Enhancing PCG Signal Quality Through Cascaded Adaptive Noise Cancelling with Metaheuristic Optimization
Phonocardiogram (PCG) signals, vital for accurate cardiac monitoring and diagnostics, are often compromised by noise from various sources, including lung sounds, environmental sounds, and stethoscope movement. This contamination severely impacts the precision of cardiac assessments. This paper intro...
        Saved in:
      
    
          | Published in | Circuits, systems, and signal processing Vol. 44; no. 10; pp. 7776 - 7815 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.10.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0278-081X 1531-5878  | 
| DOI | 10.1007/s00034-025-03166-x | 
Cover
| Abstract | Phonocardiogram (PCG) signals, vital for accurate cardiac monitoring and diagnostics, are often compromised by noise from various sources, including lung sounds, environmental sounds, and stethoscope movement. This contamination severely impacts the precision of cardiac assessments. This paper introduces a robust optimization approach that combines a cascaded adaptive noise canceller (ANC) with the greater cane rat algorithm (GCRA) to significantly enhance PCG signal quality. The proposed method first subjects real PCG signals to diverse noise types, such as uniform noise, Gaussian noise, and pink noise. The corrupted signals are then processed through the cascaded ANC, which dynamically adjusts its coefficients to effectively minimize noise while preserving the integrity of the clean PCG signal. The GCRA fine-tunes the filter parameters, optimizing noise suppression and ensuring the preservation of essential cardiac acoustic details. The performance of the GCRA-optimized infinite impulse response (IIR) ANC is thoroughly evaluated using metrics like signal-to-noise ratio (SNR), mean square error (MSE), maximum error (ME), normalized root mean square error (NRMSE), and correlation coefficient (CC). Moreover, the approach is benchmarked against two well-established optimization algorithms such as the gazelle optimization algorithm (GOA) and the dwarf mongoose optimization algorithm (DMOA). The results clearly demonstrate that the GCRA-optimized IIR ANC not only surpasses GOA and DMOA-based ANCs but also outperforms all previously reported PCG signal enhancement techniques, delivering superior noise reduction and preserving critical cardiac information. Moreover, the effectiveness of the proposed GCRA-based noise removal process is confirmed by using a deep learning model to classify normal (NOR) and abnormal (ABNOR) PCG, demonstrating its practical use. | 
    
|---|---|
| AbstractList | Phonocardiogram (PCG) signals, vital for accurate cardiac monitoring and diagnostics, are often compromised by noise from various sources, including lung sounds, environmental sounds, and stethoscope movement. This contamination severely impacts the precision of cardiac assessments. This paper introduces a robust optimization approach that combines a cascaded adaptive noise canceller (ANC) with the greater cane rat algorithm (GCRA) to significantly enhance PCG signal quality. The proposed method first subjects real PCG signals to diverse noise types, such as uniform noise, Gaussian noise, and pink noise. The corrupted signals are then processed through the cascaded ANC, which dynamically adjusts its coefficients to effectively minimize noise while preserving the integrity of the clean PCG signal. The GCRA fine-tunes the filter parameters, optimizing noise suppression and ensuring the preservation of essential cardiac acoustic details. The performance of the GCRA-optimized infinite impulse response (IIR) ANC is thoroughly evaluated using metrics like signal-to-noise ratio (SNR), mean square error (MSE), maximum error (ME), normalized root mean square error (NRMSE), and correlation coefficient (CC). Moreover, the approach is benchmarked against two well-established optimization algorithms such as the gazelle optimization algorithm (GOA) and the dwarf mongoose optimization algorithm (DMOA). The results clearly demonstrate that the GCRA-optimized IIR ANC not only surpasses GOA and DMOA-based ANCs but also outperforms all previously reported PCG signal enhancement techniques, delivering superior noise reduction and preserving critical cardiac information. Moreover, the effectiveness of the proposed GCRA-based noise removal process is confirmed by using a deep learning model to classify normal (NOR) and abnormal (ABNOR) PCG, demonstrating its practical use. | 
    
| Author | Alla, Madhava Rao Nayak, Chandan  | 
    
| Author_xml | – sequence: 1 givenname: Madhava Rao surname: Alla fullname: Alla, Madhava Rao organization: School of Electronics Engineering, VIT-AP University – sequence: 2 givenname: Chandan orcidid: 0000-0003-1025-8737 surname: Nayak fullname: Nayak, Chandan email: chandanayak234@gmail.com organization: School of Electronics Engineering, VIT-AP University  | 
    
| BookMark | eNp9kEFLwzAUgINMcJv-AU8Bz9WXZFnT4xhzCtMpTvAWsjRtM7p0Jq1u_no7K3jz9ODxfQ_eN0A9VzmD0CWBawIQ3wQAYKMIKI-AkfE42p-gPuGMRFzEoof6QGMRgSBvZ2gQwgaAJKOE9lE-c4Vy2rocP03n-MXmTpX4uVGlrQ94VfiqyQs8VUGr1KR4kqpdbT8MfqxsMO3eaVOWR_vT1gV-MLUqTONtqK3Gyxbd2i9V28qdo9NMlcFc_M4her2draZ30WI5v59OFpGmMa0jk2VciVG6ZtqsaUzGbJTpVGQcYqJ5BsD5WhimUiqSJF1zw3TMNFdEQCJiNmZDdNXd3fnqvTGhlpuq8e1PQTLKWQKtyFqKdpT2VQjeZHLn7Vb5gyQgj0FlF1S2QeVPULlvJdZJoYVdbvzf6X-sb9o9fAc | 
    
| Cites_doi | 10.1016/j.compbiomed.2014.06.011 10.1016/j.bspc.2018.04.015 10.1109/INCOS59338.2024.10527680 10.1109/ACCESS.2023.3292551 10.3390/s24020330 10.1161/01.CIR.101.23.e215 10.1016/j.sigpro.2022.108688 10.1007/s00202-024-02375-y 10.1016/j.cma.2022.114570 10.1109/TBCAS.2019.2916676 10.1007/s00521-022-07854-6 10.1109/INDICON49873.2020.9342464 10.1109/JSEN.2020.3028373 10.1016/j.bspc.2013.05.004 10.3844/jcssp.2019.27.44 10.1016/j.heliyon.2024.e31629 10.1016/j.bspc.2017.08.027 10.1088/0967-3334/37/12/2181 10.11591/ijece.v6i5.pp2197-2204 10.1109/ICCCNT49239.2020.9225320 10.3389/fmedt.2022.854382 10.1016/j.irbm.2013.01.017 10.1109/ICACCI.2017.8126043 10.1038/s41467-020-20539-9 10.1016/j.bspc.2023.105086 10.1016/j.cmpb.2018.07.006 10.1007/s42235-023-00436-9 10.1109/LSP.2018.2865253 10.1007/s00034-017-0524-7 10.1007/s40435-023-01381-5 10.1109/CSCITA47329.2020.9137813 10.1007/s00521-024-09648-4 10.1109/LSENS.2021.3074985 10.1016/j.bspc.2018.09.005 10.1016/j.medengphy.2010.11.004 10.1109/ACCESS.2020.3020806 10.1016/j.bspc.2017.07.002 10.1016/j.bspc.2021.103264 10.1007/s13534-019-00121-z 10.1016/j.ifacol.2018.07.103  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.  | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1007/s00034-025-03166-x | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1531-5878 | 
    
| EndPage | 7815 | 
    
| ExternalDocumentID | 10_1007_s00034_025_03166_x | 
    
| GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c272t-eff5a84db3ceb271634fcd8f5071c5f0055b8e3ad2899db5e3c73c5a180987363 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0278-081X | 
    
| IngestDate | Fri Sep 26 03:12:20 EDT 2025 Thu Oct 02 04:36:20 EDT 2025 Thu Sep 25 01:10:43 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | Greater cane rat algorithm Phonocardiogram (PCG) Signal enhancement IIR ANC Optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c272t-eff5a84db3ceb271634fcd8f5071c5f0055b8e3ad2899db5e3c73c5a180987363 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-1025-8737 | 
    
| PQID | 3253902893 | 
    
| PQPubID | 30136 | 
    
| PageCount | 40 | 
    
| ParticipantIDs | proquest_journals_3253902893 crossref_primary_10_1007_s00034_025_03166_x springer_journals_10_1007_s00034_025_03166_x  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20251000 2025-10-00 20251001  | 
    
| PublicationDateYYYYMMDD | 2025-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2025 text: 20251000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Cambridge  | 
    
| PublicationSubtitle | CSSP | 
    
| PublicationTitle | Circuits, systems, and signal processing | 
    
| PublicationTitleAbbrev | Circuits Syst Signal Process | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | VG Biju (3166_CR7) 2024; 24 MN Ali (3166_CR4) 2017; 36 C Nayak (3166_CR30) 2019; 13 RS Khandpur (3166_CR22) 2004 C Liu (3166_CR25) 2016; 37 D Izci (3166_CR18) 2024; 12 VV Moca (3166_CR27) 2021; 12 C Nayak (3166_CR31) 2019; 49 SH Pauline (3166_CR34) 2022; 1–24 D Izci (3166_CR19) 2024; 106 QUA Mubarak (3166_CR29) 2018; 164 D Pham (3166_CR35) 2018; 25 VG Sujadevi (3166_CR44) 2019; 9 PK Jain (3166_CR20) 2017; 38 AB Kambhampati (3166_CR21) 2021; 21 S Patidar (3166_CR32) 2013; 8 3166_CR39 S Biswas (3166_CR8) 2024; 36 3166_CR12 TS Roy (3166_CR36) 2023; 86 A Almasi (3166_CR6) 2013; 34 3166_CR41 A Zhang (3166_CR45) 2022; 4 MH Fatnan (3166_CR11) 2019; 15 H Zhivomirov (3166_CR46) 2018; 15 3166_CR43 SN Ali (3166_CR5) 2023; 11 TH Chowdhury (3166_CR9) 2020; 8 SK Ghosh (3166_CR13) 2021; 5 A Leal (3166_CR24) 2018; 44 H Skutova (3166_CR42) 2018; 51 SW Deng (3166_CR10) 2018; 40 S Sanei (3166_CR38) 2011; 33 C Gonzalez-Rodriguez (3166_CR15) 2023; 11 D Gradolewski (3166_CR17) 2014; 52 A Maity (3166_CR26) 2022; 71 SH Pauline (3166_CR33) 2022; 201 JO Agushaka (3166_CR2) 2022; 391 AL Goldberger (3166_CR14) 2000; 101 A Got (3166_CR16) 2024; 21 VM Shervegar (3166_CR40) 2023; 40 3166_CR28 JO Agushaka (3166_CR1) 2024; 10 AH Salman (3166_CR37) 2016; 6 3166_CR23 JO Agushaka (3166_CR3) 2023; 35  | 
    
| References_xml | – volume: 52 start-page: 119 year: 2014 ident: 3166_CR17 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.06.011 – volume: 44 start-page: 154 year: 2018 ident: 3166_CR24 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2018.04.015 – ident: 3166_CR23 doi: 10.1109/INCOS59338.2024.10527680 – volume: 11 start-page: 87887 year: 2023 ident: 3166_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3292551 – volume: 24 start-page: 330 issue: 2 year: 2024 ident: 3166_CR7 publication-title: Sensors doi: 10.3390/s24020330 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 3166_CR14 publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 201 year: 2022 ident: 3166_CR33 publication-title: Signal Proc. doi: 10.1016/j.sigpro.2022.108688 – volume: 106 start-page: 6565 year: 2024 ident: 3166_CR19 publication-title: Electr. Eng. doi: 10.1007/s00202-024-02375-y – volume: 391 year: 2022 ident: 3166_CR2 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114570 – volume: 13 start-page: 682 issue: 4 year: 2019 ident: 3166_CR30 publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2019.2916676 – volume: 35 start-page: 4099 issue: 5 year: 2023 ident: 3166_CR3 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07854-6 – ident: 3166_CR12 doi: 10.1109/INDICON49873.2020.9342464 – volume: 21 start-page: 5292 issue: 4 year: 2021 ident: 3166_CR21 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3028373 – volume: 8 start-page: 559 issue: 6 year: 2013 ident: 3166_CR32 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2013.05.004 – volume: 15 start-page: 27 issue: 1 year: 2019 ident: 3166_CR11 publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2019.27.44 – volume: 15 start-page: 14 issue: 1 year: 2018 ident: 3166_CR46 publication-title: Roman. J. Acoustic Vib. – volume: 10 issue: 11 year: 2024 ident: 3166_CR1 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e31629 – volume: 40 start-page: 49 year: 2018 ident: 3166_CR10 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2017.08.027 – volume: 37 start-page: 2181 issue: 12 year: 2016 ident: 3166_CR25 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/12/2181 – volume: 6 start-page: 2197 issue: 5 year: 2016 ident: 3166_CR37 publication-title: Int. J. Electrical Comput. Eng. (IJECE) doi: 10.11591/ijece.v6i5.pp2197-2204 – ident: 3166_CR28 doi: 10.1109/ICCCNT49239.2020.9225320 – volume: 1–24 start-page: 3039624 year: 2022 ident: 3166_CR34 publication-title: J. Healthcare Eng. – volume: 40 start-page: 2891 year: 2023 ident: 3166_CR40 publication-title: Expert. Syst. – volume: 4 year: 2022 ident: 3166_CR45 publication-title: Front. Med. Technol. doi: 10.3389/fmedt.2022.854382 – volume: 34 start-page: 214 issue: 3 year: 2013 ident: 3166_CR6 publication-title: IRBM doi: 10.1016/j.irbm.2013.01.017 – ident: 3166_CR43 doi: 10.1109/ICACCI.2017.8126043 – ident: 3166_CR41 – volume: 12 start-page: 337 year: 2021 ident: 3166_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20539-9 – volume: 86 year: 2023 ident: 3166_CR36 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2023.105086 – volume: 164 start-page: 143 year: 2018 ident: 3166_CR29 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.07.006 – volume: 21 start-page: 409 year: 2024 ident: 3166_CR16 publication-title: J. Bionic Eng. doi: 10.1007/s42235-023-00436-9 – volume: 25 start-page: 1475 issue: 10 year: 2018 ident: 3166_CR35 publication-title: IEEE Signal Proc. Lett. doi: 10.1109/LSP.2018.2865253 – volume-title: Biomedical Instrumentation: Technology and Applications year: 2004 ident: 3166_CR22 – volume: 36 start-page: 4482 issue: 11 year: 2017 ident: 3166_CR4 publication-title: Circ. Syst. Signal Proc. doi: 10.1007/s00034-017-0524-7 – volume: 12 start-page: 2550 year: 2024 ident: 3166_CR18 publication-title: Int. J. Dyn. Control doi: 10.1007/s40435-023-01381-5 – ident: 3166_CR39 doi: 10.1109/CSCITA47329.2020.9137813 – volume: 11 start-page: 52466 year: 2023 ident: 3166_CR15 publication-title: IEEE Access – volume: 36 start-page: 11137 year: 2024 ident: 3166_CR8 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-024-09648-4 – volume: 5 start-page: 1 issue: 5 year: 2021 ident: 3166_CR13 publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2021.3074985 – volume: 49 start-page: 146 year: 2019 ident: 3166_CR31 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.09.005 – volume: 33 start-page: 362 issue: 3 year: 2011 ident: 3166_CR38 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.11.004 – volume: 8 start-page: 160882 year: 2020 ident: 3166_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3020806 – volume: 38 start-page: 388 year: 2017 ident: 3166_CR20 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2017.07.002 – volume: 71 start-page: 103264 year: 2022 ident: 3166_CR26 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2021.103264 – volume: 9 start-page: 413 issue: 4 year: 2019 ident: 3166_CR44 publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-019-00121-z – volume: 51 start-page: 456 issue: 6 year: 2018 ident: 3166_CR42 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.07.103  | 
    
| SSID | ssj0019492 | 
    
| Score | 2.3864248 | 
    
| Snippet | Phonocardiogram (PCG) signals, vital for accurate cardiac monitoring and diagnostics, are often compromised by noise from various sources, including lung... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 7776 | 
    
| SubjectTerms | Adaptation Algorithms Background noise Circuits and Systems Correlation coefficients Electrical Engineering Electronics and Microelectronics Engineering Errors Fourier transforms Heart Heuristic methods Impulse response Instrumentation Machine learning Methods Noise Noise reduction Optimization Random noise Random variables Signal processing Signal quality Signal to noise ratio Signal,Image and Speech Processing Sound Sparsity Spectrum analysis Wavelet transforms  | 
    
| Title | Enhancing PCG Signal Quality Through Cascaded Adaptive Noise Cancelling with Metaheuristic Optimization | 
    
| URI | https://link.springer.com/article/10.1007/s00034-025-03166-x https://www.proquest.com/docview/3253902893  | 
    
| Volume | 44 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1531-5878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1531-5878 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAeIpCQR7YwFIbx3mMUdWHQBQkWqlMkWM7bQfSirQS_HvunKQFBANrYnv4_PrOd_cdIddw7nra8yRTwKUZUOoWC6WXMqeteZpIg6UdMNpi6A3G7t1ETMqksLyKdq9ckvak3iS7WS0VhuVXYSHCwMAc6wLlvGAVj51o4zsIXVsKGV1qDC68SZkq8_sY36-jLcf84Ra1t03vgOyXNJFGxbwekh2THZG9L-KBx2TazWYolpFN6VOnT5_nU-xRaGJ80FFRf4d2ZI4R8JpGWi7xaKPDxTw38D3DN3vsjU-x9MGs5MysC91m-ghNX8sMzRMy7nVHnQEryyYw5fjOipk0FTJwdcIVmM1gD3E3VTpIkfkpkaLqVhIYLjXaWjoRhiufKyFRySvwucdPSS1bZOaMUKHBnHCUmwBLczW0Ua22ARPHB5BFmPgNclOhFy8LdYx4o4NssY4B69hiHb83SLMCOC53Sh5zR3BUkAl5g9xWoG9__z3a-f-aX5BdB-fdxuE1SW31tjaXwCdWyRWpR_2X--6VXUafcRvEFA | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQOAAH3ojxzIEbBG1NH9txmsYGe4DEJo1TlSbpNiE6xDoJ-PXYfYyH4MC1Taw2Tp3Ptf0Z4AztrqtdV3KFWJojpC7xqnRDbpW1CANpqLUDZVv03NbAvhk6w6wobJZnu-chycRSL4rdEi4VTu1XcSOiYESOyzY6KFYBlmvNh3ZjET2o2kkzZAqqcTzyhlmxzO9Svh9InyjzR2A0OW-uNmCQP2maZvJ4OY-DS_X-g8Txv6-yCesZAGW1dMdswZKJtmHtCy3hDowa0ZhoOKIRu6s32f1kRDNSto031k87-7C6nFFuvWY1LZ_JaLLedDIzeD2iaADNpp-8rGtiOTbzlBGa3eLQp6z2cxcGV41-vcWzhgxcWZ4VcxOGjqzYOhAKHXL0tIQdKl0JCVMqJyQ-r6BihNTkxenAMUJ5QjmSOMIqnnDFHhSiaWT2gTkaHRVL2QHiP1vjGFUqG3SePFSeUw28IpznWvGfU94Nf8GwnCyfj8vnJ8vnvxbhKFecn32DM19YjiBumqoowkWuh8_bf0s7-N_wU1hp9bsdv3Pdax_CqkVqTbL9jqAQv8zNMaKWODjJNukHfIPimg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTIwejM-Iou7Bm26Abp9HgiC-kERIuDXbfQAHC5GS6L93pg9Aowev7e42-Trd_aYz8w0hV7Dvusp1BZPApRlQ6hoLhGuYVVfcREJjawfMtui6nYH9MHSGa1X8abZ7EZLMahpQpSlOqjNlqsvCt1RXhWErVjBKeAiwyE0bhRLAogdWYxlHCOy0LTKG1xgcfsO8bOb3Nb4fTSu--SNEmp487T2ym1NG2sje8T7Z0PEB2VkTEjwko1Y8RuGMeER7zTv6OhnhjEwf45P2s148tCnmmA2vaEOJGW5ztDudzDVcj_H_Pc7G37L0WSdirBeZhjN9gaFvebXmERm0W_1mh-UtFJi0PCth2hhH-LaKuAQXGnwjbhupfIMsUDoGFbgiX3Oh0O9SkaO59Lh0BKp6-R53-TEpxdNYnxDqKHAtLGlHwNhsBWNkra7B3fEAZCeIvDK5LtALZ5lSRrjURE6xDgHrMMU6_CiTSgFwmH8185BbDkc1mYCXyU0B-ur236ud_m_4Jdnq3bbDp_vu4xnZttAE0vS8Cikl7wt9DjQjiS5SS_oCPTLJqA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+PCG+Signal+Quality+Through+Cascaded+Adaptive+Noise+Cancelling+with+Metaheuristic+Optimization&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Alla%2C+Madhava+Rao&rft.au=Nayak%2C+Chandan&rft.date=2025-10-01&rft.pub=Springer+US&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=44&rft.issue=10&rft.spage=7776&rft.epage=7815&rft_id=info:doi/10.1007%2Fs00034-025-03166-x&rft.externalDocID=10_1007_s00034_025_03166_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon |