Machine learning facilitated business intelligence (Part I) Neural networks learning algorithms and applications

PurposeThe purpose of this paper is to conduct a comprehensive review of the noteworthy contributions made in the area of the Feedforward neural network (FNN) to improve its generalization performance and convergence rate (learning speed); to identify new research directions that will help researche...

Full description

Saved in:
Bibliographic Details
Published inIndustrial management + data systems Vol. 120; no. 1; pp. 164 - 195
Main Authors Khan, Waqar Ahmed, Chung, S.H., Awan, Muhammad Usman, Wen, Xin
Format Journal Article
LanguageEnglish
Published Wembley Emerald Group Publishing Limited 13.01.2020
Subjects
Online AccessGet full text
ISSN0263-5577
1758-5783
DOI10.1108/IMDS-07-2019-0361

Cover

Abstract PurposeThe purpose of this paper is to conduct a comprehensive review of the noteworthy contributions made in the area of the Feedforward neural network (FNN) to improve its generalization performance and convergence rate (learning speed); to identify new research directions that will help researchers to design new, simple and efficient algorithms and users to implement optimal designed FNNs for solving complex problems; and to explore the wide applications of the reviewed FNN algorithms in solving real-world management, engineering and health sciences problems and demonstrate the advantages of these algorithms in enhancing decision making for practical operations.Design/methodology/approachThe FNN has gained much popularity during the last three decades. Therefore, the authors have focused on algorithms proposed during the last three decades. The selected databases were searched with popular keywords: “generalization performance,” “learning rate,” “overfitting” and “fixed and cascade architecture.” Combinations of the keywords were also used to get more relevant results. Duplicated articles in the databases, non-English language, and matched keywords but out of scope, were discarded.FindingsThe authors studied a total of 80 articles and classified them into six categories according to the nature of the algorithms proposed in these articles which aimed at improving the generalization performance and convergence rate of FNNs. To review and discuss all the six categories would result in the paper being too long. Therefore, the authors further divided the six categories into two parts (i.e. Part I and Part II). The current paper, Part I, investigates two categories that focus on learning algorithms (i.e. gradient learning algorithms for network training and gradient-free learning algorithms). Furthermore, the remaining four categories which mainly explore optimization techniques are reviewed in Part II (i.e. optimization algorithms for learning rate, bias and variance (underfitting and overfitting) minimization algorithms, constructive topology neural networks and metaheuristic search algorithms). For the sake of simplicity, the paper entitled “Machine learning facilitated business intelligence (Part II): Neural networks optimization techniques and applications” is referred to as Part II. This results in a division of 80 articles into 38 and 42 for Part I and Part II, respectively. After discussing the FNN algorithms with their technical merits and limitations, along with real-world management, engineering and health sciences applications for each individual category, the authors suggest seven (three in Part I and other four in Part II) new future directions which can contribute to strengthening the literature.Research limitations/implicationsThe FNN contributions are numerous and cannot be covered in a single study. The authors remain focused on learning algorithms and optimization techniques, along with their application to real-world problems, proposing to improve the generalization performance and convergence rate of FNNs with the characteristics of computing optimal hyperparameters, connection weights, hidden units, selecting an appropriate network architecture rather than trial and error approaches and avoiding overfitting.Practical implicationsThis study will help researchers and practitioners to deeply understand the existing algorithms merits of FNNs with limitations, research gaps, application areas and changes in research studies in the last three decades. Moreover, the user, after having in-depth knowledge by understanding the applications of algorithms in the real world, may apply appropriate FNN algorithms to get optimal results in the shortest possible time, with less effort, for their specific application area problems.Originality/valueThe existing literature surveys are limited in scope due to comparative study of the algorithms, studying algorithms application areas and focusing on specific techniques. This implies that the existing surveys are focused on studying some specific algorithms or their applications (e.g. pruning algorithms, constructive algorithms, etc.). In this work, the authors propose a comprehensive review of different categories, along with their real-world applications, that may affect FNN generalization performance and convergence rate. This makes the classification scheme novel and significant.
AbstractList PurposeThe purpose of this paper is to conduct a comprehensive review of the noteworthy contributions made in the area of the Feedforward neural network (FNN) to improve its generalization performance and convergence rate (learning speed); to identify new research directions that will help researchers to design new, simple and efficient algorithms and users to implement optimal designed FNNs for solving complex problems; and to explore the wide applications of the reviewed FNN algorithms in solving real-world management, engineering and health sciences problems and demonstrate the advantages of these algorithms in enhancing decision making for practical operations.Design/methodology/approachThe FNN has gained much popularity during the last three decades. Therefore, the authors have focused on algorithms proposed during the last three decades. The selected databases were searched with popular keywords: “generalization performance,” “learning rate,” “overfitting” and “fixed and cascade architecture.” Combinations of the keywords were also used to get more relevant results. Duplicated articles in the databases, non-English language, and matched keywords but out of scope, were discarded.FindingsThe authors studied a total of 80 articles and classified them into six categories according to the nature of the algorithms proposed in these articles which aimed at improving the generalization performance and convergence rate of FNNs. To review and discuss all the six categories would result in the paper being too long. Therefore, the authors further divided the six categories into two parts (i.e. Part I and Part II). The current paper, Part I, investigates two categories that focus on learning algorithms (i.e. gradient learning algorithms for network training and gradient-free learning algorithms). Furthermore, the remaining four categories which mainly explore optimization techniques are reviewed in Part II (i.e. optimization algorithms for learning rate, bias and variance (underfitting and overfitting) minimization algorithms, constructive topology neural networks and metaheuristic search algorithms). For the sake of simplicity, the paper entitled “Machine learning facilitated business intelligence (Part II): Neural networks optimization techniques and applications” is referred to as Part II. This results in a division of 80 articles into 38 and 42 for Part I and Part II, respectively. After discussing the FNN algorithms with their technical merits and limitations, along with real-world management, engineering and health sciences applications for each individual category, the authors suggest seven (three in Part I and other four in Part II) new future directions which can contribute to strengthening the literature.Research limitations/implicationsThe FNN contributions are numerous and cannot be covered in a single study. The authors remain focused on learning algorithms and optimization techniques, along with their application to real-world problems, proposing to improve the generalization performance and convergence rate of FNNs with the characteristics of computing optimal hyperparameters, connection weights, hidden units, selecting an appropriate network architecture rather than trial and error approaches and avoiding overfitting.Practical implicationsThis study will help researchers and practitioners to deeply understand the existing algorithms merits of FNNs with limitations, research gaps, application areas and changes in research studies in the last three decades. Moreover, the user, after having in-depth knowledge by understanding the applications of algorithms in the real world, may apply appropriate FNN algorithms to get optimal results in the shortest possible time, with less effort, for their specific application area problems.Originality/valueThe existing literature surveys are limited in scope due to comparative study of the algorithms, studying algorithms application areas and focusing on specific techniques. This implies that the existing surveys are focused on studying some specific algorithms or their applications (e.g. pruning algorithms, constructive algorithms, etc.). In this work, the authors propose a comprehensive review of different categories, along with their real-world applications, that may affect FNN generalization performance and convergence rate. This makes the classification scheme novel and significant.
Author Wen, Xin
Khan, Waqar Ahmed
Awan, Muhammad Usman
Chung, S.H.
Author_xml – sequence: 1
  givenname: Waqar Ahmed
  surname: Khan
  fullname: Khan, Waqar Ahmed
– sequence: 2
  givenname: S.H.
  surname: Chung
  fullname: Chung, S.H.
– sequence: 3
  givenname: Muhammad Usman
  surname: Awan
  fullname: Awan, Muhammad Usman
– sequence: 4
  givenname: Xin
  orcidid: 0000-0003-0279-6869
  surname: Wen
  fullname: Wen, Xin
BookMark eNp9kE1LAzEQhoNUsK3-AG8LXvQQnSTNJsGTtH4UWhTUc8hmszVlzdYkPfjv3aWePHgamHmfGeaZoFHogkPonMA1ISBvluvFKwaBKRCFgZXkCI2J4BJzIdkIjYGWDHMuxAmapLQF6Bu0HKPbtbEfPriidSYGHzZFY6xvfTbZ1UW1T_0spcKH7NrWb1ywrrh8MTEXy6tTdNyYNrmz3zpF7w_3b_MnvHp-XM7vVthSwTImwLklleHgZkzSWpaKEaKUc42yohKlI4bbGhiXgs8k9AGoyrqSpqKykoJN0cVh7y52X3uXst52-xj6k5pyxtSMKK76lDikbOxSiq7RdvjCdyFH41tNQA-m9GBKg9CDKT2Y6knyh9xF_2ni9z_MD5UOa8Q
CitedBy_id crossref_primary_10_3390_su142013127
crossref_primary_10_1007_s10479_023_05248_y
crossref_primary_10_1016_j_ijcce_2023_09_001
crossref_primary_10_1002_zamm_202300728
crossref_primary_10_1016_j_tre_2022_102805
crossref_primary_10_1016_j_tre_2021_102304
crossref_primary_10_3390_jmse12081334
crossref_primary_10_1016_j_apenergy_2024_125096
crossref_primary_10_1016_j_tre_2020_102189
crossref_primary_10_1016_j_entcom_2024_100703
crossref_primary_10_1016_j_asoc_2019_106048
crossref_primary_10_3390_app15063166
crossref_primary_10_1080_00207543_2020_1764656
crossref_primary_10_1007_s40430_024_05006_6
crossref_primary_10_1016_j_jlp_2021_104608
crossref_primary_10_2139_ssrn_4835661
crossref_primary_10_3390_wevj16010023
crossref_primary_10_1007_s10479_023_05194_9
crossref_primary_10_3390_math12182882
crossref_primary_10_1016_j_isci_2025_111974
crossref_primary_10_4018_IJOCI_286174
crossref_primary_10_1016_j_engappai_2022_105242
crossref_primary_10_1080_10407790_2024_2338912
crossref_primary_10_1016_j_engappai_2021_104495
crossref_primary_10_1016_j_trc_2021_103225
crossref_primary_10_1038_s41598_024_76569_6
crossref_primary_10_48084_etasr_7871
crossref_primary_10_1016_j_tre_2021_102455
crossref_primary_10_30748_zhups_2021_68_15
crossref_primary_10_1016_j_tre_2021_102273
crossref_primary_10_1016_j_jairtraman_2022_102270
crossref_primary_10_1007_s10479_023_05312_7
crossref_primary_10_1016_j_tre_2020_102132
crossref_primary_10_3390_app15010002
crossref_primary_10_1002_mren_202200066
crossref_primary_10_1007_s10845_023_02303_0
crossref_primary_10_1007_s12065_022_00813_z
crossref_primary_10_1016_j_jjimei_2021_100047
Cites_doi 10.1109/TPAMI.2015.2439281
10.1007/BF00996189
10.1108/IMDS-08-2014-0231
10.1109/TNN.2007.894058
10.1109/TII.2012.2187914
10.1038/nature14539
10.1108/IMDS-04-2018-0164
10.1109/TNN.2009.2024147
10.1016/S0895-4356(96)00002-9
10.1016/j.ipm.2019.05.003
10.1109/5326.897072
10.1109/TIP.2017.2765830
10.1090/S0025-5718-1970-0274029-X
10.1109/72.97934
10.1016/j.neunet.2017.06.003
10.1007/s00521-015-1874-3
10.1109/TSMCB.2011.2168604
10.1016/j.neunet.2012.09.020
10.1108/IMDS-08-2013-0329
10.1108/IMDS-12-2017-0582
10.1109/TNNLS.2013.2293637
10.1109/TPAMI.2017.2699184
10.1109/IJCNN.1989.118638
10.1504/IJBIDM.2005.007318
10.1007/s00521-014-1567-3
10.1016/j.neunet.2014.10.001
10.1108/IMDS-11-2015-0463
10.1108/02635570910957669
10.1109/TIE.2008.2003319
10.1016/j.knosys.2010.05.010
10.1109/TNN.2006.880583
10.1109/72.363426
10.1016/j.patcog.2017.09.040
10.1016/j.neucom.2017.08.040
10.1016/j.asoc.2015.09.040
10.1109/ACCESS.2018.2883957
10.1111/risa.12746
10.1016/S0893-6080(03)00138-2
10.1108/IMDS-07-2017-0313
10.1109/IJCNN.1990.137819
10.1109/TCYB.2018.2830338
10.1109/TNN.2006.875977
10.1109/TNNLS.2012.2202289
10.1109/TNNLS.2015.2424995
10.1038/323533a0
10.1016/j.ins.2015.09.002
10.1109/72.329697
10.1109/TNN.2004.836233
10.1016/0893-6080(89)90020-8
10.1016/j.eswa.2012.01.202
10.1108/IMDS-07-2017-0317
10.1016/j.techfore.2017.09.003
10.1016/0893-6080(90)90049-Q
10.1016/j.neucom.2005.12.126
10.1108/IMDS-12-2017-0579
10.1016/j.neucom.2012.08.010
10.1109/TNN.2010.2073482
10.1137/1037125
10.1016/j.patcog.2016.01.012
10.1016/j.neucom.2016.09.092
ContentType Journal Article
Copyright Emerald Publishing Limited 2019
Copyright_xml – notice: Emerald Publishing Limited 2019
DBID AAYXX
CITATION
7SC
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
F28
FR3
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1108/IMDS-07-2019-0361
DatabaseName CrossRef
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Business
Engineering
EISSN 1758-5783
EndPage 195
ExternalDocumentID 10_1108_IMDS_07_2019_0361
GroupedDBID -~X
.DC
.WU
0R~
1XV
29I
3FY
4.4
5GY
5VS
70U
7WY
8AO
8FE
8FG
8R4
8R5
9E0
9F-
AAGBP
AAKOT
AAMCF
AAPSD
AAUDR
AAVEV
AAXBI
AAYXX
ABCQX
ABEAN
ABIJV
ABJNI
ABPPZ
ABSDC
ABXQL
ABYQI
ACBMB
ACGFS
ACIWK
ACTSA
ADFRT
ADOMW
ADQHX
ADWNT
AEBZA
AEDOK
AEMMR
AENEX
AETHF
AFKRA
AFNZV
AHMHQ
AIAFM
AILOG
AJEBP
AJFKA
ALMA_UNASSIGNED_HOLDINGS
AODMV
APPLU
ARAPS
ASJQZ
ATGMP
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
BTXLY
CCPQU
CITATION
CS3
DU5
DWQXO
EBS
ECCUG
EOXHF
FNNZZ
GEA
GEB
GEC
GEI
GMM
GMN
GMX
GNUQQ
GQ.
GROUPED_ABI_INFORM_RESEARCH
GUQSH
H13
HCIFZ
HZ~
IAO
IEA
IJT
IOF
IPNFZ
ITC
J1Y
JI-
JL0
K6V
K6~
K7-
KBGRL
L7B
LXL
LXN
M0C
M2O
M42
MS~
N95
O9-
P2P
P62
PHGZM
PHGZT
PQBIZ
PQGLB
PQQKQ
PROAC
PUEGO
Q2X
Q3A
RIG
SCAQC
SDURG
TDQ
TEM
TET
TGG
TMD
TMF
TMK
TMT
TN5
Z11
Z12
Z21
ZYZAG
7SC
7XB
8FD
AFNTC
AUCOK
F28
FR3
JQ2
L.-
L.0
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c273t-1055c1ba50e4382d86931199eef9c7b76e1a5cd035875480d860b6db8ab28b873
IEDL.DBID ZYZAG
ISSN 0263-5577
IngestDate Sat Aug 23 14:54:45 EDT 2025
Wed Oct 01 05:42:08 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-1055c1ba50e4382d86931199eef9c7b76e1a5cd035875480d860b6db8ab28b873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0279-6869
PQID 2533941959
PQPubID 47599
PageCount 32
ParticipantIDs proquest_journals_2533941959
crossref_citationtrail_10_1108_IMDS_07_2019_0361
crossref_primary_10_1108_IMDS_07_2019_0361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-13
PublicationDateYYYYMMDD 2020-01-13
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-13
  day: 13
PublicationDecade 2020
PublicationPlace Wembley
PublicationPlace_xml – name: Wembley
PublicationTitle Industrial management + data systems
PublicationYear 2020
Publisher Emerald Group Publishing Limited
Publisher_xml – name: Emerald Group Publishing Limited
References (key2020011009265491200_ref006) 2018; 275
(key2020011009265491200_ref035) 2016; 116
(key2020011009265491200_ref013) 1990
(key2020011009265491200_ref062) 2008; 55
key2020011009265491200_ref044
(key2020011009265491200_ref014) 2009; 20
key2020011009265491200_ref002
(key2020011009265491200_ref037) 2015; 521
(key2020011009265491200_ref010) 2019
(key2020011009265491200_ref039) 2018; 118
(key2020011009265491200_ref069) 1995; 37
(key2020011009265491200_ref041) 2019; 7
(key2020011009265491200_ref020) 2012
(key2020011009265491200_ref022) 2007; 70
(key2020011009265491200_ref051) 1990; 3
(key2020011009265491200_ref028) 2012; 8
(key2020011009265491200_ref061) 2010; 21
(key2020011009265491200_ref021) 1989; 2
(key2020011009265491200_ref047) 1970; 24
(key2020011009265491200_ref043) 2019; 119
(key2020011009265491200_ref072) 2000; 30
(key2020011009265491200_ref033) 2019; 119
(key2020011009265491200_ref004) 2019; 119
(key2020011009265491200_ref067) 2018; 27
(key2020011009265491200_ref036) 2014; 114
(key2020011009265491200_ref068) 2016; 27
(key2020011009265491200_ref048) 2017; 34
(key2020011009265491200_ref012) 1988
(key2020011009265491200_ref030) 2011; 1
(key2020011009265491200_ref017) 2017; 228
(key2020011009265491200_ref027) 2012; 42
(key2020011009265491200_ref058) 2005; 1
(key2020011009265491200_ref073) 2013; 101
key2020011009265491200_ref071
(key2020011009265491200_ref025) 2006; 70
(key2020011009265491200_ref060) 2013; 37
(key2020011009265491200_ref056) 1996; 49
(key2020011009265491200_ref046) 1995; 6
(key2020011009265491200_ref074) 2018; 48
(key2020011009265491200_ref034) 1995; 6
(key2020011009265491200_ref052) 1991; 2
(key2020011009265491200_ref055) 2016; 38
(key2020011009265491200_ref024) 2006; 17
(key2020011009265491200_ref042) 2012; 39
(key2020011009265491200_ref063) 2003; 16
(key2020011009265491200_ref059) 2017; 93
(key2020011009265491200_ref016) 1994; 5
(key2020011009265491200_ref008) 2018; 66
(key2020011009265491200_ref045) 1986; 323
(key2020011009265491200_ref009) 2017; 37
(key2020011009265491200_ref070) 2009; 109
(key2020011009265491200_ref038) 2013; 141
(key2020011009265491200_ref054) 2015; 115
(key2020011009265491200_ref029) 2016; 59
(key2020011009265491200_ref053) 2016; 27
(key2020011009265491200_ref003) 2014; 25
key2020011009265491200_ref019
(key2020011009265491200_ref015) 2005; 16
(key2020011009265491200_ref001) 2014
(key2020011009265491200_ref032) 2013; 28
(key2020011009265491200_ref023) 2008; 71
(key2020011009265491200_ref040) 2006; 17
(key2020011009265491200_ref064) 2018; 118
(key2020011009265491200_ref066) 2007; 18
(key2020011009265491200_ref007) 2018; 40
(key2020011009265491200_ref057) 2016; 27
(key2020011009265491200_ref011) 2016; 38
(key2020011009265491200_ref026) 2015; 61
(key2020011009265491200_ref049) 2019; 144
(key2020011009265491200_ref005) 2016; 328
(key2020011009265491200_ref031) 2019; 56
(key2020011009265491200_ref050) 2019; 57
(key2020011009265491200_ref018) 2010; 23
(key2020011009265491200_ref065) 2012; 23
References_xml – volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: key2020011009265491200_ref011
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2439281
– volume: 34
  issue: 1
  year: 2017
  ident: key2020011009265491200_ref048
  article-title: Forecast information sharing for managing supply chains in the big data era: recent development and future research
  publication-title: Asia-Pacific Journal of Operational Research
– volume: 6
  start-page: 251
  issue: 4
  year: 1995
  ident: key2020011009265491200_ref034
  article-title: An empirical comparison of neural network and logistic regression models
  publication-title: Marketing Letters
  doi: 10.1007/BF00996189
– volume: 70
  start-page: 3056
  issue: 16–18
  year: 2007
  ident: key2020011009265491200_ref022
  article-title: Convex incremental extreme learning machine
  publication-title: Neurocomputing
– volume: 115
  start-page: 311
  issue: 2
  year: 2015
  ident: key2020011009265491200_ref054
  article-title: The effects of convenience and speed in m-payment
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/IMDS-08-2014-0231
– volume: 18
  start-page: 1294
  issue: 5
  year: 2007
  ident: key2020011009265491200_ref066
  article-title: Localized generalization error model and its application to architecture selection for radial basis function neural network
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2007.894058
– volume: 8
  start-page: 228
  issue: 2
  year: 2012
  ident: key2020011009265491200_ref028
  article-title: Selection of proper neural network sizes and architectures – a comparative study
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2012.2187914
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: key2020011009265491200_ref037
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 119
  start-page: 698
  issue: 4
  year: 2019
  ident: key2020011009265491200_ref004
  article-title: Modelling wholesale distribution operations: an artificial intelligence framework
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/IMDS-04-2018-0164
– volume: 71
  start-page: 3460
  issue: 16–18
  year: 2008
  ident: key2020011009265491200_ref023
  article-title: Enhanced random search based incremental extreme learning machine
  publication-title: Neurocomputing
– volume: 57
  start-page: 4898
  issue: 15–16
  year: 2019
  ident: key2020011009265491200_ref050
  article-title: A review on supply chain contracting with information considerations: information updating and information asymmetry
  publication-title: International Journal of Production Research
– year: 2012
  ident: key2020011009265491200_ref020
  article-title: Lecture 6a – overview of mini-batch gradient descent
– volume: 20
  start-page: 1352
  issue: 8
  year: 2009
  ident: key2020011009265491200_ref014
  article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2024147
– volume: 49
  start-page: 1225
  issue: 11
  year: 1996
  ident: key2020011009265491200_ref056
  article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/S0895-4356(96)00002-9
– start-page: 524
  year: 1990
  ident: key2020011009265491200_ref013
  article-title: The cascade-correlation learning architecture
  publication-title: Advances in Neural Information Processing Systems
– volume: 56
  start-page: 1618
  issue: 5
  year: 2019
  ident: key2020011009265491200_ref031
  article-title: The impact of deep learning on document classification using semantically rich representations
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2019.05.003
– volume: 30
  start-page: 451
  issue: 4
  year: 2000
  ident: key2020011009265491200_ref072
  article-title: Neural networks for classification: a survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/5326.897072
– volume: 27
  start-page: 964
  issue: 2
  year: 2018
  ident: key2020011009265491200_ref067
  article-title: Multi-task convolutional neural network for pose-invariant face recognition
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2017.2765830
– volume: 24
  start-page: 647
  issue: 111
  year: 1970
  ident: key2020011009265491200_ref047
  article-title: Conditioning of Quasi-Newton methods for function minimization
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1970-0274029-X
– volume: 2
  start-page: 568
  issue: 6
  year: 1991
  ident: key2020011009265491200_ref052
  article-title: A general regression neural network
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.97934
– volume: 93
  start-page: 219
  year: 2017
  ident: key2020011009265491200_ref059
  article-title: Accelerating deep neural network training with inconsistent stochastic gradient descent
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.06.003
– volume: 27
  start-page: 291
  issue: 2
  year: 2016
  ident: key2020011009265491200_ref057
  article-title: Self-adaptive extreme learning machine
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1874-3
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: key2020011009265491200_ref027
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Part B, Cybernetics
  doi: 10.1109/TSMCB.2011.2168604
– volume: 37
  start-page: 182
  year: 2013
  ident: key2020011009265491200_ref060
  article-title: The no-prop algorithm: a new learning algorithm for multilayer neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.09.020
– volume: 1
  start-page: 111
  issue: 4
  year: 2011
  ident: key2020011009265491200_ref030
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks
  publication-title: International Journal of Artificial Intelligence and Expert Systems
– volume: 114
  start-page: 711
  issue: 5
  year: 2014
  ident: key2020011009265491200_ref036
  article-title: Customer relationship mining system for effective strategies formulation
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/IMDS-08-2013-0329
– volume: 118
  start-page: 1804
  issue: 9
  year: 2018
  ident: key2020011009265491200_ref039
  article-title: Multi-class Twitter sentiment classification with emojis
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/IMDS-12-2017-0582
– volume: 25
  start-page: 1553
  issue: 8
  year: 2014
  ident: key2020011009265491200_ref003
  article-title: On the complexity of neural network classifiers: a comparison between shallow and deep architectures
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2293637
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: key2020011009265491200_ref007
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2699184
– ident: key2020011009265491200_ref019
  doi: 10.1109/IJCNN.1989.118638
– volume: 28
  start-page: 31
  issue: 6
  year: 2013
  ident: key2020011009265491200_ref032
  article-title: Representational learning with extreme learning machine for big data
  publication-title: IEEE Intelligent System
– volume: 1
  start-page: 54
  issue: 1
  year: 2005
  ident: key2020011009265491200_ref058
  article-title: Support vector machines based on K-means clustering for real-time business intelligence systems
  publication-title: International Journal of Business Intelligence and Data Mining
  doi: 10.1504/IJBIDM.2005.007318
– volume: 27
  start-page: 111
  issue: 1
  year: 2016
  ident: key2020011009265491200_ref068
  article-title: Orthogonal incremental extreme learning machine for regression and multiclass classification
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1567-3
– volume: 61
  start-page: 32
  year: 2015
  ident: key2020011009265491200_ref026
  article-title: Trends in extreme learning machines: a review
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.10.001
– volume: 116
  start-page: 1242
  issue: 6
  year: 2016
  ident: key2020011009265491200_ref035
  article-title: Thailand tourism forecasting based on a hybrid of discrete wavelet decomposition and NARX neural network
  publication-title: Industrial Management and Data Systems
  doi: 10.1108/IMDS-11-2015-0463
– volume: 109
  start-page: 708
  issue: 5
  year: 2009
  ident: key2020011009265491200_ref070
  article-title: Text classification: neural networks vs support vector machines
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/02635570910957669
– volume: 55
  start-page: 3784
  issue: 10
  year: 2008
  ident: key2020011009265491200_ref062
  article-title: Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2008.2003319
– volume: 23
  start-page: 856
  issue: 8
  year: 2010
  ident: key2020011009265491200_ref018
  article-title: Understanding consumer heterogeneity: a business intelligence application of neural networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2010.05.010
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: key2020011009265491200_ref040
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.880583
– start-page: 1
  year: 2019
  ident: key2020011009265491200_ref010
  article-title: Reliability analysis of chatter stability for milling process system with uncertainties based on neural network and fourth moment method
  publication-title: International Journal of Production Research
– volume: 6
  start-page: 273
  issue: 1
  year: 1995
  ident: key2020011009265491200_ref046
  article-title: Use of a Quasi-Newton method in a feedforward neural network construction algorithm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.363426
– ident: key2020011009265491200_ref002
  doi: 10.1016/j.patcog.2017.09.040
– volume: 275
  start-page: 278
  year: 2018
  ident: key2020011009265491200_ref006
  article-title: A review on neural networks with random weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.040
– volume: 38
  start-page: 788
  year: 2016
  ident: key2020011009265491200_ref055
  article-title: Artificial neural networks in business: two decades of research
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.09.040
– volume: 7
  start-page: 5577
  year: 2019
  ident: key2020011009265491200_ref041
  article-title: Neural network based brain tumor detection using wireless infrared imaging sensor
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883957
– volume-title: An Empirical Study of Learning Speed in Back-Propagation Networks
  year: 1988
  ident: key2020011009265491200_ref012
– volume: 37
  start-page: 1443
  issue: 8
  year: 2017
  ident: key2020011009265491200_ref009
  article-title: Cascading delay risk of airline workforce deployments with crew pairing and schedule optimization
  publication-title: Risk Analysis
  doi: 10.1111/risa.12746
– volume: 16
  start-page: 1429
  issue: 10
  year: 2003
  ident: key2020011009265491200_ref063
  article-title: The general inefficiency of batch training for gradient descent learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00138-2
– volume: 118
  start-page: 850
  issue: 4
  year: 2018
  ident: key2020011009265491200_ref064
  article-title: Examining the key determinants towards online pro-brand and anti-brand community citizenship behaviours: a two-stage approach
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/IMDS-07-2017-0313
– ident: key2020011009265491200_ref044
  doi: 10.1109/IJCNN.1990.137819
– volume: 48
  start-page: 3403
  issue: 12
  year: 2018
  ident: key2020011009265491200_ref074
  article-title: Fault diagnosis of Tennessee-Eastman process using orthogonal incremental extreme learning machine based on driving amount
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2830338
– volume: 66
  start-page: 730
  issue: 4
  year: 2018
  ident: key2020011009265491200_ref008
  article-title: Sustainable fashion supply chain management: a system of systems analysis
  publication-title: IEEE Transactions on Engineering Management
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  ident: key2020011009265491200_ref024
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.875977
– volume: 23
  start-page: 1498
  issue: 9
  year: 2012
  ident: key2020011009265491200_ref065
  article-title: Bidirectional extreme learning machine for regression problem and its learning effectiveness
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2012.2202289
– volume: 141
  start-page: 135
  issue: 1–2
  year: 2013
  ident: key2020011009265491200_ref038
  article-title: Nonsmooth optimization via Quasi-Newton methods
  publication-title: Mathematical Programming
– volume: 27
  start-page: 809
  issue: 4
  year: 2016
  ident: key2020011009265491200_ref053
  article-title: Extreme learning machine for multilayer perceptron
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2424995
– start-page: 1533
  year: 2014
  ident: key2020011009265491200_ref001
  article-title: Convolutional neural networks for speech recognition
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: key2020011009265491200_ref045
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 328
  start-page: 546
  year: 2016
  ident: key2020011009265491200_ref005
  article-title: An iterative learning algorithm for feedforward neural networks with random weights
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.09.002
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: key2020011009265491200_ref016
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.329697
– volume: 16
  start-page: 24
  issue: 1
  year: 2005
  ident: key2020011009265491200_ref015
  article-title: Smooth function approximation using neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2004.836233
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: key2020011009265491200_ref021
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 39
  start-page: 10402
  issue: 12
  year: 2012
  ident: key2020011009265491200_ref042
  article-title: Machine learning approach for finding business partners and building reciprocal relationships
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.202
– ident: key2020011009265491200_ref071
– volume: 119
  start-page: 69
  issue: 1
  year: 2019
  ident: key2020011009265491200_ref033
  article-title: Business environmental analysis for textual data using data mining and sentence-level classification
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/IMDS-07-2017-0317
– volume: 144
  start-page: 412
  year: 2019
  ident: key2020011009265491200_ref049
  article-title: Selling green first or not? A Bayesian analysis with service levels and environmental impact considerations in the big data era
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2017.09.003
– volume: 3
  start-page: 109
  issue: 1
  year: 1990
  ident: key2020011009265491200_ref051
  article-title: Probabilistic neural networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(90)90049-Q
– volume: 70
  start-page: 489
  issue: 1-3
  year: 2006
  ident: key2020011009265491200_ref025
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 119
  start-page: 189
  issue: 1
  year: 2019
  ident: key2020011009265491200_ref043
  article-title: A comparative data analytic approach to construct a risk trade-off for cardiac patients’ re-admissions
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/IMDS-12-2017-0579
– volume: 101
  start-page: 229
  year: 2013
  ident: key2020011009265491200_ref073
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.010
– volume: 21
  start-page: 1793
  issue: 11
  year: 2010
  ident: key2020011009265491200_ref061
  article-title: Neural network learning without backpropagation
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2073482
– volume: 37
  start-page: 531
  issue: 4
  year: 1995
  ident: key2020011009265491200_ref069
  article-title: Historical development of the Newton–Raphson method
  publication-title: SIAM Review
  doi: 10.1137/1037125
– volume: 59
  start-page: 199
  year: 2016
  ident: key2020011009265491200_ref029
  article-title: Human action recognition using genetic algorithms and convolutional neural networks
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.01.012
– volume: 228
  start-page: 133
  year: 2017
  ident: key2020011009265491200_ref017
  article-title: An improved incremental constructive single-hidden-layer feedforward networks for extreme learning machine based on particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.092
SSID ssj0002626
Score 2.4669123
Snippet PurposeThe purpose of this paper is to conduct a comprehensive review of the noteworthy contributions made in the area of the Feedforward neural network (FNN)...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 164
SubjectTerms Algorithms
Artificial neural networks
Business intelligence
Business machines
Categories
Comparative studies
Computer architecture
Convergence
Decision making
Deep learning
Engineering
Health sciences
Heuristic methods
Information management
Intelligence (information)
Literature reviews
Machine learning
Neural networks
Non-English languages
Optimization
Optimization techniques
Researchers
Search algorithms
Topology
Subtitle Neural networks learning algorithms and applications
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFH7oCKIHl1FxJwcPKgSbps2CiLiiwgziAt5Ktoog4zb-f_M6qcvFUw9NL19f3pL38n0AW7qUXGinqMtrQYsYoKh1nNFSqbrg3NRM4-XkXl9c3BdXD-XDGPTbuzA4Vtn6xMZR-xeHZ-R7ecxLdIFUKIevbxRVo7C72kpomCSt4A8airFxmMiRGasDE8dn_eubb9-ci0aALT45LUspU58TtXAue6e3eGgXI6Km0a-zv5Hqr6Nuos_5HMyktJEcjf7zPIyFQRcm26n1Lsy26gwkbdYuTP-iGlyA_V4zNRlIkol4JLVxI4bu4EmSovwgT78YOsn2dbQrcrmzCPfnZ3cnFzQJJ0TEJR9SFL10zJoyC9jn80pozpjWIdTaSStFYKZ0PuNlrFYKlcUFmRXeKmNzZZXkS9AZvAzCMhBdcy9MYZCqq9DGWVvXSjvhQ26l9vkKZC1IlUus4ihu8Vw11UWmKsS1ymSFuFaI6wrsfn_yOqLU-G_xeot8lXbXR_VjC6v_v16DqRzr44xRxtehM3z_DBsxiRjazWQZX6kRwg8
  priority: 102
  providerName: ProQuest
Title Machine learning facilitated business intelligence (Part I)
URI https://www.proquest.com/docview/2533941959
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald Management eJournals Collection
  customDbUrl:
  eissn: 1758-5783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: ZYZAG
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1758-5783
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: BENPR
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1758-5783
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: 8FG
  dateStart: 19920215
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH6oA-LFXRyXIQcPKsRpmjYLntzGBUbFBdRLadJURR3FqRd_vUmbDioiCJ56SUOb9_K2vHwfwIqMOWVSC6zDnOHIOiisNCU4FiKPKE1zIt3l5O4xO7iMjq7iqyE4qe_ClG2VVTmmtNP3vb5LUtuucdta4QHggGOvOezunrsym_VhEltLTNquZN2-K54eh6FhfRm1O7Vxc32ztT8wziErGdjsk-I45twfdP443VdX9dVSl-6nMwEv9YdXXScPG2-F2tDv3zAd__HPJmHch6poq9KtKRgyvWkYrTvlp2GiZoRA3kDMwGa37M00yJNR3KI81RUOuMmQJ7zso_tPOKBo9dRqLzpcm4XLzt7FzgH29AxWrpwW2FFraqLSODDuNDETTFJCpDQml5orzgxJY50FNLY5USQCOyBQLFMiVaFQgtM5GOk998w8IJnTjKVR6gDBIplqpfJcSM0yEyous7AJQS2JRHvsckeh8ZiUOUwgErdiScATt2KJW7EmrA9eeamAO34bvFSLN_F7uJ-ENhKWkQPfWfjLXIswFrqcPCCY0CUYKV7fzLINXArVgmHR2W9BY3vv-PSs5VXzA-8y6Gs
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJD4OPlaNvLQPmKhJx-nH9COEEBTILrAbopBwa_s1xsQs6C4h_Dl-m92zPQgXbpzmMD2TSXVNfVVd3d8HsKZryYT2CnvaCMwTQGHnGcG1Ug1nzDZE58PJw5HoH_O9k_pkDq66szB5W2UXE9tAHU59XiP_TFNeonmmQtk8-4OzalTurnYSGrZIK4SNlmKsHOzYj5cXqYSbbAy203y_p3R35-hrHxeVgfR5kk1xVoj0xNm6irkpFpTQjBCtY2y0l06KSGztQ8XqlNpzVaUBlRPBKeuockqy9N4HsMAZ16n4W_iyMzr8do0FVLSCb-nKcF1LWfqqWXtnMNz-nhcJEwJrnHCE3EbG28DQot3uc3ha0lS0NfOrFzAXxz142O2S78GzTg0CleDQgyc3qA1fwvqw3aUZUZGl-Ika62eM4DGgIn05Qb9uMIKiD4fJj9Hg4ys4vhcTvob58ek4vgGkGxaE5TZTg3FtvXNNo7QXIVIndaCLUHVGMr6wmGcxjd-mrWYqZbJdTSVNtqvJdl2ET9ePnM0oPO4avNJZ3pS_eWL--97S3bffwaP-0fDAHAxG-8vwmObavCKYsBWYn_49j6spgZm6t8VLEPy4b8f8B6VX_cc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+facilitated+business+intelligence+%28Part+I%29&rft.jtitle=Industrial+management+%2B+data+systems&rft.au=Khan%2C+Waqar+Ahmed&rft.au=Chung%2C+S.H.&rft.au=Awan%2C+Muhammad+Usman&rft.au=Wen%2C+Xin&rft.date=2020-01-13&rft.issn=0263-5577&rft.volume=120&rft.issue=1&rft.spage=164&rft.epage=195&rft_id=info:doi/10.1108%2FIMDS-07-2019-0361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_IMDS_07_2019_0361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5577&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5577&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5577&client=summon