R-L Method and BLS-GSM Denoising for Penumbra Image Reconstruction

When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 15; no. 12; pp. 1259 - 1262
Main Author 张美 李阳 盛亮 黎春花 魏福利 彭博东
Format Journal Article
LanguageEnglish
Published 01.12.2013
Subjects
Online AccessGet full text
ISSN1009-0630
DOI10.1088/1009-0630/15/12/18

Cover

Abstract When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better.
AbstractList When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better.
Author 张美 李阳 盛亮 黎春花 魏福利 彭博东
AuthorAffiliation Northwest Institute of Nuclear Technology, Xi'an 710024, China
Author_xml – sequence: 1
  fullname: 张美 李阳 盛亮 黎春花 魏福利 彭博东
BookMark eNp9kMFOwkAURWeBiYD-gKvxA2rndTrt61JQkQSiAV1PptNXqIEZnZaFfy-NhIULVy-5ybm5543YwHlHjN2AuAOBGIMQRSQyKWJQMSQx4IANz-ElG7XthxAqLVAO2WQVLfiSuq2vuHEVnyzW0Wy95A_kfNM2bsNrH_grucO-DIbP92ZDfEXWu7YLB9s13l2xi9rsWro-3TF7f3p8mz5Hi5fZfHq_iGySyy5KTYGYpaBMgpQpJCoqrCFVZSYU1TIvFYnUgpS5xRIk2ZKqLAFjC6wSYeWY4W-vDb5tA9XaNp3pF3TBNDsNQvf-ulfVvaoGpSHRgEc0-YN-hmZvwvf_0O0J2nq3-Tr-4kylCHmRIcofgnVrJQ
CitedBy_id crossref_primary_10_1016_j_net_2024_08_008
crossref_primary_10_1063_5_0138742
crossref_primary_10_1016_j_nima_2024_169130
Cites_doi 10.1109/TMI.1982.4307558
10.1063/1.2174828
10.1016/j.nima.2007.06.005
10.1016/S0168-9002(02)00888-4
10.1109/TIP.2003.818640
10.1063/1.1534931
10.1088/0741-3335/49/8/003
10.1109/TSP.2002.804091
10.1063/1.2236281
ContentType Journal Article
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1088/1009-0630/15/12/18
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate R-L Method and BLS-GSM Denoising for Penumbra Image Reconstruction
EndPage 1262
ExternalDocumentID 10_1088_1009_0630_15_12_18
48179688
GroupedDBID 02O
042
123
1JI
1WK
2B.
2C.
2RA
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
92E
92I
92L
92Q
93N
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
TCJ
TGP
W28
W92
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
ID FETCH-LOGICAL-c273t-4a9886415a28e658ee9d8f145b605ef37b5e04c1337c8b13ecbed621ac98d20c3
ISSN 1009-0630
IngestDate Tue Jul 01 03:44:28 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
Wed Feb 14 10:38:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-4a9886415a28e658ee9d8f145b605ef37b5e04c1337c8b13ecbed621ac98d20c3
Notes inertial confinement fusion, neutron penumbra imaging, BLS-GSM Wavelet denoising, R-L iteration restoration
34-1187/TL
When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better.
PageCount 4
ParticipantIDs crossref_citationtrail_10_1088_1009_0630_15_12_18
crossref_primary_10_1088_1009_0630_15_12_18
chongqing_primary_48179688
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Plasma science & technology
PublicationTitleAlternate Plasma Science & Technology
PublicationYear 2013
References 11
12
2
3
4
Portilla J (10) 2001; 2
6
Liu Dongjian (8) 2006; 18
Glebov V Y (1) 2006; 77
Zhao Zongqing (7) 2007; 49
Zhao Zongqing (5) 2008
Sendur L (9) 2002; 50
References_xml – year: 2008
  ident: 5
  publication-title: Optimization Design of Neutron Penumbral Imaging Technology in Laser Fusion Research [Ph.D]
– ident: 12
  doi: 10.1109/TMI.1982.4307558
– ident: 2
  doi: 10.1063/1.2174828
– ident: 6
  doi: 10.1016/j.nima.2007.06.005
– ident: 3
  doi: 10.1016/S0168-9002(02)00888-4
– ident: 11
  doi: 10.1109/TIP.2003.818640
– ident: 4
  doi: 10.1063/1.1534931
– volume: 49
  start-page: 1145
  issn: 0741-3335
  year: 2007
  ident: 7
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/49/8/003
– volume: 50
  start-page: 2744
  issn: 1057-7149
  year: 2002
  ident: 9
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TSP.2002.804091
– volume: 2
  start-page: 37
  year: 2001
  ident: 10
  publication-title: IEEE Int. Conf. Image Processing
– volume: 77
  start-page: 10E715
  year: 2006
  ident: 1
  publication-title: Review of Scientific Instruments
  doi: 10.1063/1.2236281
– volume: 18
  start-page: 1119
  issn: 1001-4322
  year: 2006
  ident: 8
  publication-title: High Power Laser and Particle Beams
SSID ssj0054983
Score 1.9418259
Snippet When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging...
SourceID crossref
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 1259
SubjectTerms 中子产额
半影
图像重建
小波消噪
拟蒙特卡罗方法
滤波去噪
高斯混合模型
Title R-L Method and BLS-GSM Denoising for Penumbra Image Reconstruction
URI http://lib.cqvip.com/qk/84262X/201312/48179688.html
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  issn: 1009-0630
  databaseCode: IOP
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://iopscience.iop.org/
  omitProxy: false
  ssIdentifier: ssj0054983
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLagCMEFsYqURT5wi4aM19hHWgEtSiCirVROoxmP3UaiU6qml_56npeZuJRKlIs1sl5eJL9Pb7HfgtA77iRYglYWTlBTgJbkRSO0KwDKqp0a6rT195Dzr3LngH85FIfrhMxQXbJq3pvLv9aV_I9UYQ_k6qtkbyHZgSlswDfIF1aQMKz_JOPvxWw8DyOgwxvA1myv-Lw3Bx3SnS7P-xTJhU92h5h4vHvi83N8vLnuGpv7pgtwpE_qcV_o4zGxunbxPlwwz-1ySOYJGQE_6mQEY8PHSDVbZruRbvv4oju-qPPrBsKy1I2oIcNrikyPKb0KFTlUaKYQwX_SmXElNOrea4oblF24Q0jM_bdvekF8e9ikoK_0yv7Dhg2ZheFNXSnfillXnlNFREVoRdRddI9OpfRTLna_LXprDeGxikUY6Z9TYRXwmAx7EyImhE78YJgHYJS6ozMQYebIZB7J_mP0KIUS-EPExRN0x3ZP0f2Q0mvOn6EtQAeO6MCADpzQgQd0YEAH7tGBAzrwVXQ8RwefPu5v7xRpYkZhwA1dFbzWSknwyWqqLPiW1upWOcJFA1GrdWzaCFtyQxibGtUQZk1jW0lJbbRqaWnYC7TRnXb2JcKaO20I0DghecnqmjrGZAlL6cBKuhHaHI6i-hU7o1RcgX6XSo0Q6c-mMqnXvB958rO6WT4jNB5-0_O7mXrzVtSv0MM1ll-jDThG-wacyVXzNqDhN3KDZ5s
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R-L+Method+and+BLS-GSM+Denoising+for+Penumbra+Image+Reconstruction&rft.jtitle=Plasma+science+%26+technology&rft.au=Zhang%2C+Mei&rft.au=Li%2C+Yang&rft.au=Sheng%2C+Liang&rft.au=Li%2C+Chunhua&rft.date=2013-12-01&rft.issn=1009-0630&rft.volume=15&rft.issue=12&rft.spage=1259&rft.epage=1262&rft_id=info:doi/10.1088%2F1009-0630%2F15%2F12%2F18&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1009_0630_15_12_18
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84262X%2F84262X.jpg