Validation of a New Clinical-Genetic Recursive Partitioning Analysis of High-Grade Glioma Using RTOG 0525, 0513 and 0131

Despite advances in our understanding/treatment of patients with high grade glioma, the current model for prognostication is based on 40-year-old data. We previously generated a new model incorporating clinical and genetic factors utilizing data from patients treated from 2004-2017. Here we sought t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 111; no. 3; p. e601
Main Authors Sutera, P., Flickinger Sr, J.C., Wang, H., Heron, D.E.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2021
Online AccessGet full text
ISSN0360-3016
1879-355X
DOI10.1016/j.ijrobp.2021.07.1605

Cover

Abstract Despite advances in our understanding/treatment of patients with high grade glioma, the current model for prognostication is based on 40-year-old data. We previously generated a new model incorporating clinical and genetic factors utilizing data from patients treated from 2004-2017. Here we sought to validate our prognostic model within data from prospective trials and compare its accuracy against the original RTOG-RPA. Data from RTOG 0525, RTOG 0513 and RTOG BR-0131 was requested through an NRG Ancillary Project application. Subjects were categorized by both RTOG RPA survival class and our new-RPA survival class. We generated Kaplan-Meier survival curves for classes from each model. To compare the accuracy and heterogeneity of each model, we calculated the mean prediction errors and interquartile ranges (IQR) of overall survival (OS). We then compared the two models for their predictive ability and homogeneity within each survival class. 960 patients were included in our validation dataset. Using the validation dataset, Kaplan-Meier survival curves for each terminal class were plotted. Log rank tests demonstrated no significant differences between the predicted and observed survival curves of the new RPA for Class 1 (P = 0.39), Class 2 (P = 0.59), Class 4 (P = 0.75), Class 5 (P = 0.18), Class 6 (P = 0.50), and Class 3/5 (P = 0.12). Mean prediction error of median survival was 4.5 months vs 1.9 months for the RTOG- and new-RPA, respectively. Mean Kaplan-Meier OS IQR was 38.1 months and 17.8 months for the RTOG- and new-RPA, respectively. We demonstrated that both the RTOG-RPA and our new-RPA classes maintain their relative prognostic significance. Although both models generate 6 distinct survival classes, in this partial validation our updated model more accurately predicts median survival for each class with significantly greater class homogeneity. Additionally, our proposed model utilizes exclusively objective measures decreasing the risk of inter-observer classification variability. P. Sutera: None. J.C. Flickinger: None. H. Wang: None. D.E. Heron: None.
AbstractList Despite advances in our understanding/treatment of patients with high grade glioma, the current model for prognostication is based on 40-year-old data. We previously generated a new model incorporating clinical and genetic factors utilizing data from patients treated from 2004-2017. Here we sought to validate our prognostic model within data from prospective trials and compare its accuracy against the original RTOG-RPA. Data from RTOG 0525, RTOG 0513 and RTOG BR-0131 was requested through an NRG Ancillary Project application. Subjects were categorized by both RTOG RPA survival class and our new-RPA survival class. We generated Kaplan-Meier survival curves for classes from each model. To compare the accuracy and heterogeneity of each model, we calculated the mean prediction errors and interquartile ranges (IQR) of overall survival (OS). We then compared the two models for their predictive ability and homogeneity within each survival class. 960 patients were included in our validation dataset. Using the validation dataset, Kaplan-Meier survival curves for each terminal class were plotted. Log rank tests demonstrated no significant differences between the predicted and observed survival curves of the new RPA for Class 1 (P = 0.39), Class 2 (P = 0.59), Class 4 (P = 0.75), Class 5 (P = 0.18), Class 6 (P = 0.50), and Class 3/5 (P = 0.12). Mean prediction error of median survival was 4.5 months vs 1.9 months for the RTOG- and new-RPA, respectively. Mean Kaplan-Meier OS IQR was 38.1 months and 17.8 months for the RTOG- and new-RPA, respectively. We demonstrated that both the RTOG-RPA and our new-RPA classes maintain their relative prognostic significance. Although both models generate 6 distinct survival classes, in this partial validation our updated model more accurately predicts median survival for each class with significantly greater class homogeneity. Additionally, our proposed model utilizes exclusively objective measures decreasing the risk of inter-observer classification variability. P. Sutera: None. J.C. Flickinger: None. H. Wang: None. D.E. Heron: None.
Author Wang, H.
Sutera, P.
Heron, D.E.
Flickinger Sr, J.C.
Author_xml – sequence: 1
  givenname: P.
  surname: Sutera
  fullname: Sutera, P.
  organization: University of Pittsburgh School of Medicine, Pittsburgh, PA
– sequence: 2
  givenname: J.C.
  surname: Flickinger Sr
  fullname: Flickinger Sr, J.C.
  organization: Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
– sequence: 3
  givenname: H.
  surname: Wang
  fullname: Wang, H.
  organization: University of Pittsburgh, Pittsburgh, PA
– sequence: 4
  givenname: D.E.
  surname: Heron
  fullname: Heron, D.E.
  organization: Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
BookMark eNqNkMFqGzEQhkVJoU7aRyjoAbrbGclaeQ-lBNNsAqEpISm9CVmaTcfdaIPkuPHbx4tzyqW9zH_5v5_hOxZHaUwkxEeEGgGbz-ua13lcPdQKFNZga2zAvBEzXNi20sb8OhIz0A1Uet9-J45LWQMAop3PxNNPP3D0Gx6THHvp5Xf6K5cDJw5-qDpKtOEgryk85sJbkj983vDU5nQnT5MfdoXLRJ7z3e-qyz6S7AYe7728LVPn-uaqk2CU-bS_qKVPUQJqfC_e9n4o9OElT8Tt2beb5Xl1edVdLE8vq6CsNpVGjGisRqNiUN4aH6NpVB_nul8tFr5pqIWIyrQmgm3BztsIDan5QnvVrFb6RJjDbshjKZl695D53uedQ3CTPrd2B31u0ufAuknfnvt64Gj_3JYpuxKYUqDImcLGxZH_ufDl1UJ48fqHdv_BPwOVWI5r
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.ijrobp.2021.07.1605
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-355X
EndPage e601
ExternalDocumentID 10_1016_j_ijrobp_2021_07_1605
S0360301621024755
GroupedDBID ---
--K
.1-
.FO
0R~
1B1
1P~
1RT
1~5
4.4
457
4G.
53G
5RE
7-5
AAEDT
AAEDW
AALRI
AAWTL
AAXUO
ABJNI
ABLJU
ABNEU
ABOCM
ABUDA
ACGFS
ACIUM
ADBBV
AENEX
AEVXI
AFRHN
AFTJW
AGCQF
AHHHB
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BELOY
DU5
EBS
EFKBS
F5P
FDB
GBLVA
HED
HMO
IHE
J1W
KOM
LX3
M41
MO0
O9-
OC~
OO-
RNS
ROL
RPZ
SDG
SEL
SES
SSZ
UV1
XH2
Z5R
~S-
AAIAV
AFCTW
AGZHU
ALXNB
EFJIC
ZA5
.55
.GJ
29J
5VS
AAQFI
AAQQT
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AGRDE
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
FIRID
G-2
HMK
HVGLF
HX~
HZ~
NQ-
R2-
SAE
SEW
UDS
X7M
XPP
ZGI
ID FETCH-LOGICAL-c2735-311d1573152dc2a75add562fd43fb88a66e90d12595d0790749d06e2483a26bb3
ISSN 0360-3016
IngestDate Wed Oct 01 01:55:19 EDT 2025
Fri Feb 23 02:40:35 EST 2024
Tue Aug 26 16:33:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2735-311d1573152dc2a75add562fd43fb88a66e90d12595d0790749d06e2483a26bb3
OpenAccessLink https://doi.org/10.1016/j.ijrobp.2021.07.1605
ParticipantIDs crossref_primary_10_1016_j_ijrobp_2021_07_1605
elsevier_sciencedirect_doi_10_1016_j_ijrobp_2021_07_1605
elsevier_clinicalkey_doi_10_1016_j_ijrobp_2021_07_1605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of radiation oncology, biology, physics
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
SSID ssj0001174
Score 2.3741004
Snippet Despite advances in our understanding/treatment of patients with high grade glioma, the current model for prognostication is based on 40-year-old data. We...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage e601
Title Validation of a New Clinical-Genetic Recursive Partitioning Analysis of High-Grade Glioma Using RTOG 0525, 0513 and 0131
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0360301621024755
https://dx.doi.org/10.1016/j.ijrobp.2021.07.1605
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-355X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001174
  issn: 0360-3016
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-355X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001174
  issn: 0360-3016
  databaseCode: AKRWK
  dateStart: 19761001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyFe0LiJcZMfeBsJcZw46ePUjVWbBmjr2N4iXxKpHbQo6hDih-337Zw4ccyoGEOq0sqRLTfni8-Xk-8cE_I2UpmOcxMHI-DLQaJZHkhYE4PEGA2fijOFyclHH8XkNDk4T88HgytPtXS5UqH-tTav5H-sCm1gV8ySvYNl3aDQAL_BvnAEC8Pxn2z8BUi0cZxPNmLFttDn1wALSq8ambzGiMCPEthibUsTNaEQrxoJij2C_VoaVF_Mlt_ktlUSHE8_7W9HzdZFY_hmvHnVgLVzfE77e1DRK0VRY90DO7uFdlkxqk-QsWEVx-pPcHuJhsx-DntczfSFLZZ40oDrIBy7k2dtsHviWiZlbWUEu-Fe6Ec0Ytam9vULHxfgGyKbg-lWacY8OHJvzS2F7fyHM7BxiXk4m9dLhbVJYxbaeFrae7_ujf8Np-ikip0Kbl7YYQocpoiyAoe5RzbiTIh4SDZ2Do_PDh0HYG397-6f9Llj79fOZz0r8pjOdJM8bB9R6I7F2yMyKBePyf2jVoTxhPzsYUeXFZUUYEdvwo462FEfdrSDHfbsYUct7GgDO4qwowi7dxRBRwF0FEH3lJx-2JuOJ0G7gUeggRWjwoIZlmYcOKLRscxScKbAtyuT8ErluRSiHEUGKPYoNVGGYZqRiUQZJzmXsVCKPyPDxXJRPidUChlVGp4mjORJLnKVpqVKRWbSSnGZ6y0Sdhew-G7rtBR_Nd0WEd1lLrokZHCbBYDnto6569iyVMs-b-_64q6TfEke9DfIKzJc1ZflayDBK_WmRdw1eMSs3A
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+New+Clinical-Genetic+Recursive+Partitioning+Analysis+of+High-Grade+Glioma+Using+RTOG+0525%2C+0513+and+0131&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Sutera%2C+P.&rft.au=Flickinger+Sr%2C+J.C.&rft.au=Wang%2C+H.&rft.au=Heron%2C+D.E.&rft.date=2021-11-01&rft.issn=0360-3016&rft.volume=111&rft.issue=3&rft.spage=e601&rft_id=info:doi/10.1016%2Fj.ijrobp.2021.07.1605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrobp_2021_07_1605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3016&client=summon