Pseudo three-dimensional topology optimization of chip heat sinks with various inlet–outlet arrangements

•The paper adopts a pseudo 3D TO model to design microchip heat sinks.•The 3D TO model integrates thermo-fluid and conductive layers in 2D.•Various inlet/outlet configurations are explored to optimize heat sinks.•TO model is validated by simulating a reconstructed heat sink design.•The first two aut...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of heat and fluid flow Vol. 111; p. 109670
Main Authors Huang, Jin, Li, Wanting, Chen, Bohao, Jiao, Kai, Wang, Qiuwang, Zhao, Cunlu
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2025
Subjects
Online AccessGet full text
ISSN0142-727X
DOI10.1016/j.ijheatfluidflow.2024.109670

Cover

Abstract •The paper adopts a pseudo 3D TO model to design microchip heat sinks.•The 3D TO model integrates thermo-fluid and conductive layers in 2D.•Various inlet/outlet configurations are explored to optimize heat sinks.•TO model is validated by simulating a reconstructed heat sink design.•The first two authors contribute equally to this work. Topology optimization (TO) represents a significant advancement in heat sink design for microelectronic chips. Although two-dimensional (2D) TO is favored for its simplicity and lower computational cost, it lacks the accuracy of three-dimensional (3D) TO, omitting certain processes inherent to 3D models. This paper introduces a novel pseudo 3D TO model, which integrates a 2D thermo-fluid design layer with a 2D conductive base plate layer, specifically optimized for chip heat sink designs. Employing the variable density method, we establish a mathematical description of the pseudo 3D TO, incorporating governing equations for flow dynamics and temperature variations in both layers. A distinctive feature of this model is its consideration of thermal coupling in the dimension typically neglected by standard 2D TO models. We applied the pseudo 3D TO model to optimize heat sink structures across various inlet and outlet configurations, followed by rigorous analyses to compare flow and heat transfer performances. These comparisons offer critical insights into the advantages and trade-offs of each configuration. Ultimately, a 3D heat sink was reconstructed from the pseudo 3D optimization results, and a detailed numerical experiment was conducted to assess its thermal performance under realistic conditions, thereby validating the efficacy and reliability of the pseudo 3D TO model. The findings underscore the model’s potential in achieving efficient and practical heat sink designs, balancing accuracy and computational efficiency.
AbstractList •The paper adopts a pseudo 3D TO model to design microchip heat sinks.•The 3D TO model integrates thermo-fluid and conductive layers in 2D.•Various inlet/outlet configurations are explored to optimize heat sinks.•TO model is validated by simulating a reconstructed heat sink design.•The first two authors contribute equally to this work. Topology optimization (TO) represents a significant advancement in heat sink design for microelectronic chips. Although two-dimensional (2D) TO is favored for its simplicity and lower computational cost, it lacks the accuracy of three-dimensional (3D) TO, omitting certain processes inherent to 3D models. This paper introduces a novel pseudo 3D TO model, which integrates a 2D thermo-fluid design layer with a 2D conductive base plate layer, specifically optimized for chip heat sink designs. Employing the variable density method, we establish a mathematical description of the pseudo 3D TO, incorporating governing equations for flow dynamics and temperature variations in both layers. A distinctive feature of this model is its consideration of thermal coupling in the dimension typically neglected by standard 2D TO models. We applied the pseudo 3D TO model to optimize heat sink structures across various inlet and outlet configurations, followed by rigorous analyses to compare flow and heat transfer performances. These comparisons offer critical insights into the advantages and trade-offs of each configuration. Ultimately, a 3D heat sink was reconstructed from the pseudo 3D optimization results, and a detailed numerical experiment was conducted to assess its thermal performance under realistic conditions, thereby validating the efficacy and reliability of the pseudo 3D TO model. The findings underscore the model’s potential in achieving efficient and practical heat sink designs, balancing accuracy and computational efficiency.
ArticleNumber 109670
Author Huang, Jin
Chen, Bohao
Li, Wanting
Zhao, Cunlu
Jiao, Kai
Wang, Qiuwang
Author_xml – sequence: 1
  givenname: Jin
  surname: Huang
  fullname: Huang, Jin
  organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 2
  givenname: Wanting
  surname: Li
  fullname: Li, Wanting
  organization: Xi’an Microelectronics Technology Institute, Xi’an 710065, China
– sequence: 3
  givenname: Bohao
  orcidid: 0009-0000-6970-8056
  surname: Chen
  fullname: Chen, Bohao
  organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 4
  givenname: Kai
  surname: Jiao
  fullname: Jiao, Kai
  organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 5
  givenname: Qiuwang
  surname: Wang
  fullname: Wang, Qiuwang
  organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 6
  givenname: Cunlu
  orcidid: 0000-0002-8210-8538
  surname: Zhao
  fullname: Zhao, Cunlu
  email: mclzhao@xjtu.edu.cn
  organization: Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
BookMark eNqNkD1OAzEQRl0EiSRwBzeUG8be3xQUKIKAFAkKkOgsrz1OvGzWke0kChV34IachI1CRUU1oxl9b0ZvRAad65CQKwYTBqy4bia2WaGMpt1abVq3n3DgWb-bFiUMyBBYxpOSl2_nZBRCAwAFZOWQNM8Bt9rRuPKIibZr7IJ1nWxpdBvXuuWBuk20a_shYz-nzlC1sht6vEWD7d4D3du4ojvprdsGarsW4_fnl9vGvqHSe9ktsafGcEHOjGwDXv7WMXm9v3uZPSSLp_nj7HaRKF6mMeFFBozLDNIpN4iFqWumeQ5lXuaQV1OdatDG8AoKZKWqisowpRTCtJY1qyEdk5sTV3kXgkcjNt6upT8IBuIoSzTijyxxlCVOsvr8_JTH_smdRS-Cstgp1NajikI7-0_SDybGhTQ
Cites_doi 10.1080/10407790.2012.687979
10.1016/0045-7825(88)90086-2
10.1007/s00158-016-1421-6
10.1007/BF01743693
10.1007/BF01650949
10.1007/BF01214002
10.1080/01457632.2012.613275
10.1017/S002211207300145X
10.1080/01998595.2012.10554226
10.1016/j.icheatmasstransfer.2010.12.031
10.1016/j.ijheatmasstransfer.2020.119681
10.1080/10407790.2013.772001
10.1016/j.rser.2013.01.022
10.1016/S0045-7825(00)00356-X
10.1016/j.applthermaleng.2020.115540
10.1016/j.ijheatmasstransfer.2016.05.013
10.1007/s00158-018-1967-6
10.1007/s00158-013-0887-8
10.1016/0045-7825(95)00928-0
10.1109/MIE.2016.2515045
10.1016/j.ijheatmasstransfer.2019.118462
10.1007/s00158-005-0584-3
10.1007/s00158-019-02369-6
10.1007/s00158-018-2102-4
10.1016/j.apenergy.2022.120335
10.1016/j.ijheatmasstransfer.2017.09.039
10.1109/33.180049
10.1016/j.jcp.2015.12.008
10.1002/fld.426
10.1016/j.ijheatmasstransfer.2013.05.007
10.1016/j.applthermaleng.2016.09.131
10.1002/nme.3072
10.1080/01457630601117799
10.1115/1.4007159
10.1016/j.ijheatmasstransfer.2018.01.078
10.1109/EDL.1981.25367
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatfluidflow.2024.109670
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_ijheatfluidflow_2024_109670
S0142727X24003953
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADHUB
ADIYS
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c273t-264012a40392fee6fbb1d25075750589d3d0dff2806e17c868f1ccce09bab1b03
IEDL.DBID .~1
ISSN 0142-727X
IngestDate Tue Jul 01 01:32:29 EDT 2025
Sat Jan 18 16:09:53 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Pseudo Three-Dimensional Modelling
Thermal Management
Heat Sink
Topology Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-264012a40392fee6fbb1d25075750589d3d0dff2806e17c868f1ccce09bab1b03
ORCID 0000-0002-8210-8538
0009-0000-6970-8056
ParticipantIDs crossref_primary_10_1016_j_ijheatfluidflow_2024_109670
elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2024_109670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle The International journal of heat and fluid flow
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Matsumori, Kondoh, Kawamoto (b0140) 2013; 47
Patil, Dingare (b0150) 2019; 100
Yaji, Yamada, Yoshino (b0200) 2016; 307
Bendsøe, Noboru (b0035) 1988; 71
Gonzalez-Nino, Boteler, Ibitayo (b0075) 2018; 116
Borrvall, Petersson (b0045) 2003; 41
Marck, Nemer, Harion (b0130) 2012; 61
Knight, Hall, Goodling (b0105) 1992; 15
Koga, Lopes, Nova (b0110) 2013; 64
Díaz, Sigmund (b0060) 1995; 10
Liu (b0120) 2007; 205
Marck, Nemer, Harion (b0135) 2013; 63
Sigmund O. 1994. Design of Material Structures Using Topology Optimization. Dept of Solid Mechanics, Thesis Technical University of Denmark.
Adham, Mohd-Ghazali, Ahmad (b0005) 2013; 21
Huang, Zhao, Gong (b0095) 2017; 115
Lohan, Dede, Allison (b0125) 2020; 61
Jog, Haber (b0100) 1996; 130
Pietropaoli, Montomoli, Gaymann (b0155) 2019; 59
Guarnieri (b0080) 2016; 10
Sigmund, Petersson (b0170) 1998; 16
Borrvall, Petersson (b0040) 2001; 190
Pironneau (b0160) 1973; 59
Haertel, Engelbrecht, Lazarov (b0090) 2018; 121
Lazarov, Sigmund (b0115) 2011; 86
Qian, Dede (b0165) 2016; 54
Wanittansirichok, Mongkholphan, Chaowalitbumrung (b0190) 2022; 55
Barbosa, Ribeiro, Oliveira (b0025) 2012; 33
Brown, Stout, Dirks (b0050) 2012; 109
Gersborg-Hansen, Bendsøe, Sigmund (b0070) 2006; 31
Yan, Wang, Hong (b0205) 2019; 143
Alexandersen, Sigmund, Aage (b0015) 2016; 100
Agostini, Fabbri, Park (b0010) 2007; 28
Tuckerman, Pease (b0185) 1981; 2
Dilgen, Dilgen, Fuhrman (b0065) 2018; 57
Xia, Chen, Luo (b0195) 2023; 330
Haber, Jog, Bendsøe (b0085) 1996; 11
Zeng, Wang, Yang (b0210) 2020; 154
Dede (b0055) 2012; 134
Bendsøe (b0030) 1989; 1
Mohammed, Gunnasegaran, Shuaib (b0145) 2010; 38
Amir (b0020) 2012; 134
Sun, Liebersbach, Qian (b0180) 2020; 178
Mohammed (10.1016/j.ijheatfluidflow.2024.109670_b0145) 2010; 38
Zeng (10.1016/j.ijheatfluidflow.2024.109670_b0210) 2020; 154
Yan (10.1016/j.ijheatfluidflow.2024.109670_b0205) 2019; 143
Lohan (10.1016/j.ijheatfluidflow.2024.109670_b0125) 2020; 61
Qian (10.1016/j.ijheatfluidflow.2024.109670_b0165) 2016; 54
Huang (10.1016/j.ijheatfluidflow.2024.109670_b0095) 2017; 115
Dede (10.1016/j.ijheatfluidflow.2024.109670_b0055) 2012; 134
Borrvall (10.1016/j.ijheatfluidflow.2024.109670_b0040) 2001; 190
Gonzalez-Nino (10.1016/j.ijheatfluidflow.2024.109670_b0075) 2018; 116
Alexandersen (10.1016/j.ijheatfluidflow.2024.109670_b0015) 2016; 100
Tuckerman (10.1016/j.ijheatfluidflow.2024.109670_b0185) 1981; 2
Dilgen (10.1016/j.ijheatfluidflow.2024.109670_b0065) 2018; 57
Lazarov (10.1016/j.ijheatfluidflow.2024.109670_b0115) 2011; 86
Marck (10.1016/j.ijheatfluidflow.2024.109670_b0130) 2012; 61
Marck (10.1016/j.ijheatfluidflow.2024.109670_b0135) 2013; 63
Sigmund (10.1016/j.ijheatfluidflow.2024.109670_b0170) 1998; 16
Knight (10.1016/j.ijheatfluidflow.2024.109670_b0105) 1992; 15
10.1016/j.ijheatfluidflow.2024.109670_b0175
Amir (10.1016/j.ijheatfluidflow.2024.109670_b0020) 2012; 134
Bendsøe (10.1016/j.ijheatfluidflow.2024.109670_b0035) 1988; 71
Guarnieri (10.1016/j.ijheatfluidflow.2024.109670_b0080) 2016; 10
Yaji (10.1016/j.ijheatfluidflow.2024.109670_b0200) 2016; 307
Bendsøe (10.1016/j.ijheatfluidflow.2024.109670_b0030) 1989; 1
Gersborg-Hansen (10.1016/j.ijheatfluidflow.2024.109670_b0070) 2006; 31
Patil (10.1016/j.ijheatfluidflow.2024.109670_b0150) 2019; 100
Wanittansirichok (10.1016/j.ijheatfluidflow.2024.109670_b0190) 2022; 55
Haber (10.1016/j.ijheatfluidflow.2024.109670_b0085) 1996; 11
Haertel (10.1016/j.ijheatfluidflow.2024.109670_b0090) 2018; 121
Jog (10.1016/j.ijheatfluidflow.2024.109670_b0100) 1996; 130
Matsumori (10.1016/j.ijheatfluidflow.2024.109670_b0140) 2013; 47
Díaz (10.1016/j.ijheatfluidflow.2024.109670_b0060) 1995; 10
Koga (10.1016/j.ijheatfluidflow.2024.109670_b0110) 2013; 64
Liu (10.1016/j.ijheatfluidflow.2024.109670_b0120) 2007; 205
Adham (10.1016/j.ijheatfluidflow.2024.109670_b0005) 2013; 21
Agostini (10.1016/j.ijheatfluidflow.2024.109670_b0010) 2007; 28
Sun (10.1016/j.ijheatfluidflow.2024.109670_b0180) 2020; 178
Xia (10.1016/j.ijheatfluidflow.2024.109670_b0195) 2023; 330
Pironneau (10.1016/j.ijheatfluidflow.2024.109670_b0160) 1973; 59
Pietropaoli (10.1016/j.ijheatfluidflow.2024.109670_b0155) 2019; 59
Borrvall (10.1016/j.ijheatfluidflow.2024.109670_b0045) 2003; 41
Barbosa (10.1016/j.ijheatfluidflow.2024.109670_b0025) 2012; 33
Brown (10.1016/j.ijheatfluidflow.2024.109670_b0050) 2012; 109
References_xml – volume: 86
  start-page: 765
  year: 2011
  end-page: 781
  ident: b0115
  article-title: Filters in topology optimization based on Helmholtz‐type differential equations
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 205
  start-page: 286
  year: 2007
  end-page: 289
  ident: b0120
  article-title: Research on heat dissipation technology of electronic equipment
  publication-title: Electr. Process Technol.
– volume: 61
  start-page: 439
  year: 2012
  end-page: 470
  ident: b0130
  article-title: Topology optimization using the SIMP Method for multiobjective conductive problems
  publication-title: Numer. Heat Transf.
– volume: 31
  start-page: 251
  year: 2006
  end-page: 259
  ident: b0070
  article-title: Topology optimization of heat conduction problems using the finite volume method
  publication-title: Struct. Multidiscip. Optim.
– reference: Sigmund O. 1994. Design of Material Structures Using Topology Optimization. Dept of Solid Mechanics, Thesis Technical University of Denmark.
– volume: 21
  start-page: 614
  year: 2013
  end-page: 622
  ident: b0005
  article-title: Thermal and hydrodynamic analysis of microchannel heat sinks: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 190
  start-page: 4911
  year: 2001
  end-page: 4928
  ident: b0040
  article-title: Topology optimization using regularized intermediate density control
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 59
  start-page: 117
  year: 1973
  end-page: 128
  ident: b0160
  article-title: On optimal profiles in stokes flow
  publication-title: Fluid Mech.
– volume: 11
  start-page: 1
  year: 1996
  end-page: 12
  ident: b0085
  article-title: A new approach to variable-topology shape design using a constraint on perimeter
  publication-title: Struct. Multidip. Optim.
– volume: 115
  start-page: 1266
  year: 2017
  end-page: 1276
  ident: b0095
  article-title: Thermal performance and structure optimization for slotted microchannel heat sink
  publication-title: Appl. Therm. Eng.
– volume: 55
  year: 2022
  ident: b0190
  article-title: Topology optimization for liquid-based battery thermal management system under varied charge rates [J]
  publication-title: J. Storage Mater.
– volume: 15
  start-page: 832
  year: 1992
  end-page: 842
  ident: b0105
  article-title: Heat sink optimization with application to microchannels
  publication-title: IEEE Trans. Components Hybrids Manuf. Technol.
– volume: 154
  year: 2020
  ident: b0210
  article-title: Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid mode
  publication-title: Int. J. Heat Mass Transf.
– volume: 64
  start-page: 759
  year: 2013
  end-page: 772
  ident: b0110
  article-title: Development of heat sink device by using topology optimization
  publication-title: Int. J. Heat Mass Transf.
– volume: 100
  start-page: 876
  year: 2016
  end-page: 891
  ident: b0015
  article-title: Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection
  publication-title: Int. J. Heat Mass Transf.
– volume: 16
  start-page: 68
  year: 1998
  end-page: 75
  ident: b0170
  article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct. Optim.
– volume: 1
  start-page: 193
  year: 1989
  end-page: 202
  ident: b0030
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
– volume: 28
  start-page: 258
  year: 2007
  end-page: 281
  ident: b0010
  article-title: State of the art of high heat flux cooling technologies
  publication-title: Heat Transfer Eng.
– volume: 134
  year: 2012
  ident: b0020
  article-title: Review and advances in heat pipe science and technology
  publication-title: J. Heat Transfer
– volume: 47
  start-page: 571
  year: 2013
  end-page: 581
  ident: b0140
  article-title: Topology optimization for fluid–thermal interaction problems under constant input power
  publication-title: Struct. Multidiscip. Optim.
– volume: 10
  start-page: 40
  year: 2016
  end-page: 43
  ident: b0080
  article-title: The unreasonable accuracy of Moore’s law
  publication-title: IEEE Ind. Electron. Mag.
– volume: 143
  year: 2019
  ident: b0205
  article-title: Topology optimization of microchannel heat sinks using a two-layer model
  publication-title: Int. J. Heat Mass Transf.
– volume: 330
  year: 2023
  ident: b0195
  article-title: Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization [J]
  publication-title: Appl. Energy
– volume: 178
  year: 2020
  ident: b0180
  article-title: 3D topology optimization of heat sinks for liquid cooling
  publication-title: Appl. Therm. Eng.
– volume: 116
  start-page: 512
  year: 2018
  end-page: 519
  ident: b0075
  article-title: Experimental evaluation of metallic phase change materials for thermal transient mitigation
  publication-title: Int. J. Heat Mass Transf.
– volume: 38
  start-page: 474
  year: 2010
  end-page: 480
  ident: b0145
  article-title: Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 57
  start-page: 1905
  year: 2018
  end-page: 1918
  ident: b0065
  article-title: Density based topology optimization of turbulent flow heat transfer systems
  publication-title: Struct. Multidiscip. Optim.
– volume: 54
  start-page: 531
  year: 2016
  end-page: 551
  ident: b0165
  article-title: Topology optimization of a coupled thermal-fluid system under a tangential thermal gradient constraint
  publication-title: Struct. Multidiscip. Optim.
– volume: 63
  start-page: 508
  year: 2013
  end-page: 539
  ident: b0135
  article-title: Topology optimization of heat and mass transfer problems: laminar flow
  publication-title: Numer. Heat Transf.
– volume: 109
  start-page: 7
  year: 2012
  end-page: 20
  ident: b0050
  article-title: The prospects of alternatives to vapor compression technology for apace cooling and food refrigeration applications
  publication-title: Energy Eng.
– volume: 61
  start-page: 475
  year: 2020
  end-page: 489
  ident: b0125
  article-title: A study on practical objectives and constraints for heat conduction topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 59
  start-page: 801
  year: 2019
  end-page: 812
  ident: b0155
  article-title: Three-dimensional fluid topology optimization for heat transfer
  publication-title: Struct. Multidiscip. Optim.
– volume: 33
  start-page: 356
  year: 2012
  end-page: 374
  ident: b0025
  article-title: A state-of-the-art review of compact vapor compression refrigeration systems and their applications
  publication-title: Heat Transfer Eng.
– volume: 41
  start-page: 77
  year: 2003
  end-page: 107
  ident: b0045
  article-title: Topology optimization of fluids in Stokes flow
  publication-title: Int. J. Numer. Meth. Fluids
– volume: 121
  start-page: 1073
  year: 2018
  end-page: 1088
  ident: b0090
  article-title: Topology optimization of a pseudo 3D thermofluid heat sink model
  publication-title: Int. J. Heat Mass Transf.
– volume: 10
  start-page: 40
  year: 1995
  end-page: 45
  ident: b0060
  article-title: Checkerboard patterns in layout optimization
  publication-title: Struct. Optim.
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  ident: b0035
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 2
  start-page: 126
  year: 1981
  end-page: 129
  ident: b0185
  article-title: High performance heat sinking for VLSI
  publication-title: IEEE Electron. Device Lett.
– volume: 134
  year: 2012
  ident: b0055
  article-title: Optimization and design of a multipass branching microchannel heat sink for electronics cooling
  publication-title: J. Electron. Packag.
– volume: 100
  start-page: 461
  year: 2019
  end-page: 471
  ident: b0150
  article-title: Experimental and numerical investigation of forced convection heat transfer in heat sink with rectangular plates at varying inclinations on vertical base
  publication-title: J. Inst Eng.
– volume: 307
  start-page: 355
  year: 2016
  end-page: 377
  ident: b0200
  article-title: Topology optimization in thermal-fluid flow using the lattice boltzmann method
  publication-title: J. Comput. Phys.
– volume: 130
  start-page: 203
  year: 1996
  end-page: 226
  ident: b0100
  article-title: Stability of finite element models for distributed-parameter optimization and topology design
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 61
  start-page: 439
  issue: 6
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0130
  article-title: Topology optimization using the SIMP Method for multiobjective conductive problems
  publication-title: Numer. Heat Transf.
  doi: 10.1080/10407790.2012.687979
– volume: 71
  start-page: 197
  issue: 2
  year: 1988
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0035
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 205
  start-page: 286
  issue: 5
  year: 2007
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0120
  article-title: Research on heat dissipation technology of electronic equipment
  publication-title: Electr. Process Technol.
– volume: 54
  start-page: 531
  issue: 3
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0165
  article-title: Topology optimization of a coupled thermal-fluid system under a tangential thermal gradient constraint
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1421-6
– volume: 10
  start-page: 40
  issue: 1
  year: 1995
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0060
  article-title: Checkerboard patterns in layout optimization
  publication-title: Struct. Optim.
  doi: 10.1007/BF01743693
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0030
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
  doi: 10.1007/BF01650949
– volume: 16
  start-page: 68
  issue: 1
  year: 1998
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0170
  article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct. Optim.
  doi: 10.1007/BF01214002
– volume: 33
  start-page: 356
  issue: 4–5
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0025
  article-title: A state-of-the-art review of compact vapor compression refrigeration systems and their applications
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457632.2012.613275
– volume: 100
  start-page: 461
  issue: 3
  year: 2019
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0150
  article-title: Experimental and numerical investigation of forced convection heat transfer in heat sink with rectangular plates at varying inclinations on vertical base
  publication-title: J. Inst Eng.
– volume: 59
  start-page: 117
  year: 1973
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0160
  article-title: On optimal profiles in stokes flow
  publication-title: Fluid Mech.
  doi: 10.1017/S002211207300145X
– ident: 10.1016/j.ijheatfluidflow.2024.109670_b0175
– volume: 109
  start-page: 7
  issue: 6
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0050
  article-title: The prospects of alternatives to vapor compression technology for apace cooling and food refrigeration applications
  publication-title: Energy Eng.
  doi: 10.1080/01998595.2012.10554226
– volume: 38
  start-page: 474
  issue: 4
  year: 2010
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0145
  article-title: Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.12.031
– volume: 154
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0210
  article-title: Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid mode
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119681
– volume: 63
  start-page: 508
  issue: 6
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0135
  article-title: Topology optimization of heat and mass transfer problems: laminar flow
  publication-title: Numer. Heat Transf.
  doi: 10.1080/10407790.2013.772001
– volume: 21
  start-page: 614
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0005
  article-title: Thermal and hydrodynamic analysis of microchannel heat sinks: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.01.022
– volume: 190
  start-page: 4911
  issue: 37–38
  year: 2001
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0040
  article-title: Topology optimization using regularized intermediate density control
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)00356-X
– volume: 178
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0180
  article-title: 3D topology optimization of heat sinks for liquid cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115540
– volume: 100
  start-page: 876
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0015
  article-title: Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.05.013
– volume: 55
  year: 2022
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0190
  article-title: Topology optimization for liquid-based battery thermal management system under varied charge rates [J]
  publication-title: J. Storage Mater.
– volume: 57
  start-page: 1905
  issue: 5
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0065
  article-title: Density based topology optimization of turbulent flow heat transfer systems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1967-6
– volume: 47
  start-page: 571
  issue: 4
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0140
  article-title: Topology optimization for fluid–thermal interaction problems under constant input power
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0887-8
– volume: 11
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0085
  article-title: A new approach to variable-topology shape design using a constraint on perimeter
  publication-title: Struct. Multidip. Optim.
– volume: 130
  start-page: 203
  issue: 3
  year: 1996
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0100
  article-title: Stability of finite element models for distributed-parameter optimization and topology design
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(95)00928-0
– volume: 10
  start-page: 40
  issue: 1
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0080
  article-title: The unreasonable accuracy of Moore’s law
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2016.2515045
– volume: 143
  year: 2019
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0205
  article-title: Topology optimization of microchannel heat sinks using a two-layer model
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118462
– volume: 31
  start-page: 251
  issue: 4
  year: 2006
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0070
  article-title: Topology optimization of heat conduction problems using the finite volume method
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-005-0584-3
– volume: 61
  start-page: 475
  issue: 2
  year: 2020
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0125
  article-title: A study on practical objectives and constraints for heat conduction topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02369-6
– volume: 134
  issue: 12
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0020
  article-title: Review and advances in heat pipe science and technology
  publication-title: J. Heat Transfer
– volume: 59
  start-page: 801
  issue: 3
  year: 2019
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0155
  article-title: Three-dimensional fluid topology optimization for heat transfer
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2102-4
– volume: 330
  year: 2023
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0195
  article-title: Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization [J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120335
– volume: 116
  start-page: 512
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0075
  article-title: Experimental evaluation of metallic phase change materials for thermal transient mitigation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.09.039
– volume: 15
  start-page: 832
  issue: 5
  year: 1992
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0105
  article-title: Heat sink optimization with application to microchannels
  publication-title: IEEE Trans. Components Hybrids Manuf. Technol.
  doi: 10.1109/33.180049
– volume: 307
  start-page: 355
  year: 2016
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0200
  article-title: Topology optimization in thermal-fluid flow using the lattice boltzmann method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.12.008
– volume: 41
  start-page: 77
  issue: 1
  year: 2003
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0045
  article-title: Topology optimization of fluids in Stokes flow
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.426
– volume: 64
  start-page: 759
  year: 2013
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0110
  article-title: Development of heat sink device by using topology optimization
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.05.007
– volume: 115
  start-page: 1266
  year: 2017
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0095
  article-title: Thermal performance and structure optimization for slotted microchannel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.131
– volume: 86
  start-page: 765
  issue: 6
  year: 2011
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0115
  article-title: Filters in topology optimization based on Helmholtz‐type differential equations
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.3072
– volume: 28
  start-page: 258
  issue: 4
  year: 2007
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0010
  article-title: State of the art of high heat flux cooling technologies
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630601117799
– volume: 134
  issue: 4
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0055
  article-title: Optimization and design of a multipass branching microchannel heat sink for electronics cooling
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.4007159
– volume: 121
  start-page: 1073
  year: 2018
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0090
  article-title: Topology optimization of a pseudo 3D thermofluid heat sink model
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.01.078
– volume: 2
  start-page: 126
  issue: 5
  year: 1981
  ident: 10.1016/j.ijheatfluidflow.2024.109670_b0185
  article-title: High performance heat sinking for VLSI
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/EDL.1981.25367
SSID ssj0006047
Score 2.451827
Snippet •The paper adopts a pseudo 3D TO model to design microchip heat sinks.•The 3D TO model integrates thermo-fluid and conductive layers in 2D.•Various...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109670
SubjectTerms Heat Sink
Pseudo Three-Dimensional Modelling
Thermal Management
Topology Optimization
Title Pseudo three-dimensional topology optimization of chip heat sinks with various inlet–outlet arrangements
URI https://dx.doi.org/10.1016/j.ijheatfluidflow.2024.109670
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EQfTgoyrWF3vQY2yabLLJzVIsVbF4UOgtJPvAlNqUNlW8iP_Bf-gvcSZJ8YEHwWsIyzIz-83M7jczAMeBkCH30HjDWGCC4riulQQithwvlr7HVWACqka-7vndO37Z9_oL0J7XwhCtssL-EtMLtK6-NCppNsZp2iBakoPet08sSDf0qOMn54Js_fTlk-bh27wsmeYYSeLfy3DyyfFKB4R4ZjhLlRlmT5guOpwaLPk0u_g3P_XF93Q2YK0KGlmr3NcmLOhRDdarAJJVx3Nag9Uv3QW3YHAz1TOVsRzVpS1FbfzLFhwsLycjPLMMAeOhqsRkmWHyPh0z2iyb0sMuo1ta9ojpdDabsnSEOn5_fSs4RDmLJxMqTChK5LbhrnN-2-5a1WgFS2K8khOvDT1TzFFwjtHaN0nSVBgNCYzeaNCgcpWtjKFnV90UMvAD05RSajtM4qSZ2O4OLI6ykd4FpkLXlsJVaA2CS4N4ILn0hKMxURJKmTr4c0FG47KDRjSnlg2iHxqISANRqYE6nM3FHn0ziQjR_m9L7P1_iX1YcWjkb3HrcgCL-WSmDzEOyZOjwtCOYKl1cdXtfQCDG-O9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gI-Db_HtHvQYmyabbHJTilKfeFDoLST7wJTalDZVvIj_wX_oL3EmSbGKB8FrCMsyM_vNzO43MwAHgZAh99B4w1hgguK4rpUEIrYcL5a-x1VgAqpGvr7xm_f8ouW1JqAxqoUhWmWF_SWmF2hdfalV0qz10rRGtCQHvW-LWJBu6LmTMM1pzAEa9dHrF8_Dt3lZM80xlMTfZ-Dwi-SVtgnyTGeYKtPJnjFfdDh1WPJpePFvjmrM-ZwtwUIVNbKTcmPLMKG7K7BYRZCsOp-DFZgfay-4Cu3bgR6qjOWoL20p6uNf9uBgeTka4YVliBiPVSkmywyTD2mP0WbZgF52GV3TsifMp7PhgKVdVPLH23tBIspZ3O9TZUJRI7cG92end42mVc1WsCQGLDkR29A1xRwl5xitfZMkdYXhkMDwjSYNKlfZyhh6d9V1IQM_MHUppbbDJE7qie2uw1Q36-oNYCp0bSlcheYguDQICJJLTzgaMyWhlNkEfyTIqFe20IhG3LJ29EMDEWkgKjWwCccjsUffbCJCuP_bElv_X2IfZpt311fR1fnN5TbMOTT_t7iC2YGpvD_UuxiU5MleYXSfu07lRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo+three-dimensional+topology+optimization+of+chip+heat+sinks+with+various+inlet%E2%80%93outlet+arrangements&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Huang%2C+Jin&rft.au=Li%2C+Wanting&rft.au=Chen%2C+Bohao&rft.au=Jiao%2C+Kai&rft.date=2025-01-01&rft.pub=Elsevier+Inc&rft.issn=0142-727X&rft.volume=111&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2024.109670&rft.externalDocID=S0142727X24003953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon