Machine learning facilitated business intelligence (Part I) Neural networks learning algorithms and applications
PurposeThe purpose of this paper is to conduct a comprehensive review of the noteworthy contributions made in the area of the Feedforward neural network (FNN) to improve its generalization performance and convergence rate (learning speed); to identify new research directions that will help researche...
Saved in:
| Published in | Industrial management + data systems Vol. 120; no. 1; pp. 164 - 195 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Wembley
Emerald Group Publishing Limited
13.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-5577 1758-5783 |
| DOI | 10.1108/IMDS-07-2019-0361 |
Cover
| Abstract | PurposeThe purpose of this paper is to conduct a comprehensive review of the noteworthy contributions made in the area of the Feedforward neural network (FNN) to improve its generalization performance and convergence rate (learning speed); to identify new research directions that will help researchers to design new, simple and efficient algorithms and users to implement optimal designed FNNs for solving complex problems; and to explore the wide applications of the reviewed FNN algorithms in solving real-world management, engineering and health sciences problems and demonstrate the advantages of these algorithms in enhancing decision making for practical operations.Design/methodology/approachThe FNN has gained much popularity during the last three decades. Therefore, the authors have focused on algorithms proposed during the last three decades. The selected databases were searched with popular keywords: “generalization performance,” “learning rate,” “overfitting” and “fixed and cascade architecture.” Combinations of the keywords were also used to get more relevant results. Duplicated articles in the databases, non-English language, and matched keywords but out of scope, were discarded.FindingsThe authors studied a total of 80 articles and classified them into six categories according to the nature of the algorithms proposed in these articles which aimed at improving the generalization performance and convergence rate of FNNs. To review and discuss all the six categories would result in the paper being too long. Therefore, the authors further divided the six categories into two parts (i.e. Part I and Part II). The current paper, Part I, investigates two categories that focus on learning algorithms (i.e. gradient learning algorithms for network training and gradient-free learning algorithms). Furthermore, the remaining four categories which mainly explore optimization techniques are reviewed in Part II (i.e. optimization algorithms for learning rate, bias and variance (underfitting and overfitting) minimization algorithms, constructive topology neural networks and metaheuristic search algorithms). For the sake of simplicity, the paper entitled “Machine learning facilitated business intelligence (Part II): Neural networks optimization techniques and applications” is referred to as Part II. This results in a division of 80 articles into 38 and 42 for Part I and Part II, respectively. After discussing the FNN algorithms with their technical merits and limitations, along with real-world management, engineering and health sciences applications for each individual category, the authors suggest seven (three in Part I and other four in Part II) new future directions which can contribute to strengthening the literature.Research limitations/implicationsThe FNN contributions are numerous and cannot be covered in a single study. The authors remain focused on learning algorithms and optimization techniques, along with their application to real-world problems, proposing to improve the generalization performance and convergence rate of FNNs with the characteristics of computing optimal hyperparameters, connection weights, hidden units, selecting an appropriate network architecture rather than trial and error approaches and avoiding overfitting.Practical implicationsThis study will help researchers and practitioners to deeply understand the existing algorithms merits of FNNs with limitations, research gaps, application areas and changes in research studies in the last three decades. Moreover, the user, after having in-depth knowledge by understanding the applications of algorithms in the real world, may apply appropriate FNN algorithms to get optimal results in the shortest possible time, with less effort, for their specific application area problems.Originality/valueThe existing literature surveys are limited in scope due to comparative study of the algorithms, studying algorithms application areas and focusing on specific techniques. This implies that the existing surveys are focused on studying some specific algorithms or their applications (e.g. pruning algorithms, constructive algorithms, etc.). In this work, the authors propose a comprehensive review of different categories, along with their real-world applications, that may affect FNN generalization performance and convergence rate. This makes the classification scheme novel and significant. |
|---|---|
| AbstractList | PurposeThe purpose of this paper is to conduct a comprehensive review of the noteworthy contributions made in the area of the Feedforward neural network (FNN) to improve its generalization performance and convergence rate (learning speed); to identify new research directions that will help researchers to design new, simple and efficient algorithms and users to implement optimal designed FNNs for solving complex problems; and to explore the wide applications of the reviewed FNN algorithms in solving real-world management, engineering and health sciences problems and demonstrate the advantages of these algorithms in enhancing decision making for practical operations.Design/methodology/approachThe FNN has gained much popularity during the last three decades. Therefore, the authors have focused on algorithms proposed during the last three decades. The selected databases were searched with popular keywords: “generalization performance,” “learning rate,” “overfitting” and “fixed and cascade architecture.” Combinations of the keywords were also used to get more relevant results. Duplicated articles in the databases, non-English language, and matched keywords but out of scope, were discarded.FindingsThe authors studied a total of 80 articles and classified them into six categories according to the nature of the algorithms proposed in these articles which aimed at improving the generalization performance and convergence rate of FNNs. To review and discuss all the six categories would result in the paper being too long. Therefore, the authors further divided the six categories into two parts (i.e. Part I and Part II). The current paper, Part I, investigates two categories that focus on learning algorithms (i.e. gradient learning algorithms for network training and gradient-free learning algorithms). Furthermore, the remaining four categories which mainly explore optimization techniques are reviewed in Part II (i.e. optimization algorithms for learning rate, bias and variance (underfitting and overfitting) minimization algorithms, constructive topology neural networks and metaheuristic search algorithms). For the sake of simplicity, the paper entitled “Machine learning facilitated business intelligence (Part II): Neural networks optimization techniques and applications” is referred to as Part II. This results in a division of 80 articles into 38 and 42 for Part I and Part II, respectively. After discussing the FNN algorithms with their technical merits and limitations, along with real-world management, engineering and health sciences applications for each individual category, the authors suggest seven (three in Part I and other four in Part II) new future directions which can contribute to strengthening the literature.Research limitations/implicationsThe FNN contributions are numerous and cannot be covered in a single study. The authors remain focused on learning algorithms and optimization techniques, along with their application to real-world problems, proposing to improve the generalization performance and convergence rate of FNNs with the characteristics of computing optimal hyperparameters, connection weights, hidden units, selecting an appropriate network architecture rather than trial and error approaches and avoiding overfitting.Practical implicationsThis study will help researchers and practitioners to deeply understand the existing algorithms merits of FNNs with limitations, research gaps, application areas and changes in research studies in the last three decades. Moreover, the user, after having in-depth knowledge by understanding the applications of algorithms in the real world, may apply appropriate FNN algorithms to get optimal results in the shortest possible time, with less effort, for their specific application area problems.Originality/valueThe existing literature surveys are limited in scope due to comparative study of the algorithms, studying algorithms application areas and focusing on specific techniques. This implies that the existing surveys are focused on studying some specific algorithms or their applications (e.g. pruning algorithms, constructive algorithms, etc.). In this work, the authors propose a comprehensive review of different categories, along with their real-world applications, that may affect FNN generalization performance and convergence rate. This makes the classification scheme novel and significant. |
| Author | Wen, Xin Khan, Waqar Ahmed Awan, Muhammad Usman Chung, S.H. |
| Author_xml | – sequence: 1 givenname: Waqar Ahmed surname: Khan fullname: Khan, Waqar Ahmed – sequence: 2 givenname: S.H. surname: Chung fullname: Chung, S.H. – sequence: 3 givenname: Muhammad Usman surname: Awan fullname: Awan, Muhammad Usman – sequence: 4 givenname: Xin orcidid: 0000-0003-0279-6869 surname: Wen fullname: Wen, Xin |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8LXvQQnSTNJsGTtH4UWhTUc8hmszVlzdYkPfjv3aWePHgamHmfGeaZoFHogkPonMA1ISBvluvFKwaBKRCFgZXkCI2J4BJzIdkIjYGWDHMuxAmapLQF6Bu0HKPbtbEfPriidSYGHzZFY6xvfTbZ1UW1T_0spcKH7NrWb1ywrrh8MTEXy6tTdNyYNrmz3zpF7w_3b_MnvHp-XM7vVthSwTImwLklleHgZkzSWpaKEaKUc42yohKlI4bbGhiXgs8k9AGoyrqSpqKykoJN0cVh7y52X3uXst52-xj6k5pyxtSMKK76lDikbOxSiq7RdvjCdyFH41tNQA-m9GBKg9CDKT2Y6knyh9xF_2ni9z_MD5UOa8Q |
| CitedBy_id | crossref_primary_10_3390_su142013127 crossref_primary_10_1007_s10479_023_05248_y crossref_primary_10_1016_j_ijcce_2023_09_001 crossref_primary_10_1002_zamm_202300728 crossref_primary_10_1016_j_tre_2022_102805 crossref_primary_10_1016_j_tre_2021_102304 crossref_primary_10_3390_jmse12081334 crossref_primary_10_1016_j_apenergy_2024_125096 crossref_primary_10_1016_j_tre_2020_102189 crossref_primary_10_1016_j_entcom_2024_100703 crossref_primary_10_1016_j_asoc_2019_106048 crossref_primary_10_3390_app15063166 crossref_primary_10_1080_00207543_2020_1764656 crossref_primary_10_1007_s40430_024_05006_6 crossref_primary_10_1016_j_jlp_2021_104608 crossref_primary_10_2139_ssrn_4835661 crossref_primary_10_3390_wevj16010023 crossref_primary_10_1007_s10479_023_05194_9 crossref_primary_10_3390_math12182882 crossref_primary_10_1016_j_isci_2025_111974 crossref_primary_10_4018_IJOCI_286174 crossref_primary_10_1016_j_engappai_2022_105242 crossref_primary_10_1080_10407790_2024_2338912 crossref_primary_10_1016_j_engappai_2021_104495 crossref_primary_10_1016_j_trc_2021_103225 crossref_primary_10_1038_s41598_024_76569_6 crossref_primary_10_48084_etasr_7871 crossref_primary_10_1016_j_tre_2021_102455 crossref_primary_10_30748_zhups_2021_68_15 crossref_primary_10_1016_j_tre_2021_102273 crossref_primary_10_1016_j_jairtraman_2022_102270 crossref_primary_10_1007_s10479_023_05312_7 crossref_primary_10_1016_j_tre_2020_102132 crossref_primary_10_3390_app15010002 crossref_primary_10_1002_mren_202200066 crossref_primary_10_1007_s10845_023_02303_0 crossref_primary_10_1007_s12065_022_00813_z crossref_primary_10_1016_j_jjimei_2021_100047 |
| Cites_doi | 10.1109/TPAMI.2015.2439281 10.1007/BF00996189 10.1108/IMDS-08-2014-0231 10.1109/TNN.2007.894058 10.1109/TII.2012.2187914 10.1038/nature14539 10.1108/IMDS-04-2018-0164 10.1109/TNN.2009.2024147 10.1016/S0895-4356(96)00002-9 10.1016/j.ipm.2019.05.003 10.1109/5326.897072 10.1109/TIP.2017.2765830 10.1090/S0025-5718-1970-0274029-X 10.1109/72.97934 10.1016/j.neunet.2017.06.003 10.1007/s00521-015-1874-3 10.1109/TSMCB.2011.2168604 10.1016/j.neunet.2012.09.020 10.1108/IMDS-08-2013-0329 10.1108/IMDS-12-2017-0582 10.1109/TNNLS.2013.2293637 10.1109/TPAMI.2017.2699184 10.1109/IJCNN.1989.118638 10.1504/IJBIDM.2005.007318 10.1007/s00521-014-1567-3 10.1016/j.neunet.2014.10.001 10.1108/IMDS-11-2015-0463 10.1108/02635570910957669 10.1109/TIE.2008.2003319 10.1016/j.knosys.2010.05.010 10.1109/TNN.2006.880583 10.1109/72.363426 10.1016/j.patcog.2017.09.040 10.1016/j.neucom.2017.08.040 10.1016/j.asoc.2015.09.040 10.1109/ACCESS.2018.2883957 10.1111/risa.12746 10.1016/S0893-6080(03)00138-2 10.1108/IMDS-07-2017-0313 10.1109/IJCNN.1990.137819 10.1109/TCYB.2018.2830338 10.1109/TNN.2006.875977 10.1109/TNNLS.2012.2202289 10.1109/TNNLS.2015.2424995 10.1038/323533a0 10.1016/j.ins.2015.09.002 10.1109/72.329697 10.1109/TNN.2004.836233 10.1016/0893-6080(89)90020-8 10.1016/j.eswa.2012.01.202 10.1108/IMDS-07-2017-0317 10.1016/j.techfore.2017.09.003 10.1016/0893-6080(90)90049-Q 10.1016/j.neucom.2005.12.126 10.1108/IMDS-12-2017-0579 10.1016/j.neucom.2012.08.010 10.1109/TNN.2010.2073482 10.1137/1037125 10.1016/j.patcog.2016.01.012 10.1016/j.neucom.2016.09.092 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited 2019 |
| Copyright_xml | – notice: Emerald Publishing Limited 2019 |
| DBID | AAYXX CITATION 7SC 7WY 7WZ 7XB 8AO 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO F28 FR3 F~G GNUQQ GUQSH HCIFZ JQ2 K6~ K7- L.- L.0 L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1108/IMDS-07-2019-0361 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Business Engineering |
| EISSN | 1758-5783 |
| EndPage | 195 |
| ExternalDocumentID | 10_1108_IMDS_07_2019_0361 |
| GroupedDBID | -~X .DC .WU 0R~ 1XV 29I 3FY 4.4 5GY 5VS 70U 7WY 8AO 8FE 8FG 8R4 8R5 9E0 9F- AAGBP AAKOT AAMCF AAPSD AAUDR AAVEV AAXBI AAYXX ABCQX ABEAN ABIJV ABJNI ABPPZ ABSDC ABXQL ABYQI ACBMB ACGFS ACIWK ACTSA ADFRT ADOMW ADQHX ADWNT AEBZA AEDOK AEMMR AENEX AETHF AFKRA AFNZV AHMHQ AIAFM AILOG AJEBP AJFKA ALMA_UNASSIGNED_HOLDINGS AODMV APPLU ARAPS ASJQZ ATGMP AZQEC BENPR BEZIV BGLVJ BPHCQ BTXLY CCPQU CITATION CS3 DU5 DWQXO EBS ECCUG EOXHF FNNZZ GEA GEB GEC GEI GMM GMN GMX GNUQQ GQ. GROUPED_ABI_INFORM_RESEARCH GUQSH H13 HCIFZ HZ~ IAO IEA IJT IOF IPNFZ ITC J1Y JI- JL0 K6V K6~ K7- KBGRL L7B LXL LXN M0C M2O M42 MS~ N95 O9- P2P P62 PHGZM PHGZT PQBIZ PQGLB PQQKQ PROAC PUEGO Q2X Q3A RIG SCAQC SDURG TDQ TEM TET TGG TMD TMF TMK TMT TN5 Z11 Z12 Z21 ZYZAG 7SC 7XB 8FD AFNTC AUCOK F28 FR3 JQ2 L.- L.0 L7M L~C L~D M0N MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c273t-1055c1ba50e4382d86931199eef9c7b76e1a5cd035875480d860b6db8ab28b873 |
| IEDL.DBID | ZYZAG |
| ISSN | 0263-5577 |
| IngestDate | Sat Aug 23 14:54:45 EDT 2025 Wed Oct 01 05:42:08 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c273t-1055c1ba50e4382d86931199eef9c7b76e1a5cd035875480d860b6db8ab28b873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0279-6869 |
| PQID | 2533941959 |
| PQPubID | 47599 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_2533941959 crossref_citationtrail_10_1108_IMDS_07_2019_0361 crossref_primary_10_1108_IMDS_07_2019_0361 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-13 |
| PublicationDateYYYYMMDD | 2020-01-13 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Wembley |
| PublicationPlace_xml | – name: Wembley |
| PublicationTitle | Industrial management + data systems |
| PublicationYear | 2020 |
| Publisher | Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Group Publishing Limited |
| References | (key2020011009265491200_ref006) 2018; 275 (key2020011009265491200_ref035) 2016; 116 (key2020011009265491200_ref013) 1990 (key2020011009265491200_ref062) 2008; 55 key2020011009265491200_ref044 (key2020011009265491200_ref014) 2009; 20 key2020011009265491200_ref002 (key2020011009265491200_ref037) 2015; 521 (key2020011009265491200_ref010) 2019 (key2020011009265491200_ref039) 2018; 118 (key2020011009265491200_ref069) 1995; 37 (key2020011009265491200_ref041) 2019; 7 (key2020011009265491200_ref020) 2012 (key2020011009265491200_ref022) 2007; 70 (key2020011009265491200_ref051) 1990; 3 (key2020011009265491200_ref028) 2012; 8 (key2020011009265491200_ref061) 2010; 21 (key2020011009265491200_ref021) 1989; 2 (key2020011009265491200_ref047) 1970; 24 (key2020011009265491200_ref043) 2019; 119 (key2020011009265491200_ref072) 2000; 30 (key2020011009265491200_ref033) 2019; 119 (key2020011009265491200_ref004) 2019; 119 (key2020011009265491200_ref067) 2018; 27 (key2020011009265491200_ref036) 2014; 114 (key2020011009265491200_ref068) 2016; 27 (key2020011009265491200_ref048) 2017; 34 (key2020011009265491200_ref012) 1988 (key2020011009265491200_ref030) 2011; 1 (key2020011009265491200_ref017) 2017; 228 (key2020011009265491200_ref027) 2012; 42 (key2020011009265491200_ref058) 2005; 1 (key2020011009265491200_ref073) 2013; 101 key2020011009265491200_ref071 (key2020011009265491200_ref025) 2006; 70 (key2020011009265491200_ref060) 2013; 37 (key2020011009265491200_ref056) 1996; 49 (key2020011009265491200_ref046) 1995; 6 (key2020011009265491200_ref074) 2018; 48 (key2020011009265491200_ref034) 1995; 6 (key2020011009265491200_ref052) 1991; 2 (key2020011009265491200_ref055) 2016; 38 (key2020011009265491200_ref024) 2006; 17 (key2020011009265491200_ref042) 2012; 39 (key2020011009265491200_ref063) 2003; 16 (key2020011009265491200_ref059) 2017; 93 (key2020011009265491200_ref016) 1994; 5 (key2020011009265491200_ref008) 2018; 66 (key2020011009265491200_ref045) 1986; 323 (key2020011009265491200_ref009) 2017; 37 (key2020011009265491200_ref070) 2009; 109 (key2020011009265491200_ref038) 2013; 141 (key2020011009265491200_ref054) 2015; 115 (key2020011009265491200_ref029) 2016; 59 (key2020011009265491200_ref053) 2016; 27 (key2020011009265491200_ref003) 2014; 25 key2020011009265491200_ref019 (key2020011009265491200_ref015) 2005; 16 (key2020011009265491200_ref001) 2014 (key2020011009265491200_ref032) 2013; 28 (key2020011009265491200_ref023) 2008; 71 (key2020011009265491200_ref040) 2006; 17 (key2020011009265491200_ref064) 2018; 118 (key2020011009265491200_ref066) 2007; 18 (key2020011009265491200_ref007) 2018; 40 (key2020011009265491200_ref057) 2016; 27 (key2020011009265491200_ref011) 2016; 38 (key2020011009265491200_ref026) 2015; 61 (key2020011009265491200_ref049) 2019; 144 (key2020011009265491200_ref005) 2016; 328 (key2020011009265491200_ref031) 2019; 56 (key2020011009265491200_ref050) 2019; 57 (key2020011009265491200_ref018) 2010; 23 (key2020011009265491200_ref065) 2012; 23 |
| References_xml | – volume: 38 start-page: 295 issue: 2 year: 2016 ident: key2020011009265491200_ref011 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2439281 – volume: 34 issue: 1 year: 2017 ident: key2020011009265491200_ref048 article-title: Forecast information sharing for managing supply chains in the big data era: recent development and future research publication-title: Asia-Pacific Journal of Operational Research – volume: 6 start-page: 251 issue: 4 year: 1995 ident: key2020011009265491200_ref034 article-title: An empirical comparison of neural network and logistic regression models publication-title: Marketing Letters doi: 10.1007/BF00996189 – volume: 70 start-page: 3056 issue: 16–18 year: 2007 ident: key2020011009265491200_ref022 article-title: Convex incremental extreme learning machine publication-title: Neurocomputing – volume: 115 start-page: 311 issue: 2 year: 2015 ident: key2020011009265491200_ref054 article-title: The effects of convenience and speed in m-payment publication-title: Industrial Management & Data Systems doi: 10.1108/IMDS-08-2014-0231 – volume: 18 start-page: 1294 issue: 5 year: 2007 ident: key2020011009265491200_ref066 article-title: Localized generalization error model and its application to architecture selection for radial basis function neural network publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2007.894058 – volume: 8 start-page: 228 issue: 2 year: 2012 ident: key2020011009265491200_ref028 article-title: Selection of proper neural network sizes and architectures – a comparative study publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2012.2187914 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: key2020011009265491200_ref037 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 119 start-page: 698 issue: 4 year: 2019 ident: key2020011009265491200_ref004 article-title: Modelling wholesale distribution operations: an artificial intelligence framework publication-title: Industrial Management & Data Systems doi: 10.1108/IMDS-04-2018-0164 – volume: 71 start-page: 3460 issue: 16–18 year: 2008 ident: key2020011009265491200_ref023 article-title: Enhanced random search based incremental extreme learning machine publication-title: Neurocomputing – volume: 57 start-page: 4898 issue: 15–16 year: 2019 ident: key2020011009265491200_ref050 article-title: A review on supply chain contracting with information considerations: information updating and information asymmetry publication-title: International Journal of Production Research – year: 2012 ident: key2020011009265491200_ref020 article-title: Lecture 6a – overview of mini-batch gradient descent – volume: 20 start-page: 1352 issue: 8 year: 2009 ident: key2020011009265491200_ref014 article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2024147 – volume: 49 start-page: 1225 issue: 11 year: 1996 ident: key2020011009265491200_ref056 article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes publication-title: Journal of Clinical Epidemiology doi: 10.1016/S0895-4356(96)00002-9 – start-page: 524 year: 1990 ident: key2020011009265491200_ref013 article-title: The cascade-correlation learning architecture publication-title: Advances in Neural Information Processing Systems – volume: 56 start-page: 1618 issue: 5 year: 2019 ident: key2020011009265491200_ref031 article-title: The impact of deep learning on document classification using semantically rich representations publication-title: Information Processing & Management doi: 10.1016/j.ipm.2019.05.003 – volume: 30 start-page: 451 issue: 4 year: 2000 ident: key2020011009265491200_ref072 article-title: Neural networks for classification: a survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/5326.897072 – volume: 27 start-page: 964 issue: 2 year: 2018 ident: key2020011009265491200_ref067 article-title: Multi-task convolutional neural network for pose-invariant face recognition publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2017.2765830 – volume: 24 start-page: 647 issue: 111 year: 1970 ident: key2020011009265491200_ref047 article-title: Conditioning of Quasi-Newton methods for function minimization publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1970-0274029-X – volume: 2 start-page: 568 issue: 6 year: 1991 ident: key2020011009265491200_ref052 article-title: A general regression neural network publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.97934 – volume: 93 start-page: 219 year: 2017 ident: key2020011009265491200_ref059 article-title: Accelerating deep neural network training with inconsistent stochastic gradient descent publication-title: Neural Networks doi: 10.1016/j.neunet.2017.06.003 – volume: 27 start-page: 291 issue: 2 year: 2016 ident: key2020011009265491200_ref057 article-title: Self-adaptive extreme learning machine publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1874-3 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: key2020011009265491200_ref027 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Part B, Cybernetics doi: 10.1109/TSMCB.2011.2168604 – volume: 37 start-page: 182 year: 2013 ident: key2020011009265491200_ref060 article-title: The no-prop algorithm: a new learning algorithm for multilayer neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2012.09.020 – volume: 1 start-page: 111 issue: 4 year: 2011 ident: key2020011009265491200_ref030 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks publication-title: International Journal of Artificial Intelligence and Expert Systems – volume: 114 start-page: 711 issue: 5 year: 2014 ident: key2020011009265491200_ref036 article-title: Customer relationship mining system for effective strategies formulation publication-title: Industrial Management & Data Systems doi: 10.1108/IMDS-08-2013-0329 – volume: 118 start-page: 1804 issue: 9 year: 2018 ident: key2020011009265491200_ref039 article-title: Multi-class Twitter sentiment classification with emojis publication-title: Industrial Management & Data Systems doi: 10.1108/IMDS-12-2017-0582 – volume: 25 start-page: 1553 issue: 8 year: 2014 ident: key2020011009265491200_ref003 article-title: On the complexity of neural network classifiers: a comparison between shallow and deep architectures publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2293637 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: key2020011009265491200_ref007 article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2699184 – ident: key2020011009265491200_ref019 doi: 10.1109/IJCNN.1989.118638 – volume: 28 start-page: 31 issue: 6 year: 2013 ident: key2020011009265491200_ref032 article-title: Representational learning with extreme learning machine for big data publication-title: IEEE Intelligent System – volume: 1 start-page: 54 issue: 1 year: 2005 ident: key2020011009265491200_ref058 article-title: Support vector machines based on K-means clustering for real-time business intelligence systems publication-title: International Journal of Business Intelligence and Data Mining doi: 10.1504/IJBIDM.2005.007318 – volume: 27 start-page: 111 issue: 1 year: 2016 ident: key2020011009265491200_ref068 article-title: Orthogonal incremental extreme learning machine for regression and multiclass classification publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1567-3 – volume: 61 start-page: 32 year: 2015 ident: key2020011009265491200_ref026 article-title: Trends in extreme learning machines: a review publication-title: Neural Networks doi: 10.1016/j.neunet.2014.10.001 – volume: 116 start-page: 1242 issue: 6 year: 2016 ident: key2020011009265491200_ref035 article-title: Thailand tourism forecasting based on a hybrid of discrete wavelet decomposition and NARX neural network publication-title: Industrial Management and Data Systems doi: 10.1108/IMDS-11-2015-0463 – volume: 109 start-page: 708 issue: 5 year: 2009 ident: key2020011009265491200_ref070 article-title: Text classification: neural networks vs support vector machines publication-title: Industrial Management & Data Systems doi: 10.1108/02635570910957669 – volume: 55 start-page: 3784 issue: 10 year: 2008 ident: key2020011009265491200_ref062 article-title: Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2008.2003319 – volume: 23 start-page: 856 issue: 8 year: 2010 ident: key2020011009265491200_ref018 article-title: Understanding consumer heterogeneity: a business intelligence application of neural networks publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2010.05.010 – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: key2020011009265491200_ref040 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.880583 – start-page: 1 year: 2019 ident: key2020011009265491200_ref010 article-title: Reliability analysis of chatter stability for milling process system with uncertainties based on neural network and fourth moment method publication-title: International Journal of Production Research – volume: 6 start-page: 273 issue: 1 year: 1995 ident: key2020011009265491200_ref046 article-title: Use of a Quasi-Newton method in a feedforward neural network construction algorithm publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.363426 – ident: key2020011009265491200_ref002 doi: 10.1016/j.patcog.2017.09.040 – volume: 275 start-page: 278 year: 2018 ident: key2020011009265491200_ref006 article-title: A review on neural networks with random weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.040 – volume: 38 start-page: 788 year: 2016 ident: key2020011009265491200_ref055 article-title: Artificial neural networks in business: two decades of research publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.09.040 – volume: 7 start-page: 5577 year: 2019 ident: key2020011009265491200_ref041 article-title: Neural network based brain tumor detection using wireless infrared imaging sensor publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2883957 – volume-title: An Empirical Study of Learning Speed in Back-Propagation Networks year: 1988 ident: key2020011009265491200_ref012 – volume: 37 start-page: 1443 issue: 8 year: 2017 ident: key2020011009265491200_ref009 article-title: Cascading delay risk of airline workforce deployments with crew pairing and schedule optimization publication-title: Risk Analysis doi: 10.1111/risa.12746 – volume: 16 start-page: 1429 issue: 10 year: 2003 ident: key2020011009265491200_ref063 article-title: The general inefficiency of batch training for gradient descent learning publication-title: Neural Networks doi: 10.1016/S0893-6080(03)00138-2 – volume: 118 start-page: 850 issue: 4 year: 2018 ident: key2020011009265491200_ref064 article-title: Examining the key determinants towards online pro-brand and anti-brand community citizenship behaviours: a two-stage approach publication-title: Industrial Management & Data Systems doi: 10.1108/IMDS-07-2017-0313 – ident: key2020011009265491200_ref044 doi: 10.1109/IJCNN.1990.137819 – volume: 48 start-page: 3403 issue: 12 year: 2018 ident: key2020011009265491200_ref074 article-title: Fault diagnosis of Tennessee-Eastman process using orthogonal incremental extreme learning machine based on driving amount publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2830338 – volume: 66 start-page: 730 issue: 4 year: 2018 ident: key2020011009265491200_ref008 article-title: Sustainable fashion supply chain management: a system of systems analysis publication-title: IEEE Transactions on Engineering Management – volume: 17 start-page: 879 issue: 4 year: 2006 ident: key2020011009265491200_ref024 article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.875977 – volume: 23 start-page: 1498 issue: 9 year: 2012 ident: key2020011009265491200_ref065 article-title: Bidirectional extreme learning machine for regression problem and its learning effectiveness publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2012.2202289 – volume: 141 start-page: 135 issue: 1–2 year: 2013 ident: key2020011009265491200_ref038 article-title: Nonsmooth optimization via Quasi-Newton methods publication-title: Mathematical Programming – volume: 27 start-page: 809 issue: 4 year: 2016 ident: key2020011009265491200_ref053 article-title: Extreme learning machine for multilayer perceptron publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2424995 – start-page: 1533 year: 2014 ident: key2020011009265491200_ref001 article-title: Convolutional neural networks for speech recognition – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: key2020011009265491200_ref045 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 328 start-page: 546 year: 2016 ident: key2020011009265491200_ref005 article-title: An iterative learning algorithm for feedforward neural networks with random weights publication-title: Information Sciences doi: 10.1016/j.ins.2015.09.002 – volume: 5 start-page: 989 issue: 6 year: 1994 ident: key2020011009265491200_ref016 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.329697 – volume: 16 start-page: 24 issue: 1 year: 2005 ident: key2020011009265491200_ref015 article-title: Smooth function approximation using neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2004.836233 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: key2020011009265491200_ref021 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – volume: 39 start-page: 10402 issue: 12 year: 2012 ident: key2020011009265491200_ref042 article-title: Machine learning approach for finding business partners and building reciprocal relationships publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.202 – ident: key2020011009265491200_ref071 – volume: 119 start-page: 69 issue: 1 year: 2019 ident: key2020011009265491200_ref033 article-title: Business environmental analysis for textual data using data mining and sentence-level classification publication-title: Industrial Management & Data Systems doi: 10.1108/IMDS-07-2017-0317 – volume: 144 start-page: 412 year: 2019 ident: key2020011009265491200_ref049 article-title: Selling green first or not? A Bayesian analysis with service levels and environmental impact considerations in the big data era publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2017.09.003 – volume: 3 start-page: 109 issue: 1 year: 1990 ident: key2020011009265491200_ref051 article-title: Probabilistic neural networks publication-title: Neural Networks doi: 10.1016/0893-6080(90)90049-Q – volume: 70 start-page: 489 issue: 1-3 year: 2006 ident: key2020011009265491200_ref025 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 119 start-page: 189 issue: 1 year: 2019 ident: key2020011009265491200_ref043 article-title: A comparative data analytic approach to construct a risk trade-off for cardiac patients’ re-admissions publication-title: Industrial Management & Data Systems doi: 10.1108/IMDS-12-2017-0579 – volume: 101 start-page: 229 year: 2013 ident: key2020011009265491200_ref073 article-title: Weighted extreme learning machine for imbalance learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.010 – volume: 21 start-page: 1793 issue: 11 year: 2010 ident: key2020011009265491200_ref061 article-title: Neural network learning without backpropagation publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2073482 – volume: 37 start-page: 531 issue: 4 year: 1995 ident: key2020011009265491200_ref069 article-title: Historical development of the Newton–Raphson method publication-title: SIAM Review doi: 10.1137/1037125 – volume: 59 start-page: 199 year: 2016 ident: key2020011009265491200_ref029 article-title: Human action recognition using genetic algorithms and convolutional neural networks publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.01.012 – volume: 228 start-page: 133 year: 2017 ident: key2020011009265491200_ref017 article-title: An improved incremental constructive single-hidden-layer feedforward networks for extreme learning machine based on particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.092 |
| SSID | ssj0002626 |
| Score | 2.4669123 |
| Snippet | PurposeThe purpose of this paper is to conduct a comprehensive review of the noteworthy contributions made in the area of the Feedforward neural network (FNN)... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 164 |
| SubjectTerms | Algorithms Artificial neural networks Business intelligence Business machines Categories Comparative studies Computer architecture Convergence Decision making Deep learning Engineering Health sciences Heuristic methods Information management Intelligence (information) Literature reviews Machine learning Neural networks Non-English languages Optimization Optimization techniques Researchers Search algorithms Topology |
| Subtitle | Neural networks learning algorithms and applications |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFH7oCKIHl1FxJwcPKgSbps2CiLiiwgziAt5Ktoog4zb-f_M6qcvFUw9NL19f3pL38n0AW7qUXGinqMtrQYsYoKh1nNFSqbrg3NRM4-XkXl9c3BdXD-XDGPTbuzA4Vtn6xMZR-xeHZ-R7ecxLdIFUKIevbxRVo7C72kpomCSt4A8airFxmMiRGasDE8dn_eubb9-ci0aALT45LUspU58TtXAue6e3eGgXI6Km0a-zv5Hqr6Nuos_5HMyktJEcjf7zPIyFQRcm26n1Lsy26gwkbdYuTP-iGlyA_V4zNRlIkol4JLVxI4bu4EmSovwgT78YOsn2dbQrcrmzCPfnZ3cnFzQJJ0TEJR9SFL10zJoyC9jn80pozpjWIdTaSStFYKZ0PuNlrFYKlcUFmRXeKmNzZZXkS9AZvAzCMhBdcy9MYZCqq9DGWVvXSjvhQ26l9vkKZC1IlUus4ihu8Vw11UWmKsS1ymSFuFaI6wrsfn_yOqLU-G_xeot8lXbXR_VjC6v_v16DqRzr44xRxtehM3z_DBsxiRjazWQZX6kRwg8 priority: 102 providerName: ProQuest |
| Title | Machine learning facilitated business intelligence (Part I) |
| URI | https://www.proquest.com/docview/2533941959 |
| Volume | 120 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVMCB databaseName: Emerald Management eJournals Collection customDbUrl: eissn: 1758-5783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: ZYZAG dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.emerald.com/insight providerName: Emerald – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1758-5783 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: BENPR dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1758-5783 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: 8FG dateStart: 19920215 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH6oA-LFXRyXIQcPKsRpmjYLntzGBUbFBdRLadJURR3FqRd_vUmbDioiCJ56SUOb9_K2vHwfwIqMOWVSC6zDnOHIOiisNCU4FiKPKE1zIt3l5O4xO7iMjq7iqyE4qe_ClG2VVTmmtNP3vb5LUtuucdta4QHggGOvOezunrsym_VhEltLTNquZN2-K54eh6FhfRm1O7Vxc32ztT8wziErGdjsk-I45twfdP443VdX9dVSl-6nMwEv9YdXXScPG2-F2tDv3zAd__HPJmHch6poq9KtKRgyvWkYrTvlp2GiZoRA3kDMwGa37M00yJNR3KI81RUOuMmQJ7zso_tPOKBo9dRqLzpcm4XLzt7FzgH29AxWrpwW2FFraqLSODDuNDETTFJCpDQml5orzgxJY50FNLY5USQCOyBQLFMiVaFQgtM5GOk998w8IJnTjKVR6gDBIplqpfJcSM0yEyous7AJQS2JRHvsckeh8ZiUOUwgErdiScATt2KJW7EmrA9eeamAO34bvFSLN_F7uJ-ENhKWkQPfWfjLXIswFrqcPCCY0CUYKV7fzLINXArVgmHR2W9BY3vv-PSs5VXzA-8y6Gs |
| linkProvider | Emerald |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJD4OPlaNvLQPmKhJx-nH9COEEBTILrAbopBwa_s1xsQs6C4h_Dl-m92zPQgXbpzmMD2TSXVNfVVd3d8HsKZryYT2CnvaCMwTQGHnGcG1Ug1nzDZE58PJw5HoH_O9k_pkDq66szB5W2UXE9tAHU59XiP_TFNeonmmQtk8-4OzalTurnYSGrZIK4SNlmKsHOzYj5cXqYSbbAy203y_p3R35-hrHxeVgfR5kk1xVoj0xNm6irkpFpTQjBCtY2y0l06KSGztQ8XqlNpzVaUBlRPBKeuockqy9N4HsMAZ16n4W_iyMzr8do0FVLSCb-nKcF1LWfqqWXtnMNz-nhcJEwJrnHCE3EbG28DQot3uc3ha0lS0NfOrFzAXxz142O2S78GzTg0CleDQgyc3qA1fwvqw3aUZUZGl-Ika62eM4DGgIn05Qb9uMIKiD4fJj9Hg4ys4vhcTvob58ek4vgGkGxaE5TZTg3FtvXNNo7QXIVIndaCLUHVGMr6wmGcxjd-mrWYqZbJdTSVNtqvJdl2ET9ePnM0oPO4avNJZ3pS_eWL--97S3bffwaP-0fDAHAxG-8vwmObavCKYsBWYn_49j6spgZm6t8VLEPy4b8f8B6VX_cc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+facilitated+business+intelligence+%28Part+I%29&rft.jtitle=Industrial+management+%2B+data+systems&rft.au=Khan%2C+Waqar+Ahmed&rft.au=Chung%2C+S.H.&rft.au=Awan%2C+Muhammad+Usman&rft.au=Wen%2C+Xin&rft.date=2020-01-13&rft.issn=0263-5577&rft.volume=120&rft.issue=1&rft.spage=164&rft.epage=195&rft_id=info:doi/10.1108%2FIMDS-07-2019-0361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_IMDS_07_2019_0361 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5577&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5577&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5577&client=summon |