Grain refinement and plasma electrolytic oxidation of a Mg–Zn–Zr–Ce alloy: a synergistic approach to enhancing mechanical properties and stress-corrosion cracking resistance

This study explores the effect of surface modification of the Mg–Zn–Zr–Ce alloy in three structural states with varying degrees of grain refinement: coarse-grained, fine-grained, and ultrafine-grained (UFG) structures. To modify the surface, Sr-doped calcium phosphate coatings were deposited on magn...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 60; no. 28; pp. 12013 - 12041
Main Authors Kashin, Alexander, Prosolov, Konstantin, Eroshenko, Anna, Sedelnikova, Maria, Luginin, Nikita, Khimich, Margarita, Gnedenkov, Andrey, Sinebryukhov, Sergey, Nomerovskii, Alexey, Marchenko, Valeriia, Gnedenkov, Sergey, Sharkeev, Yurii
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-2461
1573-4803
DOI10.1007/s10853-025-11061-8

Cover

Abstract This study explores the effect of surface modification of the Mg–Zn–Zr–Ce alloy in three structural states with varying degrees of grain refinement: coarse-grained, fine-grained, and ultrafine-grained (UFG) structures. To modify the surface, Sr-doped calcium phosphate coatings were deposited on magnesium (Mg) substrates via plasma electrolytic oxidation (PEO). This is especially relevant given the rapid dissolution rate of Mg, its insufficient mechanical properties and ambiguous behavior under the conditions of stress-corrosion cracking (SCC), a subject that has received sparse research attention. Our findings during the study indicate that the coatings maintained consistent structural and elemental properties upon substrate grain refinement. In the case of coated FG and UFG Mg substrates, phases of α-tricalcium phosphate (α-TCP), β-tricalcium phosphate (β-TCP), and periclase (MgO) were identified, with tricalcium phosphate (TCP) and hydroxyapatite crystallites visible in the coatings structure. A comprehensive structural characterization allowed us to conclude that grain refinement results in higher adhesion strength of the coatings and overall corrosion resistance of the studied samples. The SCC studies of the samples revealed that the UFG sample of the Mg–Zr–Zn–Ce alloy modified with PEO coating exhibited the highest resistance to corrosion cracking in a 0.9% NaCl solution under static loading conditions. It can be inferred that the combination of severe plastic deformation and Sr-doped calcium phosphate coatings could potentially lead to a significant improvement in the service life and operational characteristics of Mg-based implants.
AbstractList This study explores the effect of surface modification of the Mg–Zn–Zr–Ce alloy in three structural states with varying degrees of grain refinement: coarse-grained, fine-grained, and ultrafine-grained (UFG) structures. To modify the surface, Sr-doped calcium phosphate coatings were deposited on magnesium (Mg) substrates via plasma electrolytic oxidation (PEO). This is especially relevant given the rapid dissolution rate of Mg, its insufficient mechanical properties and ambiguous behavior under the conditions of stress-corrosion cracking (SCC), a subject that has received sparse research attention. Our findings during the study indicate that the coatings maintained consistent structural and elemental properties upon substrate grain refinement. In the case of coated FG and UFG Mg substrates, phases of α-tricalcium phosphate (α-TCP), β-tricalcium phosphate (β-TCP), and periclase (MgO) were identified, with tricalcium phosphate (TCP) and hydroxyapatite crystallites visible in the coatings structure. A comprehensive structural characterization allowed us to conclude that grain refinement results in higher adhesion strength of the coatings and overall corrosion resistance of the studied samples. The SCC studies of the samples revealed that the UFG sample of the Mg–Zr–Zn–Ce alloy modified with PEO coating exhibited the highest resistance to corrosion cracking in a 0.9% NaCl solution under static loading conditions. It can be inferred that the combination of severe plastic deformation and Sr-doped calcium phosphate coatings could potentially lead to a significant improvement in the service life and operational characteristics of Mg-based implants.
Author Luginin, Nikita
Sinebryukhov, Sergey
Nomerovskii, Alexey
Gnedenkov, Sergey
Sharkeev, Yurii
Khimich, Margarita
Prosolov, Konstantin
Sedelnikova, Maria
Kashin, Alexander
Gnedenkov, Andrey
Marchenko, Valeriia
Eroshenko, Anna
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0003-1860-3654
  surname: Kashin
  fullname: Kashin, Alexander
  email: kash@ispms.ru
  organization: Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences
– sequence: 2
  givenname: Konstantin
  surname: Prosolov
  fullname: Prosolov, Konstantin
  organization: Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences
– sequence: 3
  givenname: Anna
  surname: Eroshenko
  fullname: Eroshenko, Anna
  organization: Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences
– sequence: 4
  givenname: Maria
  surname: Sedelnikova
  fullname: Sedelnikova, Maria
  organization: Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences
– sequence: 5
  givenname: Nikita
  surname: Luginin
  fullname: Luginin, Nikita
  organization: Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, School of Non-Destructive Testing, Research School of High-Energy Physics, National Research Tomsk Polytechnic University
– sequence: 6
  givenname: Margarita
  surname: Khimich
  fullname: Khimich, Margarita
  organization: Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences
– sequence: 7
  givenname: Andrey
  surname: Gnedenkov
  fullname: Gnedenkov, Andrey
  organization: Institute of Chemistry of FEB RAS
– sequence: 8
  givenname: Sergey
  surname: Sinebryukhov
  fullname: Sinebryukhov, Sergey
  organization: Institute of Chemistry of FEB RAS
– sequence: 9
  givenname: Alexey
  surname: Nomerovskii
  fullname: Nomerovskii, Alexey
  organization: Institute of Chemistry of FEB RAS
– sequence: 10
  givenname: Valeriia
  surname: Marchenko
  fullname: Marchenko, Valeriia
  organization: Institute of Chemistry of FEB RAS
– sequence: 11
  givenname: Sergey
  surname: Gnedenkov
  fullname: Gnedenkov, Sergey
  organization: Institute of Chemistry of FEB RAS
– sequence: 12
  givenname: Yurii
  surname: Sharkeev
  fullname: Sharkeev, Yurii
  organization: Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, School of Non-Destructive Testing, Research School of High-Energy Physics, National Research Tomsk Polytechnic University
BookMark eNp9Uc1u1DAQtlArsW15AU6WOBs8dhIn3NAKSqVWXOiFizVxJluXrB3sVGJvfQcepW_Ek-B0kbghWeOR5_sZ-TtjJyEGYuw1yLcgpXmXQba1FlLVAkA2INoXbAO10aJqpT5hGymVEqpq4CU7y_leSlkbBRv2dJnQB55o9IH2FBaOYeDzhHmPnCZyS4rTYfGOx59-wMXHwOPIkd_sfj_--hbWkkrZEsdpiof3ZZQPgdLO55WF85wiuju-RE7hDoPzYcf35ErrHU68jGdKi6f87JyXRDkLF1OKeTVzCd33lVPei2QRoAt2OuKU6dXf-5zdfvr4dftZXH-5vNp-uBZOGbUIN_auQalQ4dAPfTcOxshKg6xd3xqzHt0Zo6GBqmu0q3RPTnYaEHoiAn3O3hx1y44_Higv9j4-pFAsrVYauhaaZkWpI8qVjXP5SDsnv8d0sCDtGo49hmNLOPY5HNsWkj6ScgGHHaV_0v9h_QG61psP
Cites_doi 10.1016/j.surfcoat.2019.02.023
10.1016/j.surfcoat.2021.127552
10.3390/biomimetics8030280
10.1016/j.msec.2008.12.018
10.1016/j.jmst.2023.09.019
10.1038/boneres.2017.59
10.1016/j.apsusc.2015.10.025
10.1016/j.surfcoat.2017.04.001
10.1016/j.matdes.2022.111568
10.1016/j.msea.2012.09.026
10.3390/met10060775
10.3390/ma17051107
10.1016/j.matlet.2008.06.028
10.3390/bioengineering9030107
10.3390/ma13081942
10.1016/j.jallcom.2021.160453
10.1016/j.corsci.2012.04.040
10.1016/j.corsci.2005.05.008
10.1016/j.msec.2014.12.057
10.1016/j.msea.2010.07.081
10.1016/j.bioactmat.2022.05.009
10.1515/corrrev-2021-0088
10.1016/j.mtadv.2023.100446
10.1016/j.jmst.2025.01.016
10.1016/j.mtla.2023.101680
10.1007/s42600-024-00347-6
10.1520/STP18084S
10.1149/1.1415722
10.1016/j.surfcoat.2024.130391
10.1016/j.actamat.2017.02.043
10.1039/D0BM00805B
10.1016/j.apsusc.2013.10.113
10.1007/s10853-020-04451-7
10.1016/B978-0-08-102834-6.00007-0
10.1016/j.corsci.2008.05.018
10.1016/j.corsci.2023.111150
10.1016/j.corsci.2009.09.025
10.1016/j.actamat.2010.09.043
10.1016/j.jallcom.2024.178246
10.3390/ma17112726
10.1016/j.jallcom.2018.02.200
10.1016/j.msea.2017.12.026
10.1080/00150193.2023.2169018
10.3390/met6120308
10.1002/maco.201407980
10.1016/j.jma.2023.05.011
10.1016/j.jma.2017.02.004
10.1016/j.bioactmat.2020.10.025
10.1016/j.matlet.2011.08.079
10.1016/j.biomaterials.2005.10.003
10.1016/j.actbio.2009.04.041
10.1016/j.jma.2023.02.008
10.1149/2.0531807jes
10.1016/S1359-6454(01)00020-9s
10.1016/j.corsci.2019.06.017
10.1016/j.corsci.2016.06.016
10.1007/s11837-015-1366-z
10.1002/jbm.b.33113
10.1016/j.matdes.2010.05.008
10.1016/j.actbio.2009.09.024
10.1016/j.jmst.2024.10.023
10.1016/j.matlet.2008.02.048
10.1016/j.msec.2016.06.020
10.1016/j.ceramint.2023.02.077
10.1016/j.jmrt.2023.06.065
10.1016/j.jma.2022.09.007
10.18323/2782-4039-2022-2-105-112
10.3390/met13111847
10.1080/09506608.2022.2079367
10.1111/ffe.13596
10.3390/met12071136
10.3390/ma15093291
10.3390/coatings14040451
10.1016/j.surfcoat.2020.126521
10.1016/j.surfcoat.2019.04.021
10.1016/j.jma.2022.09.002
10.1016/j.jma.2023.07.016
10.1016/j.jmrt.2025.01.062
10.1016/j.jallcom.2020.158077
10.1016/j.bioactmat.2020.02.002
10.1016/j.jmst.2021.11.053
10.1016/j.actamat.2007.07.052s
10.1016/j.matdes.2009.04.023
10.1016/j.electacta.2018.01.121
10.1016/j.matdes.2019.108259
10.1515/corrrev-2015-0007
10.1016/j.jmst.2015.11.012
10.1016/j.scriptamat.2008.02.032
10.1016/j.biomaterials.2006.11.042
10.1016/j.electacta.2006.09.069
10.1016/j.msea.2008.04.031
10.1016/j.surfcoat.2012.11.055
10.1007/978-3-319-48231-6_69
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10853-025-11061-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 12041
ExternalDocumentID 10_1007_s10853_025_11061_8
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: № 23-13-00359
  funderid: http://dx.doi.org/10.13039/501100006769
GroupedDBID -XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c272t-cfbc6a02a2adbdb9fd77043105cb8778778397731614963c43bec0931a1beee13
IEDL.DBID U2A
ISSN 0022-2461
IngestDate Sat Aug 23 12:45:23 EDT 2025
Thu Jul 24 02:13:08 EDT 2025
Tue Jul 22 01:11:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-cfbc6a02a2adbdb9fd77043105cb8778778397731614963c43bec0931a1beee13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1860-3654
PQID 3231981661
PQPubID 2043599
PageCount 29
ParticipantIDs proquest_journals_3231981661
crossref_primary_10_1007_s10853_025_11061_8
springer_journals_10_1007_s10853_025_11061_8
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References X Guo (11061_CR34) 2022; 15
B Venkateswarlu (11061_CR6) 2023; 27
AC Bîrcă (11061_CR4) 2018; 59
P Das (11061_CR14) 2022; 40
X Lin (11061_CR49) 2014; 288
C Yang (11061_CR39) 2025; 224
C Gao (11061_CR1) 2017; 5
J Jiang (11061_CR93) 2023; 11
J Nachtsheim (11061_CR88) 2024; 477
J Zhang (11061_CR22) 2010; 31
N Luginin (11061_CR26) 2023; 13
AE Coy (11061_CR68) 2010; 52
AD Kashin (11061_CR42) 2023; 8
A Galiyev (11061_CR74) 2001; 49
C Zhao (11061_CR38) 2025; 230
N Winzer (11061_CR94) 2016
(11061_CR65) 2016
A Ma (11061_CR84) 2016; 6
J-W Chang (11061_CR69) 2007; 52
W Li (11061_CR24) 2020; 8
S Jafari (11061_CR13) 2015; 67
D Orlov (11061_CR91) 2011; 59
(11061_CR85) 2022
W-C Kim (11061_CR11) 2008; 62
KA Prosolov (11061_CR35) 2023; 25
Y Liu (11061_CR72) 2018; 264
K Nan (11061_CR44) 2009; 29
MP Staiger (11061_CR3) 2006; 27
J Walker (11061_CR2) 2014; 102
H Yu (11061_CR20) 2013; 559
VS Bystrov (11061_CR52) 2023; 605
JT Lloyd (11061_CR75) 2017; 129
BJ Wang (11061_CR95) 2019; 157
Y Xiong (11061_CR98) 2022; 45
RJ Kavitha (11061_CR46) 2018; 745
Z Wang (11061_CR16) 2023; 218
CC Zhao (11061_CR30) 2025; 35
G Baril (11061_CR71) 2001; 148
J Yang (11061_CR36) 2017; 319
Z Wang (11061_CR18) 2023; 20
Y Sharkeev (11061_CR51) 2022; 12
S Feliu (11061_CR64) 2020; 10
A Bahmani (11061_CR86) 2022; 10
P Bala Srinivasan (11061_CR90) 2008; 59
M Alvarez-Lopez (11061_CR33) 2010; 6
K Chen (11061_CR10) 2015; 33
S Gollapudi (11061_CR62) 2012; 62
RB Heimann (11061_CR9) 2021; 405
X Lin (11061_CR8) 2023; 68
F Feyerabend (11061_CR21) 2010; 6
M Jönsson (11061_CR12) 2006; 48
C Crimu (11061_CR67) 2015; 66
MB Sedelnikova (11061_CR45) 2020; 13
S Diederichs (11061_CR63) 2024; 17
W Yao (11061_CR78) 2022; 118
Z Zhao (11061_CR25) 2009; 30
C Yang (11061_CR61) 2024; 179
S Feliu (11061_CR73) 1993
JJ Zhuang (11061_CR96) 2015; 357
M Demirel (11061_CR43) 2020; 55
Z Lin (11061_CR82) 2021; 879
S Agarwal (11061_CR15) 2016; 68
S Feroz (11061_CR56) 2020
11061_CR53
B Du (11061_CR29) 2020; 5
P Bala Srinivasan (11061_CR89) 2008; 494
11061_CR57
11061_CR58
11061_CR59
11061_CR60
M Sun (11061_CR70) 2016; 111
NS Martynenko (11061_CR23) 2018; 712
S Lv (11061_CR92) 2023; 225
Ł Maj (11061_CR87) 2025; 1010
J Jiang (11061_CR83) 2013; 216
X Zhang (11061_CR32) 2012; 66
G Zhang (11061_CR40) 2018; 165
AS Gnedenkov (11061_CR54) 2023; 11
G Mani (11061_CR17) 2007; 28
C Yang (11061_CR80) 2024; 14
Y Yang (11061_CR5) 2020; 185
MB Sedelnikova (11061_CR41) 2019; 369
P Pesode (11061_CR81) 2024; 40
J Han (11061_CR47) 2016; 32
J Bohlen (11061_CR28) 2010; 527
H Shi (11061_CR48) 2021; 6
N Singh (11061_CR79) 2023; 19
Gh Barati Darband (11061_CR37) 2017; 5
11061_CR31
J Lou (11061_CR55) 2021; 422
S Amukarimi (11061_CR7) 2022; 9
A Bahmani (11061_CR27) 2021; 856
Y-L Zhou (11061_CR19) 2015; 49
A Fattah-alhosseini (11061_CR77) 2022; 10
P Bala Srinivasan (11061_CR97) 2008; 50
B Morończyk (11061_CR66) 2019; 363
W-l Xu (11061_CR50) 2023; 49
Y Estrin (11061_CR76) 2007; 55
References_xml – volume: 363
  start-page: 142
  year: 2019
  ident: 11061_CR66
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.02.023
– volume: 422
  year: 2021
  ident: 11061_CR55
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2021.127552
– volume: 8
  start-page: 280
  year: 2023
  ident: 11061_CR42
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8030280
– volume: 29
  start-page: 1554
  year: 2009
  ident: 11061_CR44
  publication-title: Mater Sci Eng, C
  doi: 10.1016/j.msec.2008.12.018
– volume: 179
  start-page: 224
  year: 2024
  ident: 11061_CR61
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2023.09.019
– volume: 5
  start-page: 17059
  year: 2017
  ident: 11061_CR1
  publication-title: Bone Res
  doi: 10.1038/boneres.2017.59
– volume: 357
  start-page: 1463
  year: 2015
  ident: 11061_CR96
  publication-title: Appl Surface Sci
  doi: 10.1016/j.apsusc.2015.10.025
– volume: 319
  start-page: 359
  year: 2017
  ident: 11061_CR36
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2017.04.001
– volume: 225
  start-page: 111568
  year: 2023
  ident: 11061_CR92
  publication-title: Mater Design
  doi: 10.1016/j.matdes.2022.111568
– volume: 559
  start-page: 798
  year: 2013
  ident: 11061_CR20
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2012.09.026
– volume: 10
  start-page: 775
  year: 2020
  ident: 11061_CR64
  publication-title: Metals
  doi: 10.3390/met10060775
– ident: 11061_CR57
  doi: 10.3390/ma17051107
– volume: 62
  start-page: 4146
  year: 2008
  ident: 11061_CR11
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2008.06.028
– ident: 11061_CR53
– volume: 9
  start-page: 107
  year: 2022
  ident: 11061_CR7
  publication-title: Bioengineering
  doi: 10.3390/bioengineering9030107
– volume: 13
  start-page: 1942
  year: 2020
  ident: 11061_CR45
  publication-title: Materials
  doi: 10.3390/ma13081942
– volume: 879
  year: 2021
  ident: 11061_CR82
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2021.160453
– volume: 62
  start-page: 90
  year: 2012
  ident: 11061_CR62
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2012.04.040
– volume: 48
  start-page: 1193
  year: 2006
  ident: 11061_CR12
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2005.05.008
– volume: 49
  start-page: 93
  year: 2015
  ident: 11061_CR19
  publication-title: Mater Sci Eng, C
  doi: 10.1016/j.msec.2014.12.057
– volume: 527
  start-page: 7092
  year: 2010
  ident: 11061_CR28
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2010.07.081
– volume: 19
  start-page: 717
  year: 2023
  ident: 11061_CR79
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2022.05.009
– volume: 40
  start-page: 289
  issue: 4
  year: 2022
  ident: 11061_CR14
  publication-title: Corros Rev
  doi: 10.1515/corrrev-2021-0088
– volume: 20
  start-page: 100446
  year: 2023
  ident: 11061_CR18
  publication-title: Mater Today Adv
  doi: 10.1016/j.mtadv.2023.100446
– volume: 230
  start-page: 60
  year: 2025
  ident: 11061_CR38
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2025.01.016
– volume: 27
  year: 2023
  ident: 11061_CR6
  publication-title: Materialia
  doi: 10.1016/j.mtla.2023.101680
– ident: 11061_CR58
– volume: 40
  start-page: 409
  year: 2024
  ident: 11061_CR81
  publication-title: Res Biomed Eng
  doi: 10.1007/s42600-024-00347-6
– volume-title: Nanostructures and thin films for multifunctional applications: technology, properties and devices, NanoScience and technology
  year: 2016
  ident: 11061_CR65
– start-page: 438
  volume-title: Electrochemical impedance: analysis and interpretation
  year: 1993
  ident: 11061_CR73
  doi: 10.1520/STP18084S
– volume: 148
  start-page: B489
  year: 2001
  ident: 11061_CR71
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1415722
– volume: 477
  year: 2024
  ident: 11061_CR88
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2024.130391
– volume: 129
  start-page: 149
  year: 2017
  ident: 11061_CR75
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2017.02.043
– volume: 8
  start-page: 5071
  year: 2020
  ident: 11061_CR24
  publication-title: Biomater Sci
  doi: 10.1039/D0BM00805B
– volume: 288
  start-page: 718
  year: 2014
  ident: 11061_CR49
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2013.10.113
– volume: 55
  start-page: 6305
  year: 2020
  ident: 11061_CR43
  publication-title: J Mater Sci
  doi: 10.1007/s10853-020-04451-7
– start-page: 175
  volume-title: Handbook of ionic substituted hydroxyapatites
  year: 2020
  ident: 11061_CR56
  doi: 10.1016/B978-0-08-102834-6.00007-0
– volume: 50
  start-page: 2415
  issue: 8
  year: 2008
  ident: 11061_CR97
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2008.05.018
– volume: 218
  year: 2023
  ident: 11061_CR16
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2023.111150
– volume: 52
  start-page: 387
  year: 2010
  ident: 11061_CR68
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2009.09.025
– volume: 59
  start-page: 375
  issue: 1
  year: 2011
  ident: 11061_CR91
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.09.043
– volume: 1010
  year: 2025
  ident: 11061_CR87
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2024.178246
– volume: 17
  start-page: 2726
  year: 2024
  ident: 11061_CR63
  publication-title: Materials
  doi: 10.3390/ma17112726
– volume: 745
  start-page: 725
  year: 2018
  ident: 11061_CR46
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2018.02.200
– volume: 712
  start-page: 625
  year: 2018
  ident: 11061_CR23
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2017.12.026
– volume: 605
  start-page: 117
  year: 2023
  ident: 11061_CR52
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2023.2169018
– volume: 6
  start-page: 308
  year: 2016
  ident: 11061_CR84
  publication-title: Metals
  doi: 10.3390/met6120308
– volume: 66
  start-page: 649
  year: 2015
  ident: 11061_CR67
  publication-title: Mater Corros
  doi: 10.1002/maco.201407980
– volume: 11
  start-page: 1906
  issue: 6
  year: 2023
  ident: 11061_CR93
  publication-title: J Magnesium Alloys
  doi: 10.1016/j.jma.2023.05.011
– volume: 5
  start-page: 74
  year: 2017
  ident: 11061_CR37
  publication-title: J Magnesium Alloys
  doi: 10.1016/j.jma.2017.02.004
– volume: 6
  start-page: 1267
  year: 2021
  ident: 11061_CR48
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2020.10.025
– volume: 66
  start-page: 209
  year: 2012
  ident: 11061_CR32
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2011.08.079
– volume: 27
  start-page: 1728
  year: 2006
  ident: 11061_CR3
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.003
– volume: 6
  start-page: 1763
  year: 2010
  ident: 11061_CR33
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2009.04.041
– ident: 11061_CR60
  doi: 10.1016/j.jma.2023.02.008
– volume: 165
  start-page: C317
  year: 2018
  ident: 11061_CR40
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0531807jes
– volume: 49
  start-page: 1199
  issue: 7
  year: 2001
  ident: 11061_CR74
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00020-9s
– volume: 157
  start-page: 347
  year: 2019
  ident: 11061_CR95
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2019.06.017
– volume: 111
  start-page: 753
  year: 2016
  ident: 11061_CR70
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2016.06.016
– volume: 67
  start-page: 1143
  issue: 5
  year: 2015
  ident: 11061_CR13
  publication-title: JOM
  doi: 10.1007/s11837-015-1366-z
– volume: 102
  start-page: 1316
  year: 2014
  ident: 11061_CR2
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.b.33113
– volume: 31
  start-page: 4043
  year: 2010
  ident: 11061_CR22
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.05.008
– volume: 6
  start-page: 1834
  year: 2010
  ident: 11061_CR21
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2009.09.024
– volume: 224
  start-page: 312
  year: 2025
  ident: 11061_CR39
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2024.10.023
– ident: 11061_CR59
  doi: 10.1016/j.matlet.2008.02.048
– volume: 68
  start-page: 948
  year: 2016
  ident: 11061_CR15
  publication-title: Mater Sci Eng, C
  doi: 10.1016/j.msec.2016.06.020
– volume: 49
  start-page: 17148
  year: 2023
  ident: 11061_CR50
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2023.02.077
– volume: 25
  start-page: 2177
  year: 2023
  ident: 11061_CR35
  publication-title: J Market Res
  doi: 10.1016/j.jmrt.2023.06.065
– volume: 10
  start-page: 2607
  issue: 10
  year: 2022
  ident: 11061_CR86
  publication-title: J Magnesium Alloys
  doi: 10.1016/j.jma.2022.09.007
– volume: 59
  start-page: 49
  year: 2018
  ident: 11061_CR4
  publication-title: Rom J Morphol Embryol
– ident: 11061_CR31
  doi: 10.18323/2782-4039-2022-2-105-112
– volume: 13
  start-page: 1847
  year: 2023
  ident: 11061_CR26
  publication-title: Metals
  doi: 10.3390/met13111847
– volume: 68
  start-page: 365
  issue: 4
  year: 2023
  ident: 11061_CR8
  publication-title: Int Mater Rev
  doi: 10.1080/09506608.2022.2079367
– volume: 45
  start-page: 239
  issue: 1
  year: 2022
  ident: 11061_CR98
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.13596
– volume: 12
  start-page: 1136
  year: 2022
  ident: 11061_CR51
  publication-title: Mech. Biol. Prop. Metals
  doi: 10.3390/met12071136
– volume: 15
  start-page: 3291
  year: 2022
  ident: 11061_CR34
  publication-title: Materials
  doi: 10.3390/ma15093291
– volume: 14
  start-page: 451
  year: 2024
  ident: 11061_CR80
  publication-title: Coatings
  doi: 10.3390/coatings14040451
– volume: 405
  year: 2021
  ident: 11061_CR9
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2020.126521
– volume: 369
  start-page: 52
  year: 2019
  ident: 11061_CR41
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.04.021
– volume: 10
  start-page: 2354
  issue: 9
  year: 2022
  ident: 11061_CR77
  publication-title: J Magnesium Alloys
  doi: 10.1016/j.jma.2022.09.002
– volume: 11
  start-page: 3688
  year: 2023
  ident: 11061_CR54
  publication-title: J Magnesium Alloys
  doi: 10.1016/j.jma.2023.07.016
– volume: 35
  start-page: 435
  year: 2025
  ident: 11061_CR30
  publication-title: J Market Res
  doi: 10.1016/j.jmrt.2025.01.062
– volume: 856
  year: 2021
  ident: 11061_CR27
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2020.158077
– volume: 5
  start-page: 219
  issue: 2
  year: 2020
  ident: 11061_CR29
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2020.02.002
– volume: 118
  start-page: 158
  year: 2022
  ident: 11061_CR78
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.11.053
– volume: 55
  start-page: 6401
  issue: 19
  year: 2007
  ident: 11061_CR76
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.07.052s
– volume: 30
  start-page: 4557
  year: 2009
  ident: 11061_CR25
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2009.04.023
– volume: 264
  start-page: 101
  year: 2018
  ident: 11061_CR72
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.01.121
– volume: 185
  year: 2020
  ident: 11061_CR5
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.108259
– volume: 33
  start-page: 101
  year: 2015
  ident: 11061_CR10
  publication-title: Corros Rev
  doi: 10.1515/corrrev-2015-0007
– volume: 32
  start-page: 233
  year: 2016
  ident: 11061_CR47
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2015.11.012
– volume: 59
  start-page: 43
  issue: 1
  year: 2008
  ident: 11061_CR90
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2008.02.032
– volume: 28
  start-page: 1689
  year: 2007
  ident: 11061_CR17
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.11.042
– volume-title: Conversion coatings for magnesium and its alloys
  year: 2022
  ident: 11061_CR85
– volume: 52
  start-page: 3160
  year: 2007
  ident: 11061_CR69
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2006.09.069
– volume: 494
  start-page: 401
  issue: 1-2
  year: 2008
  ident: 11061_CR89
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.04.031
– volume: 216
  start-page: 259
  year: 2013
  ident: 11061_CR83
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2012.11.055
– start-page: 365
  volume-title: Magnesium technology 2014
  year: 2016
  ident: 11061_CR94
  doi: 10.1007/978-3-319-48231-6_69
SSID ssj0005721
Score 2.4702985
Snippet This study explores the effect of surface modification of the Mg–Zn–Zr–Ce alloy in three structural states with varying degrees of grain refinement:...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 12013
SubjectTerms Biodegradation
Calcium phosphates
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coatings
Corrosion resistance
Crystallites
Crystallography and Scattering Methods
Deformation
Grain refinement
Grain size
Hydroxyapatite
Magnesium base alloys
Materials Science
Mechanical properties
Metals & Corrosion
Methods
Oxidation
Periclase
Phosphate coatings
Physiology
Plastic deformation
Polymer Sciences
Service life
Solid Mechanics
Stress corrosion cracking
Strontium
Structural analysis
Substrates
Tensile strength
Titanium alloys
Transplants & implants
Ultrafines
Zinc
Zirconium
Title Grain refinement and plasma electrolytic oxidation of a Mg–Zn–Zr–Ce alloy: a synergistic approach to enhancing mechanical properties and stress-corrosion cracking resistance
URI https://link.springer.com/article/10.1007/s10853-025-11061-8
https://www.proquest.com/docview/3231981661
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTsMwELWgbGCB-IpCqbxgB5bi_Nywa6t-BGpXVCpsIttxChJNqrZIdMcdOAo34iTMpIlaECyQIkeKEzvRjDPPHs8bQi6kFYsg5hHzjZbMDWLJAjcOkLbSuI60fJ0l7ev1_e7AvRl6wzwobFbsdi9cktmfei3YDUwLw_SrHOcxrLZJtjzkkwItHtj11cYOYfOCIxzZ0vJQmd_b-G6OVhjzh1s0szbtPbKbw0RaX8p1n2yY5IDsrJEHHpKPDmZ3oNAkXMM1PiqTiE4ADY8lzbPbPC_geZq-Pi0zJ9E0ppL2Rp9v7w8JFlMomoai831xDVWzBYYCZtzNtGAbp_OUmuQReTmSER0bDBVGydIJruNPkZA163kZdcJgNgtfip3pqdS4EA-vOEOUCup1RAbt1l2zy_IUDEzbwp4zHSvtS8uWtoxUpII4EgLpeCxPq5oQeCCCdAA3ujCUteuATliBwyVXxhjuHJNSkibmhFDjukoZmCBpD7XAq3HucBULsI8-50KWyWUhiXCyZNoIV5zKKLcQ5BZmcgtrZVIphBXmo24WOgBWA3SE8jK5KgS4qv67tdP_3X5Gtm3UoWzXboWU5tMXcw7YZK6qZKvebjT6eO7c37aqmWp-AZjP5FE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagDMCA-BWFAh7YwFKcpHHDVlWUAm2nVqpYIttxChJNq7RIdOMdeBTeiCfhLj9qQTAgRR7ixE50l9x3Pt93hJxLKxJ-xEPmGS2Z60eS-W7kI22lcR1peTot2tfpeq2-ezeoDvKksGmx270ISaZ_6qVkNzAtDMuvcvRjWG2VrGGYEV2uvl1fbOwQNi84wpEtLU-V-X2M7-ZogTF_hEVTa9PcJls5TKT1TK47ZMXEu2RziTxwj3zcYHUHCkPCOVzjozIO6QTQ8EjSvLrN8xzup-PXp6xyEh1HVNLO8PPt_SHGJoGmYSgG3-dX0DWdYypgyt1MC7ZxOhtTEz8iL0c8pCODqcIoWTrBdfwECVnTmbOsEwbeLLwpTqYTqXEhHh5xiigV1Guf9JvXvUaL5SUYmLaFPWM6UtqTli1tGapQ-VEoBNLxWFWtakLggQjSAdzowqesXQd0wvIdLrkyxnDngJTicWwOCTWuq5QBB0lXUQuqNc4driIB9tHjXMgyuSgkEUwypo1gwamMcgtAbkEqt6BWJpVCWEH-1U0DB8Cqj4FQXiaXhQAX3X-PdvS_y8_IeqvXaQft2-79MdmwUZ_SHbwVUpolL-YEcMpMnaZq-QUI6eQk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7RRarKgf4ilp_Wh95aQ5x44w03tOxCS0E9FIn2EtmOTSsgu9oNEttT34FH6RvxJMzkR7ug9lBVinyIE9vJTDKfPZ5vAN7qwKvEi4zHzmouE695In1CtJVORjqIbZm07-g4PjiRH087p3NR_OVu98YlWcU0EEtTXmyPMr89F_iGZoZTKlZBcxrefQSLknJItGBxd__rYX-2zUOFomEMJ-60OnDmz63cN04zxPnASVransFT0M2oqy0n51tXhdmyPx8QOv7PYz2D5RqYst1Kk57DgstfwNIcXeFL-L1P-SQYDhvP0aoi03nGRoi_LzWr8-lcTPF-Nrz-UeVqYkPPNDs6u_118y2nYoxFzzFy9093sGoypeDDki2aNfzmrBgyl38nJpD8jF06Ck4mXWIj8hyMiQK27LmKc-E4f8a3SZ3Zsba09I9DnBAuRoV-BSeD_pfeAa-TPnAbqrDg1hsb6yDUoc5MZhKfKUUEQEHHmq5SdBBmjRCpSvx5WBmhFgZJJLQwzjkRrUArH-ZuFZiT0hiHUzLbIb3rdIWIhPEKLXIshNJteNdIOx1V3B7pjMWZRJGiKNJSFGm3DRuNQqT1dz5JI4THCbleRRveN_KdVf-9tbV_u_wNPP68N0g_fTg-XIcnIWlIuWV4A1rF-MptIjAqzOta9-8A3VoKCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain+refinement+and+plasma+electrolytic+oxidation+of+a+Mg%E2%80%93Zn%E2%80%93Zr%E2%80%93Ce+alloy%3A+a+synergistic+approach+to+enhancing+mechanical+properties+and+stress-corrosion+cracking+resistance&rft.jtitle=Journal+of+materials+science&rft.au=Kashin%2C+Alexander&rft.au=Prosolov%2C+Konstantin&rft.au=Eroshenko%2C+Anna&rft.au=Sedelnikova%2C+Maria&rft.date=2025-07-01&rft.pub=Springer+US&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=60&rft.issue=28&rft.spage=12013&rft.epage=12041&rft_id=info:doi/10.1007%2Fs10853-025-11061-8&rft.externalDocID=10_1007_s10853_025_11061_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon