Pseudo three-dimensional topology optimization of chip heat sinks with various inlet–outlet arrangements
•The paper adopts a pseudo 3D TO model to design microchip heat sinks.•The 3D TO model integrates thermo-fluid and conductive layers in 2D.•Various inlet/outlet configurations are explored to optimize heat sinks.•TO model is validated by simulating a reconstructed heat sink design.•The first two aut...
Saved in:
Published in | The International journal of heat and fluid flow Vol. 111; p. 109670 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-727X |
DOI | 10.1016/j.ijheatfluidflow.2024.109670 |
Cover
Abstract | •The paper adopts a pseudo 3D TO model to design microchip heat sinks.•The 3D TO model integrates thermo-fluid and conductive layers in 2D.•Various inlet/outlet configurations are explored to optimize heat sinks.•TO model is validated by simulating a reconstructed heat sink design.•The first two authors contribute equally to this work.
Topology optimization (TO) represents a significant advancement in heat sink design for microelectronic chips. Although two-dimensional (2D) TO is favored for its simplicity and lower computational cost, it lacks the accuracy of three-dimensional (3D) TO, omitting certain processes inherent to 3D models. This paper introduces a novel pseudo 3D TO model, which integrates a 2D thermo-fluid design layer with a 2D conductive base plate layer, specifically optimized for chip heat sink designs. Employing the variable density method, we establish a mathematical description of the pseudo 3D TO, incorporating governing equations for flow dynamics and temperature variations in both layers. A distinctive feature of this model is its consideration of thermal coupling in the dimension typically neglected by standard 2D TO models. We applied the pseudo 3D TO model to optimize heat sink structures across various inlet and outlet configurations, followed by rigorous analyses to compare flow and heat transfer performances. These comparisons offer critical insights into the advantages and trade-offs of each configuration. Ultimately, a 3D heat sink was reconstructed from the pseudo 3D optimization results, and a detailed numerical experiment was conducted to assess its thermal performance under realistic conditions, thereby validating the efficacy and reliability of the pseudo 3D TO model. The findings underscore the model’s potential in achieving efficient and practical heat sink designs, balancing accuracy and computational efficiency. |
---|---|
AbstractList | •The paper adopts a pseudo 3D TO model to design microchip heat sinks.•The 3D TO model integrates thermo-fluid and conductive layers in 2D.•Various inlet/outlet configurations are explored to optimize heat sinks.•TO model is validated by simulating a reconstructed heat sink design.•The first two authors contribute equally to this work.
Topology optimization (TO) represents a significant advancement in heat sink design for microelectronic chips. Although two-dimensional (2D) TO is favored for its simplicity and lower computational cost, it lacks the accuracy of three-dimensional (3D) TO, omitting certain processes inherent to 3D models. This paper introduces a novel pseudo 3D TO model, which integrates a 2D thermo-fluid design layer with a 2D conductive base plate layer, specifically optimized for chip heat sink designs. Employing the variable density method, we establish a mathematical description of the pseudo 3D TO, incorporating governing equations for flow dynamics and temperature variations in both layers. A distinctive feature of this model is its consideration of thermal coupling in the dimension typically neglected by standard 2D TO models. We applied the pseudo 3D TO model to optimize heat sink structures across various inlet and outlet configurations, followed by rigorous analyses to compare flow and heat transfer performances. These comparisons offer critical insights into the advantages and trade-offs of each configuration. Ultimately, a 3D heat sink was reconstructed from the pseudo 3D optimization results, and a detailed numerical experiment was conducted to assess its thermal performance under realistic conditions, thereby validating the efficacy and reliability of the pseudo 3D TO model. The findings underscore the model’s potential in achieving efficient and practical heat sink designs, balancing accuracy and computational efficiency. |
ArticleNumber | 109670 |
Author | Huang, Jin Chen, Bohao Li, Wanting Zhao, Cunlu Jiao, Kai Wang, Qiuwang |
Author_xml | – sequence: 1 givenname: Jin surname: Huang fullname: Huang, Jin organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 2 givenname: Wanting surname: Li fullname: Li, Wanting organization: Xi’an Microelectronics Technology Institute, Xi’an 710065, China – sequence: 3 givenname: Bohao orcidid: 0009-0000-6970-8056 surname: Chen fullname: Chen, Bohao organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 4 givenname: Kai surname: Jiao fullname: Jiao, Kai organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 5 givenname: Qiuwang surname: Wang fullname: Wang, Qiuwang organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 6 givenname: Cunlu orcidid: 0000-0002-8210-8538 surname: Zhao fullname: Zhao, Cunlu email: mclzhao@xjtu.edu.cn organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China |
BookMark | eNqNkD1OAzEQRl0EiSRwBzeUG8be3xQUKIKAFAkKkOgsrz1OvGzWke0kChV34IachI1CRUU1oxl9b0ZvRAad65CQKwYTBqy4bia2WaGMpt1abVq3n3DgWb-bFiUMyBBYxpOSl2_nZBRCAwAFZOWQNM8Bt9rRuPKIibZr7IJ1nWxpdBvXuuWBuk20a_shYz-nzlC1sht6vEWD7d4D3du4ojvprdsGarsW4_fnl9vGvqHSe9ktsafGcEHOjGwDXv7WMXm9v3uZPSSLp_nj7HaRKF6mMeFFBozLDNIpN4iFqWumeQ5lXuaQV1OdatDG8AoKZKWqisowpRTCtJY1qyEdk5sTV3kXgkcjNt6upT8IBuIoSzTijyxxlCVOsvr8_JTH_smdRS-Cstgp1NajikI7-0_SDybGhTQ |
Cites_doi | 10.1080/10407790.2012.687979 10.1016/0045-7825(88)90086-2 10.1007/s00158-016-1421-6 10.1007/BF01743693 10.1007/BF01650949 10.1007/BF01214002 10.1080/01457632.2012.613275 10.1017/S002211207300145X 10.1080/01998595.2012.10554226 10.1016/j.icheatmasstransfer.2010.12.031 10.1016/j.ijheatmasstransfer.2020.119681 10.1080/10407790.2013.772001 10.1016/j.rser.2013.01.022 10.1016/S0045-7825(00)00356-X 10.1016/j.applthermaleng.2020.115540 10.1016/j.ijheatmasstransfer.2016.05.013 10.1007/s00158-018-1967-6 10.1007/s00158-013-0887-8 10.1016/0045-7825(95)00928-0 10.1109/MIE.2016.2515045 10.1016/j.ijheatmasstransfer.2019.118462 10.1007/s00158-005-0584-3 10.1007/s00158-019-02369-6 10.1007/s00158-018-2102-4 10.1016/j.apenergy.2022.120335 10.1016/j.ijheatmasstransfer.2017.09.039 10.1109/33.180049 10.1016/j.jcp.2015.12.008 10.1002/fld.426 10.1016/j.ijheatmasstransfer.2013.05.007 10.1016/j.applthermaleng.2016.09.131 10.1002/nme.3072 10.1080/01457630601117799 10.1115/1.4007159 10.1016/j.ijheatmasstransfer.2018.01.078 10.1109/EDL.1981.25367 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijheatfluidflow.2024.109670 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
ExternalDocumentID | 10_1016_j_ijheatfluidflow_2024_109670 S0142727X24003953 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEWK ADEZE ADHUB ADIYS ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 VOH WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c273t-264012a40392fee6fbb1d25075750589d3d0dff2806e17c868f1ccce09bab1b03 |
IEDL.DBID | .~1 |
ISSN | 0142-727X |
IngestDate | Tue Jul 01 01:32:29 EDT 2025 Sat Jan 18 16:09:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pseudo Three-Dimensional Modelling Thermal Management Heat Sink Topology Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273t-264012a40392fee6fbb1d25075750589d3d0dff2806e17c868f1ccce09bab1b03 |
ORCID | 0000-0002-8210-8538 0009-0000-6970-8056 |
ParticipantIDs | crossref_primary_10_1016_j_ijheatfluidflow_2024_109670 elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2024_109670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | The International journal of heat and fluid flow |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Matsumori, Kondoh, Kawamoto (b0140) 2013; 47 Patil, Dingare (b0150) 2019; 100 Yaji, Yamada, Yoshino (b0200) 2016; 307 Bendsøe, Noboru (b0035) 1988; 71 Gonzalez-Nino, Boteler, Ibitayo (b0075) 2018; 116 Borrvall, Petersson (b0045) 2003; 41 Marck, Nemer, Harion (b0130) 2012; 61 Knight, Hall, Goodling (b0105) 1992; 15 Koga, Lopes, Nova (b0110) 2013; 64 Díaz, Sigmund (b0060) 1995; 10 Liu (b0120) 2007; 205 Marck, Nemer, Harion (b0135) 2013; 63 Sigmund O. 1994. Design of Material Structures Using Topology Optimization. Dept of Solid Mechanics, Thesis Technical University of Denmark. Adham, Mohd-Ghazali, Ahmad (b0005) 2013; 21 Huang, Zhao, Gong (b0095) 2017; 115 Lohan, Dede, Allison (b0125) 2020; 61 Jog, Haber (b0100) 1996; 130 Pietropaoli, Montomoli, Gaymann (b0155) 2019; 59 Guarnieri (b0080) 2016; 10 Sigmund, Petersson (b0170) 1998; 16 Borrvall, Petersson (b0040) 2001; 190 Pironneau (b0160) 1973; 59 Haertel, Engelbrecht, Lazarov (b0090) 2018; 121 Lazarov, Sigmund (b0115) 2011; 86 Qian, Dede (b0165) 2016; 54 Wanittansirichok, Mongkholphan, Chaowalitbumrung (b0190) 2022; 55 Barbosa, Ribeiro, Oliveira (b0025) 2012; 33 Brown, Stout, Dirks (b0050) 2012; 109 Gersborg-Hansen, Bendsøe, Sigmund (b0070) 2006; 31 Yan, Wang, Hong (b0205) 2019; 143 Alexandersen, Sigmund, Aage (b0015) 2016; 100 Agostini, Fabbri, Park (b0010) 2007; 28 Tuckerman, Pease (b0185) 1981; 2 Dilgen, Dilgen, Fuhrman (b0065) 2018; 57 Xia, Chen, Luo (b0195) 2023; 330 Haber, Jog, Bendsøe (b0085) 1996; 11 Zeng, Wang, Yang (b0210) 2020; 154 Dede (b0055) 2012; 134 Bendsøe (b0030) 1989; 1 Mohammed, Gunnasegaran, Shuaib (b0145) 2010; 38 Amir (b0020) 2012; 134 Sun, Liebersbach, Qian (b0180) 2020; 178 Mohammed (10.1016/j.ijheatfluidflow.2024.109670_b0145) 2010; 38 Zeng (10.1016/j.ijheatfluidflow.2024.109670_b0210) 2020; 154 Yan (10.1016/j.ijheatfluidflow.2024.109670_b0205) 2019; 143 Lohan (10.1016/j.ijheatfluidflow.2024.109670_b0125) 2020; 61 Qian (10.1016/j.ijheatfluidflow.2024.109670_b0165) 2016; 54 Huang (10.1016/j.ijheatfluidflow.2024.109670_b0095) 2017; 115 Dede (10.1016/j.ijheatfluidflow.2024.109670_b0055) 2012; 134 Borrvall (10.1016/j.ijheatfluidflow.2024.109670_b0040) 2001; 190 Gonzalez-Nino (10.1016/j.ijheatfluidflow.2024.109670_b0075) 2018; 116 Alexandersen (10.1016/j.ijheatfluidflow.2024.109670_b0015) 2016; 100 Tuckerman (10.1016/j.ijheatfluidflow.2024.109670_b0185) 1981; 2 Dilgen (10.1016/j.ijheatfluidflow.2024.109670_b0065) 2018; 57 Lazarov (10.1016/j.ijheatfluidflow.2024.109670_b0115) 2011; 86 Marck (10.1016/j.ijheatfluidflow.2024.109670_b0130) 2012; 61 Marck (10.1016/j.ijheatfluidflow.2024.109670_b0135) 2013; 63 Sigmund (10.1016/j.ijheatfluidflow.2024.109670_b0170) 1998; 16 Knight (10.1016/j.ijheatfluidflow.2024.109670_b0105) 1992; 15 10.1016/j.ijheatfluidflow.2024.109670_b0175 Amir (10.1016/j.ijheatfluidflow.2024.109670_b0020) 2012; 134 Bendsøe (10.1016/j.ijheatfluidflow.2024.109670_b0035) 1988; 71 Guarnieri (10.1016/j.ijheatfluidflow.2024.109670_b0080) 2016; 10 Yaji (10.1016/j.ijheatfluidflow.2024.109670_b0200) 2016; 307 Bendsøe (10.1016/j.ijheatfluidflow.2024.109670_b0030) 1989; 1 Gersborg-Hansen (10.1016/j.ijheatfluidflow.2024.109670_b0070) 2006; 31 Patil (10.1016/j.ijheatfluidflow.2024.109670_b0150) 2019; 100 Wanittansirichok (10.1016/j.ijheatfluidflow.2024.109670_b0190) 2022; 55 Haber (10.1016/j.ijheatfluidflow.2024.109670_b0085) 1996; 11 Haertel (10.1016/j.ijheatfluidflow.2024.109670_b0090) 2018; 121 Jog (10.1016/j.ijheatfluidflow.2024.109670_b0100) 1996; 130 Matsumori (10.1016/j.ijheatfluidflow.2024.109670_b0140) 2013; 47 Díaz (10.1016/j.ijheatfluidflow.2024.109670_b0060) 1995; 10 Koga (10.1016/j.ijheatfluidflow.2024.109670_b0110) 2013; 64 Liu (10.1016/j.ijheatfluidflow.2024.109670_b0120) 2007; 205 Adham (10.1016/j.ijheatfluidflow.2024.109670_b0005) 2013; 21 Agostini (10.1016/j.ijheatfluidflow.2024.109670_b0010) 2007; 28 Sun (10.1016/j.ijheatfluidflow.2024.109670_b0180) 2020; 178 Xia (10.1016/j.ijheatfluidflow.2024.109670_b0195) 2023; 330 Pironneau (10.1016/j.ijheatfluidflow.2024.109670_b0160) 1973; 59 Pietropaoli (10.1016/j.ijheatfluidflow.2024.109670_b0155) 2019; 59 Borrvall (10.1016/j.ijheatfluidflow.2024.109670_b0045) 2003; 41 Barbosa (10.1016/j.ijheatfluidflow.2024.109670_b0025) 2012; 33 Brown (10.1016/j.ijheatfluidflow.2024.109670_b0050) 2012; 109 |
References_xml | – volume: 86 start-page: 765 year: 2011 end-page: 781 ident: b0115 article-title: Filters in topology optimization based on Helmholtz‐type differential equations publication-title: Int. J. Numer. Meth. Eng. – volume: 205 start-page: 286 year: 2007 end-page: 289 ident: b0120 article-title: Research on heat dissipation technology of electronic equipment publication-title: Electr. Process Technol. – volume: 61 start-page: 439 year: 2012 end-page: 470 ident: b0130 article-title: Topology optimization using the SIMP Method for multiobjective conductive problems publication-title: Numer. Heat Transf. – volume: 31 start-page: 251 year: 2006 end-page: 259 ident: b0070 article-title: Topology optimization of heat conduction problems using the finite volume method publication-title: Struct. Multidiscip. Optim. – reference: Sigmund O. 1994. Design of Material Structures Using Topology Optimization. Dept of Solid Mechanics, Thesis Technical University of Denmark. – volume: 21 start-page: 614 year: 2013 end-page: 622 ident: b0005 article-title: Thermal and hydrodynamic analysis of microchannel heat sinks: a review publication-title: Renew. Sustain. Energy Rev. – volume: 190 start-page: 4911 year: 2001 end-page: 4928 ident: b0040 article-title: Topology optimization using regularized intermediate density control publication-title: Comput. Methods Appl. Mech. Eng. – volume: 59 start-page: 117 year: 1973 end-page: 128 ident: b0160 article-title: On optimal profiles in stokes flow publication-title: Fluid Mech. – volume: 11 start-page: 1 year: 1996 end-page: 12 ident: b0085 article-title: A new approach to variable-topology shape design using a constraint on perimeter publication-title: Struct. Multidip. Optim. – volume: 115 start-page: 1266 year: 2017 end-page: 1276 ident: b0095 article-title: Thermal performance and structure optimization for slotted microchannel heat sink publication-title: Appl. Therm. Eng. – volume: 55 year: 2022 ident: b0190 article-title: Topology optimization for liquid-based battery thermal management system under varied charge rates [J] publication-title: J. Storage Mater. – volume: 15 start-page: 832 year: 1992 end-page: 842 ident: b0105 article-title: Heat sink optimization with application to microchannels publication-title: IEEE Trans. Components Hybrids Manuf. Technol. – volume: 154 year: 2020 ident: b0210 article-title: Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid mode publication-title: Int. J. Heat Mass Transf. – volume: 64 start-page: 759 year: 2013 end-page: 772 ident: b0110 article-title: Development of heat sink device by using topology optimization publication-title: Int. J. Heat Mass Transf. – volume: 100 start-page: 876 year: 2016 end-page: 891 ident: b0015 article-title: Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection publication-title: Int. J. Heat Mass Transf. – volume: 16 start-page: 68 year: 1998 end-page: 75 ident: b0170 article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima publication-title: Struct. Optim. – volume: 1 start-page: 193 year: 1989 end-page: 202 ident: b0030 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. – volume: 28 start-page: 258 year: 2007 end-page: 281 ident: b0010 article-title: State of the art of high heat flux cooling technologies publication-title: Heat Transfer Eng. – volume: 134 year: 2012 ident: b0020 article-title: Review and advances in heat pipe science and technology publication-title: J. Heat Transfer – volume: 47 start-page: 571 year: 2013 end-page: 581 ident: b0140 article-title: Topology optimization for fluid–thermal interaction problems under constant input power publication-title: Struct. Multidiscip. Optim. – volume: 10 start-page: 40 year: 2016 end-page: 43 ident: b0080 article-title: The unreasonable accuracy of Moore’s law publication-title: IEEE Ind. Electron. Mag. – volume: 143 year: 2019 ident: b0205 article-title: Topology optimization of microchannel heat sinks using a two-layer model publication-title: Int. J. Heat Mass Transf. – volume: 330 year: 2023 ident: b0195 article-title: Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization [J] publication-title: Appl. Energy – volume: 178 year: 2020 ident: b0180 article-title: 3D topology optimization of heat sinks for liquid cooling publication-title: Appl. Therm. Eng. – volume: 116 start-page: 512 year: 2018 end-page: 519 ident: b0075 article-title: Experimental evaluation of metallic phase change materials for thermal transient mitigation publication-title: Int. J. Heat Mass Transf. – volume: 38 start-page: 474 year: 2010 end-page: 480 ident: b0145 article-title: Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink publication-title: Int. Commun. Heat Mass Transfer – volume: 57 start-page: 1905 year: 2018 end-page: 1918 ident: b0065 article-title: Density based topology optimization of turbulent flow heat transfer systems publication-title: Struct. Multidiscip. Optim. – volume: 54 start-page: 531 year: 2016 end-page: 551 ident: b0165 article-title: Topology optimization of a coupled thermal-fluid system under a tangential thermal gradient constraint publication-title: Struct. Multidiscip. Optim. – volume: 63 start-page: 508 year: 2013 end-page: 539 ident: b0135 article-title: Topology optimization of heat and mass transfer problems: laminar flow publication-title: Numer. Heat Transf. – volume: 109 start-page: 7 year: 2012 end-page: 20 ident: b0050 article-title: The prospects of alternatives to vapor compression technology for apace cooling and food refrigeration applications publication-title: Energy Eng. – volume: 61 start-page: 475 year: 2020 end-page: 489 ident: b0125 article-title: A study on practical objectives and constraints for heat conduction topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 59 start-page: 801 year: 2019 end-page: 812 ident: b0155 article-title: Three-dimensional fluid topology optimization for heat transfer publication-title: Struct. Multidiscip. Optim. – volume: 33 start-page: 356 year: 2012 end-page: 374 ident: b0025 article-title: A state-of-the-art review of compact vapor compression refrigeration systems and their applications publication-title: Heat Transfer Eng. – volume: 41 start-page: 77 year: 2003 end-page: 107 ident: b0045 article-title: Topology optimization of fluids in Stokes flow publication-title: Int. J. Numer. Meth. Fluids – volume: 121 start-page: 1073 year: 2018 end-page: 1088 ident: b0090 article-title: Topology optimization of a pseudo 3D thermofluid heat sink model publication-title: Int. J. Heat Mass Transf. – volume: 10 start-page: 40 year: 1995 end-page: 45 ident: b0060 article-title: Checkerboard patterns in layout optimization publication-title: Struct. Optim. – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: b0035 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 2 start-page: 126 year: 1981 end-page: 129 ident: b0185 article-title: High performance heat sinking for VLSI publication-title: IEEE Electron. Device Lett. – volume: 134 year: 2012 ident: b0055 article-title: Optimization and design of a multipass branching microchannel heat sink for electronics cooling publication-title: J. Electron. Packag. – volume: 100 start-page: 461 year: 2019 end-page: 471 ident: b0150 article-title: Experimental and numerical investigation of forced convection heat transfer in heat sink with rectangular plates at varying inclinations on vertical base publication-title: J. Inst Eng. – volume: 307 start-page: 355 year: 2016 end-page: 377 ident: b0200 article-title: Topology optimization in thermal-fluid flow using the lattice boltzmann method publication-title: J. Comput. Phys. – volume: 130 start-page: 203 year: 1996 end-page: 226 ident: b0100 article-title: Stability of finite element models for distributed-parameter optimization and topology design publication-title: Comput. Methods Appl. Mech. Eng. – volume: 61 start-page: 439 issue: 6 year: 2012 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0130 article-title: Topology optimization using the SIMP Method for multiobjective conductive problems publication-title: Numer. Heat Transf. doi: 10.1080/10407790.2012.687979 – volume: 71 start-page: 197 issue: 2 year: 1988 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0035 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90086-2 – volume: 205 start-page: 286 issue: 5 year: 2007 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0120 article-title: Research on heat dissipation technology of electronic equipment publication-title: Electr. Process Technol. – volume: 54 start-page: 531 issue: 3 year: 2016 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0165 article-title: Topology optimization of a coupled thermal-fluid system under a tangential thermal gradient constraint publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1421-6 – volume: 10 start-page: 40 issue: 1 year: 1995 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0060 article-title: Checkerboard patterns in layout optimization publication-title: Struct. Optim. doi: 10.1007/BF01743693 – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0030 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. doi: 10.1007/BF01650949 – volume: 16 start-page: 68 issue: 1 year: 1998 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0170 article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima publication-title: Struct. Optim. doi: 10.1007/BF01214002 – volume: 33 start-page: 356 issue: 4–5 year: 2012 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0025 article-title: A state-of-the-art review of compact vapor compression refrigeration systems and their applications publication-title: Heat Transfer Eng. doi: 10.1080/01457632.2012.613275 – volume: 100 start-page: 461 issue: 3 year: 2019 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0150 article-title: Experimental and numerical investigation of forced convection heat transfer in heat sink with rectangular plates at varying inclinations on vertical base publication-title: J. Inst Eng. – volume: 59 start-page: 117 year: 1973 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0160 article-title: On optimal profiles in stokes flow publication-title: Fluid Mech. doi: 10.1017/S002211207300145X – ident: 10.1016/j.ijheatfluidflow.2024.109670_b0175 – volume: 109 start-page: 7 issue: 6 year: 2012 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0050 article-title: The prospects of alternatives to vapor compression technology for apace cooling and food refrigeration applications publication-title: Energy Eng. doi: 10.1080/01998595.2012.10554226 – volume: 38 start-page: 474 issue: 4 year: 2010 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0145 article-title: Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.12.031 – volume: 154 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0210 article-title: Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid mode publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119681 – volume: 63 start-page: 508 issue: 6 year: 2013 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0135 article-title: Topology optimization of heat and mass transfer problems: laminar flow publication-title: Numer. Heat Transf. doi: 10.1080/10407790.2013.772001 – volume: 21 start-page: 614 year: 2013 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0005 article-title: Thermal and hydrodynamic analysis of microchannel heat sinks: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.01.022 – volume: 190 start-page: 4911 issue: 37–38 year: 2001 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0040 article-title: Topology optimization using regularized intermediate density control publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(00)00356-X – volume: 178 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0180 article-title: 3D topology optimization of heat sinks for liquid cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115540 – volume: 100 start-page: 876 year: 2016 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0015 article-title: Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.013 – volume: 55 year: 2022 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0190 article-title: Topology optimization for liquid-based battery thermal management system under varied charge rates [J] publication-title: J. Storage Mater. – volume: 57 start-page: 1905 issue: 5 year: 2018 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0065 article-title: Density based topology optimization of turbulent flow heat transfer systems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-1967-6 – volume: 47 start-page: 571 issue: 4 year: 2013 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0140 article-title: Topology optimization for fluid–thermal interaction problems under constant input power publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0887-8 – volume: 11 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0085 article-title: A new approach to variable-topology shape design using a constraint on perimeter publication-title: Struct. Multidip. Optim. – volume: 130 start-page: 203 issue: 3 year: 1996 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0100 article-title: Stability of finite element models for distributed-parameter optimization and topology design publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(95)00928-0 – volume: 10 start-page: 40 issue: 1 year: 2016 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0080 article-title: The unreasonable accuracy of Moore’s law publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2016.2515045 – volume: 143 year: 2019 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0205 article-title: Topology optimization of microchannel heat sinks using a two-layer model publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118462 – volume: 31 start-page: 251 issue: 4 year: 2006 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0070 article-title: Topology optimization of heat conduction problems using the finite volume method publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-005-0584-3 – volume: 61 start-page: 475 issue: 2 year: 2020 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0125 article-title: A study on practical objectives and constraints for heat conduction topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02369-6 – volume: 134 issue: 12 year: 2012 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0020 article-title: Review and advances in heat pipe science and technology publication-title: J. Heat Transfer – volume: 59 start-page: 801 issue: 3 year: 2019 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0155 article-title: Three-dimensional fluid topology optimization for heat transfer publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2102-4 – volume: 330 year: 2023 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0195 article-title: Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization [J] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120335 – volume: 116 start-page: 512 year: 2018 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0075 article-title: Experimental evaluation of metallic phase change materials for thermal transient mitigation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.09.039 – volume: 15 start-page: 832 issue: 5 year: 1992 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0105 article-title: Heat sink optimization with application to microchannels publication-title: IEEE Trans. Components Hybrids Manuf. Technol. doi: 10.1109/33.180049 – volume: 307 start-page: 355 year: 2016 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0200 article-title: Topology optimization in thermal-fluid flow using the lattice boltzmann method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.12.008 – volume: 41 start-page: 77 issue: 1 year: 2003 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0045 article-title: Topology optimization of fluids in Stokes flow publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.426 – volume: 64 start-page: 759 year: 2013 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0110 article-title: Development of heat sink device by using topology optimization publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.05.007 – volume: 115 start-page: 1266 year: 2017 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0095 article-title: Thermal performance and structure optimization for slotted microchannel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.09.131 – volume: 86 start-page: 765 issue: 6 year: 2011 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0115 article-title: Filters in topology optimization based on Helmholtz‐type differential equations publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.3072 – volume: 28 start-page: 258 issue: 4 year: 2007 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0010 article-title: State of the art of high heat flux cooling technologies publication-title: Heat Transfer Eng. doi: 10.1080/01457630601117799 – volume: 134 issue: 4 year: 2012 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0055 article-title: Optimization and design of a multipass branching microchannel heat sink for electronics cooling publication-title: J. Electron. Packag. doi: 10.1115/1.4007159 – volume: 121 start-page: 1073 year: 2018 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0090 article-title: Topology optimization of a pseudo 3D thermofluid heat sink model publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.01.078 – volume: 2 start-page: 126 issue: 5 year: 1981 ident: 10.1016/j.ijheatfluidflow.2024.109670_b0185 article-title: High performance heat sinking for VLSI publication-title: IEEE Electron. Device Lett. doi: 10.1109/EDL.1981.25367 |
SSID | ssj0006047 |
Score | 2.451827 |
Snippet | •The paper adopts a pseudo 3D TO model to design microchip heat sinks.•The 3D TO model integrates thermo-fluid and conductive layers in 2D.•Various... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 109670 |
SubjectTerms | Heat Sink Pseudo Three-Dimensional Modelling Thermal Management Topology Optimization |
Title | Pseudo three-dimensional topology optimization of chip heat sinks with various inlet–outlet arrangements |
URI | https://dx.doi.org/10.1016/j.ijheatfluidflow.2024.109670 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EQfTgoyrWF3vQY2yabLLJzVIsVbF4UOgtJPvAlNqUNlW8iP_Bf-gvcSZJ8YEHwWsIyzIz-83M7jczAMeBkCH30HjDWGCC4riulQQithwvlr7HVWACqka-7vndO37Z9_oL0J7XwhCtssL-EtMLtK6-NCppNsZp2iBakoPet08sSDf0qOMn54Js_fTlk-bh27wsmeYYSeLfy3DyyfFKB4R4ZjhLlRlmT5guOpwaLPk0u_g3P_XF93Q2YK0KGlmr3NcmLOhRDdarAJJVx3Nag9Uv3QW3YHAz1TOVsRzVpS1FbfzLFhwsLycjPLMMAeOhqsRkmWHyPh0z2iyb0sMuo1ta9ojpdDabsnSEOn5_fSs4RDmLJxMqTChK5LbhrnN-2-5a1WgFS2K8khOvDT1TzFFwjtHaN0nSVBgNCYzeaNCgcpWtjKFnV90UMvAD05RSajtM4qSZ2O4OLI6ykd4FpkLXlsJVaA2CS4N4ILn0hKMxURJKmTr4c0FG47KDRjSnlg2iHxqISANRqYE6nM3FHn0ziQjR_m9L7P1_iX1YcWjkb3HrcgCL-WSmDzEOyZOjwtCOYKl1cdXtfQCDG-O9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gI-Db_HtHvQYmyabbHJTilKfeFDoLST7wJTalDZVvIj_wX_oL3EmSbGKB8FrCMsyM_vNzO43MwAHgZAh99B4w1hgguK4rpUEIrYcL5a-x1VgAqpGvr7xm_f8ouW1JqAxqoUhWmWF_SWmF2hdfalV0qz10rRGtCQHvW-LWJBu6LmTMM1pzAEa9dHrF8_Dt3lZM80xlMTfZ-Dwi-SVtgnyTGeYKtPJnjFfdDh1WPJpePFvjmrM-ZwtwUIVNbKTcmPLMKG7K7BYRZCsOp-DFZgfay-4Cu3bgR6qjOWoL20p6uNf9uBgeTka4YVliBiPVSkmywyTD2mP0WbZgF52GV3TsifMp7PhgKVdVPLH23tBIspZ3O9TZUJRI7cG92end42mVc1WsCQGLDkR29A1xRwl5xitfZMkdYXhkMDwjSYNKlfZyhh6d9V1IQM_MHUppbbDJE7qie2uw1Q36-oNYCp0bSlcheYguDQICJJLTzgaMyWhlNkEfyTIqFe20IhG3LJ29EMDEWkgKjWwCccjsUffbCJCuP_bElv_X2IfZpt311fR1fnN5TbMOTT_t7iC2YGpvD_UuxiU5MleYXSfu07lRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo+three-dimensional+topology+optimization+of+chip+heat+sinks+with+various+inlet%E2%80%93outlet+arrangements&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Huang%2C+Jin&rft.au=Li%2C+Wanting&rft.au=Chen%2C+Bohao&rft.au=Jiao%2C+Kai&rft.date=2025-01-01&rft.pub=Elsevier+Inc&rft.issn=0142-727X&rft.volume=111&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2024.109670&rft.externalDocID=S0142727X24003953 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon |