00271-5
– ident: ref6
  doi: 10.1177/003335490712200205
– volume-title: Ambu BlueSensor R
  year: 2023
  ident: ref34
– ident: ref5
  doi: 10.1016/j.jhin.2019.04.010
– ident: ref23
  doi: 10.1007/s10877-018-0123-6
– ident: ref3
  doi: 10.5414/cnp68269
– ident: ref32
  doi: 10.1186/s12938-019-0651-4
– ident: ref14
  doi: 10.1080/16070658.1983.11689335
– volume: 2009
  start-page: 60
  year: 2019
  ident: ref9
  article-title: Guideline for prevention of catheterassociated urinary tract infections 2009
  publication-title: Guidel. Prev. Catheter. Urin. Tract Infect.
– ident: ref25
  doi: 10.1177/1751143717740805
– ident: ref31
  doi: 10.1002/nau.24577
– ident: ref19
  doi: 10.1109/TBCAS.2020.3021186
– ident: ref30
  doi: 10.1007/s10439-015-1397-1
– ident: ref17
  doi: 10.1016/j.clnu.2004.09.012
– volume-title: NXTTM Pro Advanced Urodynamics System
  year: 2023
  ident: ref35
– volume-title: Bladder Scan BVI9400
  year: 2008
  ident: ref21
– volume-title: Artefacts due to skin electrode impedance disturbance in multi-frequency bio-impedance measurements
  ident: ref37
SSID ssj0019757
Score 2.4198859
Snippet Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1633
SubjectTerms Algorithms
Bladder
Catheterization
In vivo methods and tests
Intubation
Kidneys
Machine learning
Personnel
Portable equipment
Ultrasonic imaging
Urine
Wearable technology
Title Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements
URI https://www.proquest.com/docview/2915734672
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKOMAOCAaIwUA-cKJySWzHqY8bKkyT2gsr6i3YTjJNTNnUpkjwb_AP8_zRxIWCGJcostqnJO_n59-z3wdCr8c01bYZDczvmhKuS0n0OOOklEon4Mkp5TLkpjNxOudni2wxGPyIopbWrR6Z7zvzSv5HqzAGerVZsrfQbCcUBuAe9AtX0DBc_0nHM7uX-lW5CPT50mfWnlxZW7IcfnJmZziBKeyzE8EA2BMakGKTGYht5-kKh5e2H-UlsOfSZQ9M-03DVcxcrVc4XIHTa7vzxE9nWbCt_Nr44Izm8ktv6eELhMZebVX3OJyqb37Yb-fcdLT-4gIe1jPqqWrWIZw_bEpQG8hCfFpmZ0cTwlm-8MtMGMvAYc19Yc2N8fUJ1AFkNLKkwBNZtCqDV8d2W3xXMPXs42Q2sp3gRwwY4jhY4a3q2r-sel0sovOCEllYEYUVUQQRd9BdmgtBfVJgdzQlc1c-tnvDcFQOIt7-9hTbZGd7rXcE5vwhehA8D3zsYfQIDarmAO1H9SgP0L0PVahg_hh9jsCFA7hwABf24MI9uLAFF94BLhyDC8fgeoLm7yfn705JaMdBDHDclsjaUF6bhCkOLDujKqlSLZPMZIwnSqQ10K1M1LqEW50YoLZ1KUqgnKbSkivNnqK95rqpniGscq0ErYTOhOGlSaXheU3BdWLgXmhZHaJk890KE2rV25YpV8UftXWI3nR_ufGFWv7246ONMoowY1YFlWmWMyAO9PltZL1A9_sZcIT22uW6eglEtdWvHHB-ApbqkmU
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+Urinary+Bladder+Volume+Estimation+With+Artifact-Suppressed+Bioimpedance+Measurements&rft.jtitle=IEEE+sensors+journal&rft.au=Dheman%2C+Kanika&rft.au=Walser%2C+Stefan&rft.au=Mayer%2C+Philipp&rft.au=Eggimann%2C+Manuel&rft.date=2024-01-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=2&rft.spage=1633&rft.epage=1643&rft_id=info:doi/10.1109%2FJSEN.2023.3324819&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3324819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon