Integrating Eye Tracking With Grouped Fusion Networks for Semantic Segmentation on Mammogram Images

Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 44; no. 2; pp. 868 - 879
Main Authors Xie, Jiaming, Zhang, Qing, Cui, Zhiming, Ma, Chong, Zhou, Yan, Wang, Wenping, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2025
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2024.3468404

Cover

Abstract Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences. We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.
AbstractList Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences. We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.
Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences. We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences. We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.
Author Wang, Wenping
Zhou, Yan
Shen, Dinggang
Cui, Zhiming
Xie, Jiaming
Zhang, Qing
Ma, Chong
Author_xml – sequence: 1
  givenname: Jiaming
  orcidid: 0009-0002-5671-5753
  surname: Xie
  fullname: Xie, Jiaming
  email: sky7hate@connect.hku.hk
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
– sequence: 2
  givenname: Qing
  surname: Zhang
  fullname: Zhang, Qing
  email: rockeyzq8888@126.com
  organization: Department of Radiology, Renji Hospital, Shanghai, China
– sequence: 3
  givenname: Zhiming
  surname: Cui
  fullname: Cui, Zhiming
  email: cuizhm@shanghaitech.edu.cn
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
– sequence: 4
  givenname: Chong
  orcidid: 0000-0002-5068-8814
  surname: Ma
  fullname: Ma, Chong
  email: mc-npu@mail.nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Yan
  surname: Zhou
  fullname: Zhou, Yan
  email: yaner1475@163.com
  organization: Department of Radiology, Renji Hospital, Shanghai, China
– sequence: 6
  givenname: Wenping
  orcidid: 0000-0002-2284-3952
  surname: Wang
  fullname: Wang, Wenping
  email: wenping@tamu.edu
  organization: Department of Computer Science, The University of Hong Kong, Kowloon Tong, Hong Kong
– sequence: 7
  givenname: Dinggang
  orcidid: 0000-0002-7934-5698
  surname: Shen
  fullname: Shen, Dinggang
  email: Dinggang.Shen@gmail.com
  organization: School of Biomedical Engineering and the State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39331544$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1Lw0AQhhdRtK3ePYjk6CV19isfRxE_Cq0erOgtbJLZGtvN1t0E6b93S6sIAzMDz_seniE5bG2LhJxTGFMK-fV8NhkzYGLMRZIJEAdkQKXMYibF-yEZAEuzGCBhJ2To_ScAFRLyY3LCc86pFGJAqknb4cKprmkX0d0Go7lT1XL7vDXdR_TgbL_GOrrvfWPb6Am7b-uWPtLWRS9oVNs1VTgWBtsudAQkzEwZY0OniSZGLdCfkiOtVh7P9ntEXu_v5reP8fT5YXJ7M40rlvIuzlPFQYsS8rJMEkYhxYRlItFS1yWrhRKi1Gmt6xpVUgIKTVmmmATkkmey5iNytetdO_vVo-8K0_gKVyvVou19wYOzlGVBQUAv92hfGqyLtWuMcpviV0wAYAdUznrvUP8hFIqt-yK4L7bui737ELnYRRpE_IcnecpzwX8AdC9_0w
CODEN ITMID4
Cites_doi 10.1111/medu.13066
10.1109/CVPR.2009.5206848
10.1109/TPAMI.2016.2644615
10.1002/acp.2886
10.1016/j.neuroimage.2011.07.036
10.1148/ryai.2020200047
10.1109/TSMC.1979.4310076
10.48550/arXiv.2102.04306
10.1109/CVPR.2016.319
10.1109/CVPR.2015.7298965
10.1016/j.media.2018.10.010
10.1109/ICCV48922.2021.00986
10.1109/TMI.2020.3042773
10.1109/TCSVT.2020.2990531
10.1007/978-3-030-00889-5_1
10.1109/CVPR52688.2022.00131
10.1080/00140137008931124
10.1109/CVPR52688.2022.00438
10.1097/00004424-197805000-00001
10.1097/00004424-199008000-00004
10.3390/vision3020032
10.1109/LGRS.2018.2802944
10.3758/bf03207377
10.1097/00004424-198705000-00010
10.1109/TMI.2022.3146973
10.1109/TIP.2022.3192989
10.1109/ICCV.2015.178
10.1007/978-3-319-24574-4_28
10.1016/j.acra.2011.09.014
10.1109/ICCV.2017.74
10.48550/ARXIV.1706.03762
10.1007/978-3-319-61188-4_9
10.1016/j.acra.2008.01.023
10.1007/s10278-019-00220-4
10.1109/3DV.2016.79
10.1109/ICCV.2015.179
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TMI.2024.3468404
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 879
ExternalDocumentID 39331544
10_1109_TMI_2024_3468404
10697394
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Key R&D Program of Guangdong Province, China
  grantid: 2023B0303040001; 2021B0101420006
  funderid: 10.13039/501100003453
– fundername: Shanghai Municipal Central Guided Local Science and Technology Development Fund
  grantid: YDZX20233100001001
– fundername: National Natural Science Foundation of China
  grantid: U23A20295; 62131015; 82394432
  funderid: 10.13039/501100001809
– fundername: China Ministry of Science and Technology [Science, Technology, and Innovation for the Sustainable Development Goals 2030 Agenda (STI 2030-Major) Projects]
  grantid: 2022ZD0209000; 2022ZD0213100
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c273t-97a30f4b09bb662107e62846f5fdb2d4a44bf7dfddea6b0e4f128a250e35385d3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 11:21:54 EDT 2025
Wed Jul 30 01:47:47 EDT 2025
Wed Oct 01 03:55:34 EDT 2025
Wed Aug 27 01:53:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-97a30f4b09bb662107e62846f5fdb2d4a44bf7dfddea6b0e4f128a250e35385d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7934-5698
0000-0002-5068-8814
0009-0002-5671-5753
0000-0002-2284-3952
PMID 39331544
PQID 3110728509
PQPubID 23479
PageCount 12
ParticipantIDs ieee_primary_10697394
proquest_miscellaneous_3110728509
pubmed_primary_39331544
crossref_primary_10_1109_TMI_2024_3468404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref34
ref15
ref37
ref14
ref36
ref31
Yang (ref40)
Chen (ref5) 2014
ref30
ref11
ref33
ref10
Ma (ref23) 2022
ref32
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Oktay (ref27) 2018
Suckling (ref35) 1994; 1069
Heath (ref9) 2001
Kingma (ref13) 2014
ref24
ref46
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
Cao (ref2) 2021
ref21
ref43
Dosovitskiy (ref8) 2020
ref28
ref29
ref4
ref3
ref6
Devlin (ref7) 2018
References_xml – ident: ref15
  doi: 10.1111/medu.13066
– ident: ref6
  doi: 10.1109/CVPR.2009.5206848
– year: 2014
  ident: ref13
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref1
  doi: 10.1109/TPAMI.2016.2644615
– year: 2014
  ident: ref5
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: arXiv:1412.7062
– ident: ref14
  doi: 10.1002/acp.2886
– ident: ref10
  doi: 10.1016/j.neuroimage.2011.07.036
– ident: ref33
  doi: 10.1148/ryai.2020200047
– ident: ref28
  doi: 10.1109/TSMC.1979.4310076
– ident: ref4
  doi: 10.48550/arXiv.2102.04306
– ident: ref45
  doi: 10.1109/CVPR.2016.319
– ident: ref22
  doi: 10.1109/CVPR.2015.7298965
– ident: ref12
  doi: 10.1016/j.media.2018.10.010
– ident: ref21
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref29
  doi: 10.1109/TMI.2020.3042773
– volume: 1069
  start-page: 375
  year: 1994
  ident: ref35
  article-title: The mammographic image analysis society digital mammogram database
  publication-title: Exerpta Medica
– ident: ref42
  doi: 10.1109/TCSVT.2020.2990531
– ident: ref46
  doi: 10.1007/978-3-030-00889-5_1
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref40
  article-title: XLNet: Generalized autoregressive pretraining for language understanding
– ident: ref20
  doi: 10.1109/CVPR52688.2022.00131
– year: 2018
  ident: ref27
  article-title: Attention U-Net: Learning where to look for the pancreas
  publication-title: arXiv:1804.03999
– volume-title: The Digital Database for Screening Mammography
  year: 2001
  ident: ref9
– ident: ref31
  doi: 10.1080/00140137008931124
– year: 2021
  ident: ref2
  article-title: Swin-UNet: UNet-like pure transformer for medical image segmentation
  publication-title: arXiv:2105.05537
– ident: ref38
  doi: 10.1109/CVPR52688.2022.00438
– ident: ref16
  doi: 10.1097/00004424-197805000-00001
– ident: ref17
  doi: 10.1097/00004424-199008000-00004
– ident: ref39
  doi: 10.3390/vision3020032
– ident: ref43
  doi: 10.1109/LGRS.2018.2802944
– year: 2022
  ident: ref23
  article-title: Eye-gaze-guided vision transformer for rectifying shortcut learning
  publication-title: arXiv:2205.12466
– ident: ref3
  doi: 10.3758/bf03207377
– ident: ref19
  doi: 10.1097/00004424-198705000-00010
– ident: ref37
  doi: 10.1109/TMI.2022.3146973
– ident: ref41
  doi: 10.1109/TIP.2022.3192989
– ident: ref26
  doi: 10.1109/ICCV.2015.178
– ident: ref30
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref25
  doi: 10.1016/j.acra.2011.09.014
– ident: ref32
  doi: 10.1109/ICCV.2017.74
– ident: ref36
  doi: 10.48550/ARXIV.1706.03762
– year: 2020
  ident: ref8
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref11
  doi: 10.1007/978-3-319-61188-4_9
– ident: ref18
  doi: 10.1016/j.acra.2008.01.023
– ident: ref34
  doi: 10.1007/s10278-019-00220-4
– year: 2018
  ident: ref7
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv:1810.04805
– ident: ref24
  doi: 10.1109/3DV.2016.79
– ident: ref44
  doi: 10.1109/ICCV.2015.179
SSID ssj0014509
Score 2.4843712
Snippet Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 868
SubjectTerms Algorithms
Annotations
Biomedical imaging
Breast - diagnostic imaging
Breast Neoplasms - diagnostic imaging
Computer aided diagnosis
Computer vision
Deep Learning
Diseases
eye tracking
Eye-Tracking Technology
Female
Gaze tracking
Humans
Image Processing, Computer-Assisted - methods
mammogram image
Mammography - methods
Medical diagnostic imaging
medical image segmentation
Neural Networks, Computer
Semantic segmentation
Semantics
Solid modeling
Transformers
Visualization
Title Integrating Eye Tracking With Grouped Fusion Networks for Semantic Segmentation on Mammogram Images
URI https://ieeexplore.ieee.org/document/10697394
https://www.ncbi.nlm.nih.gov/pubmed/39331544
https://www.proquest.com/docview/3110728509
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH84D6IHP6fOLyJ48dBamzRtjyIbKnQXN9ytJE2qIuvEtQf9631J2zEFQegh0A-a_F7yvt8DuKAMCUNQ5UgmY4fxSJgggNAJrqXIRaxUZrNckyG_G7OHSTBpktVtLozW2gafadcMrS9fzbLKmMpwh_M4pDHrQCeMeJ2stXAZsKCO5_BNyViP-61P0ouvRsk9aoI-cykztU1MLx6KirwpRPODHdn-Kn-LmpblDLZg2P5sHWny5laldLOvX3Uc_z2bbdhshE9yU1PLDqzoYhc2lkoS7sJa0jjb98CYqG0pCbxB-p-aIF_LjGWdPL2WL8RarbQig8oY3MiwjiefE5SCyaOeImKvGQ6ep012U0HwSgTSvQkII_dTPMnmXRgP-qPbO6fpyeBkKOiUThwK6uVMerGUnKO-GGqOHI7nQa6kr5hgTOahyvHUFFx6muXIAAXKWZri0Rooug-rxazQh0BQsdSBnwc-F6imyCxi15EWgnIVIk4868FlC036XpfeSK3K4sUpIpoaRNMG0R50zQIvPVevbQ_OWzBT3DfGGSIKPavmKTWKrx8h0fTgoEZ58XZLHEd_fPUY1n3TBtgGb5_AavlR6VOUTUp5ZmnyG2wc3YI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61VGrhAJRHWcrDlXrhkCXEY2dzRIjVLpC9dBHcIjt2AKHNVt3kUH49YydBUAmpUg6W8lDsb-x5zwD85EiEobgJNOokQDlQLgggDsSJVoVKjMl9lms6kaNrvLgVt22yus-Fsdb64DPbd0PvyzfzvHamMtrhMol5gh_hk0BE0aRrvTgNUDQRHZErGhvKqPNKhsnxNB2TLhhhn6OrbuK68XBS5V0pmjcMyXdYeV_Y9ExnuAaT7nebWJPHfl3pfv70TyXH_57POqy24ic7bejlK3yw5QasvCpKuAGf09bdvgnOSO2LSdANdv7XMuJsubOts5uH6p55u5U1bFg7kxubNBHlC0ZyMPtlZ4TZQ06Du1mb31QyulJFlO9Cwth4RmfZYguuh-fTs1HQdmUIchJ1qiCJFQ8L1GGitZSkMcZWEo-ThSiMjgwqRF3EpqBzU0kdWiyIBSqStCynw1UYvg1L5by0O8BItbQiKkQkFSkqOh_gycAqxaWJCSeZ9-Cogyb73RTfyLzSEiYZIZo5RLMW0R5suQV-9Vyztj340YGZ0c5x7hBV2nm9yLhTfaMBEU0PvjUov7zdEcfuO189hC-jaXqVXY0nl99hOXJNgX0o9x4sVX9qu0-SSqUPPH0-AzA34M8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Eye+Tracking+With+Grouped+Fusion+Networks+for+Semantic+Segmentation+on+Mammogram+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Xie%2C+Jiaming&rft.au=Zhang%2C+Qing&rft.au=Cui%2C+Zhiming&rft.au=Ma%2C+Chong&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=44&rft.issue=2&rft.spage=868&rft.epage=879&rft_id=info:doi/10.1109%2FTMI.2024.3468404&rft_id=info%3Apmid%2F39331544&rft.externalDocID=10697394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon