Enhancing PCG Signal Quality Through Cascaded Adaptive Noise Cancelling with Metaheuristic Optimization

Phonocardiogram (PCG) signals, vital for accurate cardiac monitoring and diagnostics, are often compromised by noise from various sources, including lung sounds, environmental sounds, and stethoscope movement. This contamination severely impacts the precision of cardiac assessments. This paper intro...

Full description

Saved in:
Bibliographic Details
Published inCircuits, systems, and signal processing Vol. 44; no. 10; pp. 7776 - 7815
Main Authors Alla, Madhava Rao, Nayak, Chandan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0278-081X
1531-5878
DOI10.1007/s00034-025-03166-x

Cover

Abstract Phonocardiogram (PCG) signals, vital for accurate cardiac monitoring and diagnostics, are often compromised by noise from various sources, including lung sounds, environmental sounds, and stethoscope movement. This contamination severely impacts the precision of cardiac assessments. This paper introduces a robust optimization approach that combines a cascaded adaptive noise canceller (ANC) with the greater cane rat algorithm (GCRA) to significantly enhance PCG signal quality. The proposed method first subjects real PCG signals to diverse noise types, such as uniform noise, Gaussian noise, and pink noise. The corrupted signals are then processed through the cascaded ANC, which dynamically adjusts its coefficients to effectively minimize noise while preserving the integrity of the clean PCG signal. The GCRA fine-tunes the filter parameters, optimizing noise suppression and ensuring the preservation of essential cardiac acoustic details. The performance of the GCRA-optimized infinite impulse response (IIR) ANC is thoroughly evaluated using metrics like signal-to-noise ratio (SNR), mean square error (MSE), maximum error (ME), normalized root mean square error (NRMSE), and correlation coefficient (CC). Moreover, the approach is benchmarked against two well-established optimization algorithms such as the gazelle optimization algorithm (GOA) and the dwarf mongoose optimization algorithm (DMOA). The results clearly demonstrate that the GCRA-optimized IIR ANC not only surpasses GOA and DMOA-based ANCs but also outperforms all previously reported PCG signal enhancement techniques, delivering superior noise reduction and preserving critical cardiac information. Moreover, the effectiveness of the proposed GCRA-based noise removal process is confirmed by using a deep learning model to classify normal (NOR) and abnormal (ABNOR) PCG, demonstrating its practical use.
AbstractList Phonocardiogram (PCG) signals, vital for accurate cardiac monitoring and diagnostics, are often compromised by noise from various sources, including lung sounds, environmental sounds, and stethoscope movement. This contamination severely impacts the precision of cardiac assessments. This paper introduces a robust optimization approach that combines a cascaded adaptive noise canceller (ANC) with the greater cane rat algorithm (GCRA) to significantly enhance PCG signal quality. The proposed method first subjects real PCG signals to diverse noise types, such as uniform noise, Gaussian noise, and pink noise. The corrupted signals are then processed through the cascaded ANC, which dynamically adjusts its coefficients to effectively minimize noise while preserving the integrity of the clean PCG signal. The GCRA fine-tunes the filter parameters, optimizing noise suppression and ensuring the preservation of essential cardiac acoustic details. The performance of the GCRA-optimized infinite impulse response (IIR) ANC is thoroughly evaluated using metrics like signal-to-noise ratio (SNR), mean square error (MSE), maximum error (ME), normalized root mean square error (NRMSE), and correlation coefficient (CC). Moreover, the approach is benchmarked against two well-established optimization algorithms such as the gazelle optimization algorithm (GOA) and the dwarf mongoose optimization algorithm (DMOA). The results clearly demonstrate that the GCRA-optimized IIR ANC not only surpasses GOA and DMOA-based ANCs but also outperforms all previously reported PCG signal enhancement techniques, delivering superior noise reduction and preserving critical cardiac information. Moreover, the effectiveness of the proposed GCRA-based noise removal process is confirmed by using a deep learning model to classify normal (NOR) and abnormal (ABNOR) PCG, demonstrating its practical use.
Author Alla, Madhava Rao
Nayak, Chandan
Author_xml – sequence: 1
  givenname: Madhava Rao
  surname: Alla
  fullname: Alla, Madhava Rao
  organization: School of Electronics Engineering, VIT-AP University
– sequence: 2
  givenname: Chandan
  orcidid: 0000-0003-1025-8737
  surname: Nayak
  fullname: Nayak, Chandan
  email: chandanayak234@gmail.com
  organization: School of Electronics Engineering, VIT-AP University
BookMark eNp9kEFLwzAUgINMcJv-AU8Bz9WXZFnT4xhzCtMpTvAWsjRtM7p0Jq1u_no7K3jz9ODxfQ_eN0A9VzmD0CWBawIQ3wQAYKMIKI-AkfE42p-gPuGMRFzEoof6QGMRgSBvZ2gQwgaAJKOE9lE-c4Vy2rocP03n-MXmTpX4uVGlrQ94VfiqyQs8VUGr1KR4kqpdbT8MfqxsMO3eaVOWR_vT1gV-MLUqTONtqK3Gyxbd2i9V28qdo9NMlcFc_M4her2draZ30WI5v59OFpGmMa0jk2VciVG6ZtqsaUzGbJTpVGQcYqJ5BsD5WhimUiqSJF1zw3TMNFdEQCJiNmZDdNXd3fnqvTGhlpuq8e1PQTLKWQKtyFqKdpT2VQjeZHLn7Vb5gyQgj0FlF1S2QeVPULlvJdZJoYVdbvzf6X-sb9o9fAc
Cites_doi 10.1016/j.compbiomed.2014.06.011
10.1016/j.bspc.2018.04.015
10.1109/INCOS59338.2024.10527680
10.1109/ACCESS.2023.3292551
10.3390/s24020330
10.1161/01.CIR.101.23.e215
10.1016/j.sigpro.2022.108688
10.1007/s00202-024-02375-y
10.1016/j.cma.2022.114570
10.1109/TBCAS.2019.2916676
10.1007/s00521-022-07854-6
10.1109/INDICON49873.2020.9342464
10.1109/JSEN.2020.3028373
10.1016/j.bspc.2013.05.004
10.3844/jcssp.2019.27.44
10.1016/j.heliyon.2024.e31629
10.1016/j.bspc.2017.08.027
10.1088/0967-3334/37/12/2181
10.11591/ijece.v6i5.pp2197-2204
10.1109/ICCCNT49239.2020.9225320
10.3389/fmedt.2022.854382
10.1016/j.irbm.2013.01.017
10.1109/ICACCI.2017.8126043
10.1038/s41467-020-20539-9
10.1016/j.bspc.2023.105086
10.1016/j.cmpb.2018.07.006
10.1007/s42235-023-00436-9
10.1109/LSP.2018.2865253
10.1007/s00034-017-0524-7
10.1007/s40435-023-01381-5
10.1109/CSCITA47329.2020.9137813
10.1007/s00521-024-09648-4
10.1109/LSENS.2021.3074985
10.1016/j.bspc.2018.09.005
10.1016/j.medengphy.2010.11.004
10.1109/ACCESS.2020.3020806
10.1016/j.bspc.2017.07.002
10.1016/j.bspc.2021.103264
10.1007/s13534-019-00121-z
10.1016/j.ifacol.2018.07.103
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s00034-025-03166-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 7815
ExternalDocumentID 10_1007_s00034_025_03166_x
GroupedDBID -Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-eff5a84db3ceb271634fcd8f5071c5f0055b8e3ad2899db5e3c73c5a180987363
IEDL.DBID U2A
ISSN 0278-081X
IngestDate Fri Sep 26 03:12:20 EDT 2025
Thu Oct 02 04:36:20 EDT 2025
Thu Sep 25 01:10:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Greater cane rat algorithm
Phonocardiogram (PCG)
Signal enhancement
IIR
ANC
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-eff5a84db3ceb271634fcd8f5071c5f0055b8e3ad2899db5e3c73c5a180987363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1025-8737
PQID 3253902893
PQPubID 30136
PageCount 40
ParticipantIDs proquest_journals_3253902893
crossref_primary_10_1007_s00034_025_03166_x
springer_journals_10_1007_s00034_025_03166_x
PublicationCentury 2000
PublicationDate 20251000
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 20251000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References VG Biju (3166_CR7) 2024; 24
MN Ali (3166_CR4) 2017; 36
C Nayak (3166_CR30) 2019; 13
RS Khandpur (3166_CR22) 2004
C Liu (3166_CR25) 2016; 37
D Izci (3166_CR18) 2024; 12
VV Moca (3166_CR27) 2021; 12
C Nayak (3166_CR31) 2019; 49
SH Pauline (3166_CR34) 2022; 1–24
D Izci (3166_CR19) 2024; 106
QUA Mubarak (3166_CR29) 2018; 164
D Pham (3166_CR35) 2018; 25
VG Sujadevi (3166_CR44) 2019; 9
PK Jain (3166_CR20) 2017; 38
AB Kambhampati (3166_CR21) 2021; 21
S Patidar (3166_CR32) 2013; 8
3166_CR39
S Biswas (3166_CR8) 2024; 36
3166_CR12
TS Roy (3166_CR36) 2023; 86
A Almasi (3166_CR6) 2013; 34
3166_CR41
A Zhang (3166_CR45) 2022; 4
MH Fatnan (3166_CR11) 2019; 15
H Zhivomirov (3166_CR46) 2018; 15
3166_CR43
SN Ali (3166_CR5) 2023; 11
TH Chowdhury (3166_CR9) 2020; 8
SK Ghosh (3166_CR13) 2021; 5
A Leal (3166_CR24) 2018; 44
H Skutova (3166_CR42) 2018; 51
SW Deng (3166_CR10) 2018; 40
S Sanei (3166_CR38) 2011; 33
C Gonzalez-Rodriguez (3166_CR15) 2023; 11
D Gradolewski (3166_CR17) 2014; 52
A Maity (3166_CR26) 2022; 71
SH Pauline (3166_CR33) 2022; 201
JO Agushaka (3166_CR2) 2022; 391
AL Goldberger (3166_CR14) 2000; 101
A Got (3166_CR16) 2024; 21
VM Shervegar (3166_CR40) 2023; 40
3166_CR28
JO Agushaka (3166_CR1) 2024; 10
AH Salman (3166_CR37) 2016; 6
3166_CR23
JO Agushaka (3166_CR3) 2023; 35
References_xml – volume: 52
  start-page: 119
  year: 2014
  ident: 3166_CR17
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.06.011
– volume: 44
  start-page: 154
  year: 2018
  ident: 3166_CR24
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2018.04.015
– ident: 3166_CR23
  doi: 10.1109/INCOS59338.2024.10527680
– volume: 11
  start-page: 87887
  year: 2023
  ident: 3166_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3292551
– volume: 24
  start-page: 330
  issue: 2
  year: 2024
  ident: 3166_CR7
  publication-title: Sensors
  doi: 10.3390/s24020330
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 3166_CR14
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 201
  year: 2022
  ident: 3166_CR33
  publication-title: Signal Proc.
  doi: 10.1016/j.sigpro.2022.108688
– volume: 106
  start-page: 6565
  year: 2024
  ident: 3166_CR19
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-024-02375-y
– volume: 391
  year: 2022
  ident: 3166_CR2
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114570
– volume: 13
  start-page: 682
  issue: 4
  year: 2019
  ident: 3166_CR30
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2916676
– volume: 35
  start-page: 4099
  issue: 5
  year: 2023
  ident: 3166_CR3
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07854-6
– ident: 3166_CR12
  doi: 10.1109/INDICON49873.2020.9342464
– volume: 21
  start-page: 5292
  issue: 4
  year: 2021
  ident: 3166_CR21
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3028373
– volume: 8
  start-page: 559
  issue: 6
  year: 2013
  ident: 3166_CR32
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2013.05.004
– volume: 15
  start-page: 27
  issue: 1
  year: 2019
  ident: 3166_CR11
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2019.27.44
– volume: 15
  start-page: 14
  issue: 1
  year: 2018
  ident: 3166_CR46
  publication-title: Roman. J. Acoustic Vib.
– volume: 10
  issue: 11
  year: 2024
  ident: 3166_CR1
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e31629
– volume: 40
  start-page: 49
  year: 2018
  ident: 3166_CR10
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2017.08.027
– volume: 37
  start-page: 2181
  issue: 12
  year: 2016
  ident: 3166_CR25
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/12/2181
– volume: 6
  start-page: 2197
  issue: 5
  year: 2016
  ident: 3166_CR37
  publication-title: Int. J. Electrical Comput. Eng. (IJECE)
  doi: 10.11591/ijece.v6i5.pp2197-2204
– ident: 3166_CR28
  doi: 10.1109/ICCCNT49239.2020.9225320
– volume: 1–24
  start-page: 3039624
  year: 2022
  ident: 3166_CR34
  publication-title: J. Healthcare Eng.
– volume: 40
  start-page: 2891
  year: 2023
  ident: 3166_CR40
  publication-title: Expert. Syst.
– volume: 4
  year: 2022
  ident: 3166_CR45
  publication-title: Front. Med. Technol.
  doi: 10.3389/fmedt.2022.854382
– volume: 34
  start-page: 214
  issue: 3
  year: 2013
  ident: 3166_CR6
  publication-title: IRBM
  doi: 10.1016/j.irbm.2013.01.017
– ident: 3166_CR43
  doi: 10.1109/ICACCI.2017.8126043
– ident: 3166_CR41
– volume: 12
  start-page: 337
  year: 2021
  ident: 3166_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20539-9
– volume: 86
  year: 2023
  ident: 3166_CR36
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2023.105086
– volume: 164
  start-page: 143
  year: 2018
  ident: 3166_CR29
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.07.006
– volume: 21
  start-page: 409
  year: 2024
  ident: 3166_CR16
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-023-00436-9
– volume: 25
  start-page: 1475
  issue: 10
  year: 2018
  ident: 3166_CR35
  publication-title: IEEE Signal Proc. Lett.
  doi: 10.1109/LSP.2018.2865253
– volume-title: Biomedical Instrumentation: Technology and Applications
  year: 2004
  ident: 3166_CR22
– volume: 36
  start-page: 4482
  issue: 11
  year: 2017
  ident: 3166_CR4
  publication-title: Circ. Syst. Signal Proc.
  doi: 10.1007/s00034-017-0524-7
– volume: 12
  start-page: 2550
  year: 2024
  ident: 3166_CR18
  publication-title: Int. J. Dyn. Control
  doi: 10.1007/s40435-023-01381-5
– ident: 3166_CR39
  doi: 10.1109/CSCITA47329.2020.9137813
– volume: 11
  start-page: 52466
  year: 2023
  ident: 3166_CR15
  publication-title: IEEE Access
– volume: 36
  start-page: 11137
  year: 2024
  ident: 3166_CR8
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-024-09648-4
– volume: 5
  start-page: 1
  issue: 5
  year: 2021
  ident: 3166_CR13
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2021.3074985
– volume: 49
  start-page: 146
  year: 2019
  ident: 3166_CR31
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.09.005
– volume: 33
  start-page: 362
  issue: 3
  year: 2011
  ident: 3166_CR38
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.11.004
– volume: 8
  start-page: 160882
  year: 2020
  ident: 3166_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3020806
– volume: 38
  start-page: 388
  year: 2017
  ident: 3166_CR20
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2017.07.002
– volume: 71
  start-page: 103264
  year: 2022
  ident: 3166_CR26
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2021.103264
– volume: 9
  start-page: 413
  issue: 4
  year: 2019
  ident: 3166_CR44
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-019-00121-z
– volume: 51
  start-page: 456
  issue: 6
  year: 2018
  ident: 3166_CR42
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.07.103
SSID ssj0019492
Score 2.3864248
Snippet Phonocardiogram (PCG) signals, vital for accurate cardiac monitoring and diagnostics, are often compromised by noise from various sources, including lung...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 7776
SubjectTerms Adaptation
Algorithms
Background noise
Circuits and Systems
Correlation coefficients
Electrical Engineering
Electronics and Microelectronics
Engineering
Errors
Fourier transforms
Heart
Heuristic methods
Impulse response
Instrumentation
Machine learning
Methods
Noise
Noise reduction
Optimization
Random noise
Random variables
Signal processing
Signal quality
Signal to noise ratio
Signal,Image and Speech Processing
Sound
Sparsity
Spectrum analysis
Wavelet transforms
Title Enhancing PCG Signal Quality Through Cascaded Adaptive Noise Cancelling with Metaheuristic Optimization
URI https://link.springer.com/article/10.1007/s00034-025-03166-x
https://www.proquest.com/docview/3253902893
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAeIpCQR7YwFIbx3mMUdWHQBQkWqlMkWM7bQfSirQS_HvunKQFBANrYnv4_PrOd_cdIddw7nra8yRTwKUZUOoWC6WXMqeteZpIg6UdMNpi6A3G7t1ETMqksLyKdq9ckvak3iS7WS0VhuVXYSHCwMAc6wLlvGAVj51o4zsIXVsKGV1qDC68SZkq8_sY36-jLcf84Ra1t03vgOyXNJFGxbwekh2THZG9L-KBx2TazWYolpFN6VOnT5_nU-xRaGJ80FFRf4d2ZI4R8JpGWi7xaKPDxTw38D3DN3vsjU-x9MGs5MysC91m-ghNX8sMzRMy7nVHnQEryyYw5fjOipk0FTJwdcIVmM1gD3E3VTpIkfkpkaLqVhIYLjXaWjoRhiufKyFRySvwucdPSS1bZOaMUKHBnHCUmwBLczW0Ua22ARPHB5BFmPgNclOhFy8LdYx4o4NssY4B69hiHb83SLMCOC53Sh5zR3BUkAl5g9xWoG9__z3a-f-aX5BdB-fdxuE1SW31tjaXwCdWyRWpR_2X--6VXUafcRvEFA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQOAAH3ojxzIEbBG1NH9txmsYGe4DEJo1TlSbpNiE6xDoJ-PXYfYyH4MC1Taw2Tp3Ptf0Z4AztrqtdV3KFWJojpC7xqnRDbpW1CANpqLUDZVv03NbAvhk6w6wobJZnu-chycRSL4rdEi4VTu1XcSOiYESOyzY6KFYBlmvNh3ZjET2o2kkzZAqqcTzyhlmxzO9Svh9InyjzR2A0OW-uNmCQP2maZvJ4OY-DS_X-g8Txv6-yCesZAGW1dMdswZKJtmHtCy3hDowa0ZhoOKIRu6s32f1kRDNSto031k87-7C6nFFuvWY1LZ_JaLLedDIzeD2iaADNpp-8rGtiOTbzlBGa3eLQp6z2cxcGV41-vcWzhgxcWZ4VcxOGjqzYOhAKHXL0tIQdKl0JCVMqJyQ-r6BihNTkxenAMUJ5QjmSOMIqnnDFHhSiaWT2gTkaHRVL2QHiP1vjGFUqG3SePFSeUw28IpznWvGfU94Nf8GwnCyfj8vnJ8vnvxbhKFecn32DM19YjiBumqoowkWuh8_bf0s7-N_wU1hp9bsdv3Pdax_CqkVqTbL9jqAQv8zNMaKWODjJNukHfIPimg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTIwejM-Iou7Bm26Abp9HgiC-kERIuDXbfQAHC5GS6L93pg9Aowev7e42-Trd_aYz8w0hV7Dvusp1BZPApRlQ6hoLhGuYVVfcREJjawfMtui6nYH9MHSGa1X8abZ7EZLMahpQpSlOqjNlqsvCt1RXhWErVjBKeAiwyE0bhRLAogdWYxlHCOy0LTKG1xgcfsO8bOb3Nb4fTSu--SNEmp487T2ym1NG2sje8T7Z0PEB2VkTEjwko1Y8RuGMeER7zTv6OhnhjEwf45P2s148tCnmmA2vaEOJGW5ztDudzDVcj_H_Pc7G37L0WSdirBeZhjN9gaFvebXmERm0W_1mh-UtFJi0PCth2hhH-LaKuAQXGnwjbhupfIMsUDoGFbgiX3Oh0O9SkaO59Lh0BKp6-R53-TEpxdNYnxDqKHAtLGlHwNhsBWNkra7B3fEAZCeIvDK5LtALZ5lSRrjURE6xDgHrMMU6_CiTSgFwmH8185BbDkc1mYCXyU0B-ur236ud_m_4Jdnq3bbDp_vu4xnZttAE0vS8Cikl7wt9DjQjiS5SS_oCPTLJqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+PCG+Signal+Quality+Through+Cascaded+Adaptive+Noise+Cancelling+with+Metaheuristic+Optimization&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Alla%2C+Madhava+Rao&rft.au=Nayak%2C+Chandan&rft.date=2025-10-01&rft.pub=Springer+US&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=44&rft.issue=10&rft.spage=7776&rft.epage=7815&rft_id=info:doi/10.1007%2Fs00034-025-03166-x&rft.externalDocID=10_1007_s00034_025_03166_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon