Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements
Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measu...
Saved in:
Published in | IEEE sensors journal Vol. 24; no. 2; pp. 1633 - 1643 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
15.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2023.3324819 |
Cover
Abstract | Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function. |
---|---|
AbstractList | Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or ultrasound measurements performed by highly skilled personnel. Catheterization bears high risks of infection while intermittent ultrasound measures and manual recording are time-consuming and might miss early signs of kidney malfunction. Bioimpedance (BI) measurements may serve as a noninvasive alternative for measuring urine volume in vivo. However, limited robustness has prevented its clinical translation. Here, a deep learning-based algorithm is presented that processes the local BI of the lower abdomen and suppresses artifacts to measure the bladder volume quantitatively, noninvasively, and without the continuous need for additional personnel. A tetrapolar BI wearable system was used to collect continuous bladder volume data from three healthy subjects to demonstrate the feasibility of operation, while clinical gold standards of urodynamic ([Formula Omitted] – 6) and uroflowmetry tests ([Formula Omitted] – 8) provided the ground truth. Optimized location for electrode placement and a model for the change in BI with changing bladder volume are deduced. The average error for full bladder volume estimation and for residual volume estimation was [Formula Omitted] 87.6 mL, thus, comparable to commercial portable ultrasound devices (Bland Altman analysis showed a bias of −5.2 mL with LoA between 119.7 and −130.1 mL), while providing the additional benefit of hands-free, noninvasive, and continuous bladder volume estimation. The combination of the wearable BI sensor node and the presented algorithm provides an attractive alternative to current standard of care with potential benefits in providing insights into kidney function. |
Author | Eggimann, Manuel Dheman, Kanika Kozomara, Marko Walser, Stefan Mayer, Philipp Hermanns, Thomas Schürle, Simone Franke, Denise Sax, Hugo Magno, Michele |
Author_xml | – sequence: 1 givenname: Kanika surname: Dheman fullname: Dheman, Kanika organization: Project Based Learning Center, ETH Zürich, Zurich, Switzerland – sequence: 2 givenname: Stefan orcidid: 0000-0002-3352-0489 surname: Walser fullname: Walser, Stefan organization: Multi-Scale Robotics Lab, ETH Zürich, Zurich, Switzerland – sequence: 3 givenname: Philipp orcidid: 0000-0002-4554-7937 surname: Mayer fullname: Mayer, Philipp organization: Integrated Systems Laboratory, ETH Zürich, Zurich, Switzerland – sequence: 4 givenname: Manuel surname: Eggimann fullname: Eggimann, Manuel organization: Integrated Systems Laboratory, ETH Zürich, Zurich, Switzerland – sequence: 5 givenname: Marko surname: Kozomara fullname: Kozomara, Marko organization: Department of Infectious Diseases, Bern University Hospital, University of Berm, Berm, Switzerland – sequence: 6 givenname: Denise surname: Franke fullname: Franke, Denise organization: Department of Infectious Diseases, Bern University Hospital, University of Berm, Berm, Switzerland – sequence: 7 givenname: Thomas surname: Hermanns fullname: Hermanns, Thomas organization: Department of Infectious Diseases, Bern University Hospital, University of Berm, Berm, Switzerland – sequence: 8 givenname: Hugo orcidid: 0000-0002-1532-2198 surname: Sax fullname: Sax, Hugo organization: Department of Infectious Diseases, Bern University Hospital, University of Berm, Berm, Switzerland – sequence: 9 givenname: Simone orcidid: 0000-0001-5693-1603 surname: Schürle fullname: Schürle, Simone organization: Responsive Biomedical Systems Laboratory, ETH Zurich, Zurich, Switzerland – sequence: 10 givenname: Michele orcidid: 0000-0003-0368-8923 surname: Magno fullname: Magno, Michele organization: Project Based Learning Center, ETH Zürich, Zurich, Switzerland |
BookMark | eNp9kD1PwzAQhi1UJNrCD2CLxJxix3Y-xrYqXyplKAW24NgX4Sp1gu1U6r8noZ0YmO4d3udO94zQwNQGELomeEIIzm6f1ovVJMIRnVAasZRkZ2hIOE9DkrB00GeKQ0aTjws0cm6LMckSngzR56o22uyF03sINlYbYQ_BrBJKgQ3e6qrdQbBwXu-E17UJ3rX_CqbW61JIH67bprHgHKhgpmu9a0AJIyF4BuFaCzsw3l2i81JUDq5Oc4w2d4vX-UO4fLl_nE-XoYwS6sOslBErJaaCccJ4JDCQIsNccsqwiEkJoHhcFqqLBZYxT0sVK5wSCUXGREHH6Oa4t7H1dwvO59u6taY7mUcZ4QllcRJ1reTYkrZ2zkKZS-1_X_NW6ConOO915r3OvNeZn3R2JPlDNrazYg__MD-sh3vN |
CitedBy_id | crossref_primary_10_1088_1361_6501_ad0e56 crossref_primary_10_3390_jpm14020203 |
Cites_doi | 10.1016/j.clnu.2004.06.004 10.1371/journal.pone.0197957 10.1109/JSEN.2021.3128555 10.1186/s12938-018-0526-0 10.1016/j.jhin.2020.07.002 10.1086/657912 10.1109/ACCESS.2022.3221816 10.1186/s12882-017-0487-8 10.3390/s23052758 10.1109/EMBC46164.2021.9631032 10.1515/bmt.2011.022 10.1016/b978-012369443-0/50063-6 10.1088/1361-6579/abaa56 10.1016/j.autneu.2015.06.003 10.1016/j.ajic.2005.01.010 10.1109/TBME.1979.326464 10.1159/000437312 10.1109/10.4599 10.1109/TBCAS.2020.3008831 10.1038/s41598-018-23786-5 10.3390/s140610895 10.1007/s40846-016-0108-1 10.1016/j.suscom.2021.100556 10.1016/S0003-9993(03)00271-5 10.1177/003335490712200205 10.1016/j.jhin.2019.04.010 10.1007/s10877-018-0123-6 10.5414/cnp68269 10.1186/s12938-019-0651-4 10.1080/16070658.1983.11689335 10.1177/1751143717740805 10.1002/nau.24577 10.1109/TBCAS.2020.3021186 10.1007/s10439-015-1397-1 10.1016/j.clnu.2004.09.012 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2023.3324819 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1643 |
ExternalDocumentID | 10_1109_JSEN_2023_3324819 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH AAYXX ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3 |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:18:33 EDT 2025 Tue Jul 01 04:27:19 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-9fc24fc03a451452a0e1b905c5340a61feed56fbd61fb0c658fd6d081ceb94ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3352-0489 0000-0001-5693-1603 0000-0002-4554-7937 0000-0003-0368-8923 0000-0002-1532-2198 |
PQID | 2915734672 |
PQPubID | 75733 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2915734672 crossref_citationtrail_10_1109_JSEN_2023_3324819 crossref_primary_10_1109_JSEN_2023_3324819 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-15 |
PublicationDateYYYYMMDD | 2024-01-15 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref32 ref2 ref1 ref17 ref39 ref16 (ref35) 2023 ref38 ref19 ref18 Medical (ref21) 2008 ref24 ref23 ref26 ref25 ref20 ref42 ref41 Dheman (ref37) Dorothy (ref9) 2019; 2009 (ref34) 2023 ref28 ref27 ref29 ref8 ref7 (ref10) 2021 ref4 ref3 ref6 ref5 ref40 (ref22) 2018 |
References_xml | – ident: ref16 doi: 10.1016/j.clnu.2004.06.004 – ident: ref41 doi: 10.1371/journal.pone.0197957 – ident: ref13 doi: 10.1109/JSEN.2021.3128555 – ident: ref27 doi: 10.1186/s12938-018-0526-0 – ident: ref7 doi: 10.1016/j.jhin.2020.07.002 – ident: ref2 doi: 10.1086/657912 – ident: ref11 doi: 10.1109/ACCESS.2022.3221816 – ident: ref4 doi: 10.1186/s12882-017-0487-8 – ident: ref12 doi: 10.3390/s23052758 – ident: ref39 doi: 10.1109/EMBC46164.2021.9631032 – ident: ref15 doi: 10.1515/bmt.2011.022 – ident: ref40 doi: 10.1016/b978-012369443-0/50063-6 – volume-title: Bladderscan Prime Plus year: 2018 ident: ref22 – ident: ref29 doi: 10.1088/1361-6579/abaa56 – ident: ref42 doi: 10.1016/j.autneu.2015.06.003 – ident: ref8 doi: 10.1016/j.ajic.2005.01.010 – ident: ref20 doi: 10.1109/TBME.1979.326464 – ident: ref1 doi: 10.1159/000437312 – ident: ref36 doi: 10.1109/10.4599 – ident: ref26 doi: 10.1109/TBCAS.2020.3008831 – volume-title: Infection Control: Catheter-Associated Urinary Tract Infection year: 2021 ident: ref10 – ident: ref28 doi: 10.1038/s41598-018-23786-5 – ident: ref18 doi: 10.3390/s140610895 – ident: ref38 doi: 10.1007/s40846-016-0108-1 – ident: ref33 doi: 10.1016/j.suscom.2021.100556 – ident: ref24 doi: 10.1016/S0003-9993(03)00271-5 – ident: ref6 doi: 10.1177/003335490712200205 – volume-title: Ambu BlueSensor R year: 2023 ident: ref34 – ident: ref5 doi: 10.1016/j.jhin.2019.04.010 – ident: ref23 doi: 10.1007/s10877-018-0123-6 – ident: ref3 doi: 10.5414/cnp68269 – ident: ref32 doi: 10.1186/s12938-019-0651-4 – ident: ref14 doi: 10.1080/16070658.1983.11689335 – volume: 2009 start-page: 60 year: 2019 ident: ref9 article-title: Guideline for prevention of catheterassociated urinary tract infections 2009 publication-title: Guidel. Prev. Catheter. Urin. Tract Infect. – ident: ref25 doi: 10.1177/1751143717740805 – ident: ref31 doi: 10.1002/nau.24577 – ident: ref19 doi: 10.1109/TBCAS.2020.3021186 – ident: ref30 doi: 10.1007/s10439-015-1397-1 – ident: ref17 doi: 10.1016/j.clnu.2004.09.012 – volume-title: NXTTM Pro Advanced Urodynamics System year: 2023 ident: ref35 – volume-title: Bladder Scan BVI9400 year: 2008 ident: ref21 – volume-title: Artefacts due to skin electrode impedance disturbance in multi-frequency bio-impedance measurements ident: ref37 |
SSID | ssj0019757 |
Score | 2.4198859 |
Snippet | Urine output is a vital parameter to gauge kidney health. Current monitoring methods include manually written records, invasive urinary catheterization, or... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1633 |
SubjectTerms | Algorithms Bladder Catheterization In vivo methods and tests Intubation Kidneys Machine learning Personnel Portable equipment Ultrasonic imaging Urine Wearable technology |
Title | Noninvasive Urinary Bladder Volume Estimation With Artifact-Suppressed Bioimpedance Measurements |
URI | https://www.proquest.com/docview/2915734672 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKOMAOCAaIwUA-cKJySWzHqY8bKkyT2gsr6i3YTjJNTNnUpkjwb_AP8_zRxIWCGJcostqnJO_n59-z3wdCr8c01bYZDczvmhKuS0n0OOOklEon4Mkp5TLkpjNxOudni2wxGPyIopbWrR6Z7zvzSv5HqzAGerVZsrfQbCcUBuAe9AtX0DBc_0nHM7uX-lW5CPT50mfWnlxZW7IcfnJmZziBKeyzE8EA2BMakGKTGYht5-kKh5e2H-UlsOfSZQ9M-03DVcxcrVc4XIHTa7vzxE9nWbCt_Nr44Izm8ktv6eELhMZebVX3OJyqb37Yb-fcdLT-4gIe1jPqqWrWIZw_bEpQG8hCfFpmZ0cTwlm-8MtMGMvAYc19Yc2N8fUJ1AFkNLKkwBNZtCqDV8d2W3xXMPXs42Q2sp3gRwwY4jhY4a3q2r-sel0sovOCEllYEYUVUQQRd9BdmgtBfVJgdzQlc1c-tnvDcFQOIt7-9hTbZGd7rXcE5vwhehA8D3zsYfQIDarmAO1H9SgP0L0PVahg_hh9jsCFA7hwABf24MI9uLAFF94BLhyDC8fgeoLm7yfn705JaMdBDHDclsjaUF6bhCkOLDujKqlSLZPMZIwnSqQ10K1M1LqEW50YoLZ1KUqgnKbSkivNnqK95rqpniGscq0ErYTOhOGlSaXheU3BdWLgXmhZHaJk890KE2rV25YpV8UftXWI3nR_ufGFWv7246ONMoowY1YFlWmWMyAO9PltZL1A9_sZcIT22uW6eglEtdWvHHB-ApbqkmU |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+Urinary+Bladder+Volume+Estimation+With+Artifact-Suppressed+Bioimpedance+Measurements&rft.jtitle=IEEE+sensors+journal&rft.au=Dheman%2C+Kanika&rft.au=Walser%2C+Stefan&rft.au=Mayer%2C+Philipp&rft.au=Eggimann%2C+Manuel&rft.date=2024-01-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=2&rft.spage=1633&rft.epage=1643&rft_id=info:doi/10.1109%2FJSEN.2023.3324819&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3324819 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |