CEM-YOLO: multi-branch residual feature fusion and convolutional maxpooling downsampling for real-time vehicle detection in night scenarios

Real-time vehicle detection at night faces significant challenges: ineffective low-light feature extraction, low computational efficiency hampering real-time performance, subpar detection of small and occluded vehicles, and limited cross-scenario generalization. To address these issues, this paper p...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 19; no. 9
Main Authors Liu, Li-Juan, Jia, Rushi, Karimi, Hamid Reza
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1863-1703
1863-1711
DOI10.1007/s11760-025-04313-2

Cover

Abstract Real-time vehicle detection at night faces significant challenges: ineffective low-light feature extraction, low computational efficiency hampering real-time performance, subpar detection of small and occluded vehicles, and limited cross-scenario generalization. To address these issues, this paper presents CEM-YOLO, an enhanced YOLO algorithm leveraging deep learning for nighttime vehicle detection. Two novel modules, Convolutional Maxpooling Downsampling and Multi-branch Residual Feature Fusion, are introduced to mitigate model complexity, reduce feature redundancy, and safeguard input features. Additionally, the Efficient Multi-Scale Attention Module is integrated into the Neck network’s detection layers. Extensive experiments and ablation studies on benchmark datasets demonstrate that CEM-YOLO excels in nighttime scenarios, achieving an optimal speed-accuracy balance for real-time applications.
AbstractList Real-time vehicle detection at night faces significant challenges: ineffective low-light feature extraction, low computational efficiency hampering real-time performance, subpar detection of small and occluded vehicles, and limited cross-scenario generalization. To address these issues, this paper presents CEM-YOLO, an enhanced YOLO algorithm leveraging deep learning for nighttime vehicle detection. Two novel modules, Convolutional Maxpooling Downsampling and Multi-branch Residual Feature Fusion, are introduced to mitigate model complexity, reduce feature redundancy, and safeguard input features. Additionally, the Efficient Multi-Scale Attention Module is integrated into the Neck network’s detection layers. Extensive experiments and ablation studies on benchmark datasets demonstrate that CEM-YOLO excels in nighttime scenarios, achieving an optimal speed-accuracy balance for real-time applications.
ArticleNumber 740
Author Jia, Rushi
Karimi, Hamid Reza
Liu, Li-Juan
Author_xml – sequence: 1
  givenname: Li-Juan
  surname: Liu
  fullname: Liu, Li-Juan
  organization: School of Railway Intelligent Engineering, Dalian Jiaotong University, School of Information Science, Beijing Language and Culture University
– sequence: 2
  givenname: Rushi
  surname: Jia
  fullname: Jia, Rushi
  organization: School of Railway Intelligent Engineering, Dalian Jiaotong University
– sequence: 3
  givenname: Hamid Reza
  surname: Karimi
  fullname: Karimi, Hamid Reza
  email: hamidreza.karimi@polimi.it
  organization: Department of Mechanical Engineering, Politecnico di Milano
BookMark eNp9kM1OHDEQhK2ISCGEF-BkKWcH_8x4ltyiFQGkRXshB05Wj93eNZqxF3uGwDPw0jEsCjf60l1SVUn9fSUHMUUk5ETwH4Lz7rQI0WnOuGwZb5RQTH4ih2KhFROdEAf_b66-kONS7ngdJbuFXhyS5-X5Nbtdr9Y_6TgPU2B9hmi3NGMJboaBeoRpzkj9XEKKFKKjNsWHNMxT1dUwwuMupSHEDXXpbyww7l6FT7m2wMCmMCJ9wG2wA1KHE9qXJA2RxrDZTrRYjJBDKt_IZw9DweO3fUT-_D6_WV6y1friavlrxazs5MRAo1R9y62y1kHbdxyg79VZo7h03nGOqulBKA9Yl154dHAmfO9A67bRWh2R7_veXU73M5bJ3KU511-KUVJK1ciGt9Ul9y6bUykZvdnlMEJ-MoKbF-5mz91U7uaVu5E1pPahUs1xg_m9-oPUPyNUitY
Cites_doi 10.3390/s24051563
10.1007/s11760-024-03576-5
10.1109/cvpr.2016.91
10.1201/9781420089653-10
10.1016/j.imavis.2024.105052
10.3390/s25071959
10.1007/978-3-319-10602-1_48
10.1007/978-3-030-20887-5_43
10.1016/j.cviu.2020.102907
10.1109/tpami.2016.2577031
10.1007/s11760-025-03868-4
10.1016/j.aej.2024.07.011
10.1016/j.optlastec.2025.112802
10.1109/icassp49357.2023.10096516
10.1109/CISAT62382.2024.10695254
10.48550/arXiv.1502.03167
10.1109/cvpr42600.2020.00271
10.20165/j.cnki.ISSN1673-629X.2024.0283
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11760-025-04313-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
ExternalDocumentID 10_1007_s11760_025_04313_2
GrantInformation_xml – fundername: Research Foundation of Liaoning Province
  grantid: No.LJKQZ20222447
GroupedDBID .VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHWEU
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
ZMTXR
~A9
-Y2
2VQ
AARHV
AAYXX
ABRTQ
ABULA
ACBXY
AEBTG
AFGCZ
AGJBK
AHSBF
AIAKS
AJBLW
BDATZ
CAG
CITATION
COF
EJD
FINBP
FSGXE
H13
O9-
JQ2
ID FETCH-LOGICAL-c272t-a6e23b50c3ccda5b70aabb394302dfd00e34ba13faeba168feda91fbda6654663
IEDL.DBID AGYKE
ISSN 1863-1703
IngestDate Thu Sep 25 00:57:17 EDT 2025
Wed Oct 01 05:47:51 EDT 2025
Fri Jul 04 01:22:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep learning
Convolutional Maxpooling Downsampling
Real-time vehicle detection
MobileViT
Multi-branch Residual Feature Fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-a6e23b50c3ccda5b70aabb394302dfd00e34ba13faeba168feda91fbda6654663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3222342405
PQPubID 2044169
ParticipantIDs proquest_journals_3222342405
crossref_primary_10_1007_s11760_025_04313_2
springer_journals_10_1007_s11760_025_04313_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 4313_CR19
Y Wang (4313_CR13) 2025; 187
4313_CR15
4313_CR14
4313_CR16
J Liu (4313_CR12) 2024; 34
4313_CR11
4313_CR10
R Zhao (4313_CR6) 2024; 106
S Ren (4313_CR25) 2017; 39
4313_CR26
W Wang (4313_CR5) 2024; 147
L Guo (4313_CR17) 2025; 19
L Wen (4313_CR8) 2020; 193
4313_CR4
Z Wang (4313_CR18) 2025; 25
4313_CR3
4313_CR2
4313_CR1
4313_CR22
4313_CR7
4313_CR21
4313_CR24
4313_CR23
4313_CR20
4313_CR9
References_xml – ident: 4313_CR4
  doi: 10.3390/s24051563
– ident: 4313_CR19
– ident: 4313_CR15
  doi: 10.1007/s11760-024-03576-5
– ident: 4313_CR11
– ident: 4313_CR14
  doi: 10.1109/cvpr.2016.91
– ident: 4313_CR3
  doi: 10.1201/9781420089653-10
– volume: 147
  year: 2024
  ident: 4313_CR5
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2024.105052
– volume: 25
  start-page: 1959
  year: 2025
  ident: 4313_CR18
  publication-title: Sensors
  doi: 10.3390/s25071959
– ident: 4313_CR23
– ident: 4313_CR21
– ident: 4313_CR9
  doi: 10.1007/978-3-319-10602-1_48
– ident: 4313_CR1
– ident: 4313_CR10
  doi: 10.1007/978-3-030-20887-5_43
– volume: 193
  year: 2020
  ident: 4313_CR8
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2020.102907
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 4313_CR25
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2016.2577031
– volume: 19
  start-page: 299
  year: 2025
  ident: 4313_CR17
  publication-title: SIViP
  doi: 10.1007/s11760-025-03868-4
– volume: 106
  start-page: 298
  year: 2024
  ident: 4313_CR6
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.07.011
– volume: 187
  year: 2025
  ident: 4313_CR13
  publication-title: Optics & Laser Technology
  doi: 10.1016/j.optlastec.2025.112802
– ident: 4313_CR24
  doi: 10.1109/icassp49357.2023.10096516
– ident: 4313_CR16
  doi: 10.1109/CISAT62382.2024.10695254
– ident: 4313_CR22
  doi: 10.48550/arXiv.1502.03167
– ident: 4313_CR26
– ident: 4313_CR7
  doi: 10.1109/cvpr42600.2020.00271
– volume: 34
  start-page: 87
  issue: 12
  year: 2024
  ident: 4313_CR12
  publication-title: Comp. Tech. Develop.
  doi: 10.20165/j.cnki.ISSN1673-629X.2024.0283
– ident: 4313_CR20
– ident: 4313_CR2
SSID ssj0000327868
Score 2.3539734
Snippet Real-time vehicle detection at night faces significant challenges: ineffective low-light feature extraction, low computational efficiency hampering real-time...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Ablation
Computer Imaging
Computer Science
Feature extraction
Image Processing and Computer Vision
Machine learning
Modules
Multimedia Information Systems
Night
Object recognition
Original Paper
Pattern Recognition and Graphics
Real time
Redundancy
Signal,Image and Speech Processing
Vision
Title CEM-YOLO: multi-branch residual feature fusion and convolutional maxpooling downsampling for real-time vehicle detection in night scenarios
URI https://link.springer.com/article/10.1007/s11760-025-04313-2
https://www.proquest.com/docview/3222342405
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: AFBBN
  dateStart: 20070401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: U2A
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3B9gIHCgXEQln5wA1cJXac7HLbVl0qoO2FldpT5I-xiqBpxWYR4i_wp5nxJgpUcOgpimKNnPHYfmPPvAF4FQqT47TU5JsYlIUuo5wVGc0rQgtRlyG3yLnDxyfl0bJ4f2bOuqSwVR_t3l9JppV6SHbLqzKTXH6VCWG0pIV3y7CDMoKt-bvzD8PZSqZVNd1kwXE3crLqLl_m34L-3pMGoHnjbjRtOYttWPad3USafNlbt27P_7zB43jbv3kIDzoMKuYbo3kEd7DZge2-voPopvsO3P-DrPAx_Do4PJbnpx9P34oUhSgd1-S4EOSvp4QuETGRhIq45hM4YZsgOKa9s21qcGl_cEUvkiYCH2pbjmanF8LNJMV-lVzoXnzHC-6WCNimMLFGfG5E4jsRzDxFvv3V6gksF4efDo5kV8pBelWpVtoSlXYm89r7YI2rMmud08z9rkIMWYa6cDbX0SI9ymnEYGd5dMFydWRCRU9h1Fw1-AyEx6owBPLQR4JywThP4mzwCouIs6wcw-t-MOvrDWNHPXAzs9Zr0nqdtF6rMez24113s3dV8-2TLgjrmDG86Ydv-Px_ac9v1_wF3FPJAjhkbRdG7bc1viSM07oJmfRif_9k0pn2BO4u1fw39p_2zA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2h7QE4UCggFgr4wA1cJbHzsb1VVctCd9tLV2pPkT_GKgJSxGZR1b_An-6MN1GggkNPURRr5Nhj-9meeQ_gndd5ilWhaG-So9SqCHKiExpXhBaCKnxqkHOH58fFdKE_n-VnXVLYso92768k40w9JLulZZFIll9lQhglaeLd0GlV6RFs7H08PxrOVhKVldU6C46rkZJXd_ky_zb095o0AM1bd6NxyTnchEVf2XWkydedVWt33PUtHse7_s1jeNRhULG3dponcA-bLdjs9R1EN9y34OEfZIVP4ff-wVyen8xOdkWMQpSWNTkuBO3XY0KXCBhJQkVY8QmcMI0XHNPe-TYV-G6uWNGLrAnPh9qGo9nphXAzWTHfJAvdi194wdUSHtsYJtaIL42IfCeCmadob3-5fAaLw4PT_anspByky8qslabATNk8cco5b3JbJsZYq5j7PfPBJwkqbU2qgkF6FFVAbyZpsN6wOjKhoucwai4bfAHCYalzAnnoAkE5n1tH5ox3GeqAk6QYw_u-M-sfa8aOeuBm5lavqdXr2Op1Nobtvr_rbvQua759UpqwTj6GD333DZ__b-3l3Yq_hfvT0_msnn06PnoFD7LoDRy-tg2j9ucKXxPeae2bzr1vADH591g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHrwLa7PHLxpsE3SdtebqItvPbigp5I0ExS0ilbxP_inncm2rooePJXSMJTOpPkmmfk-xtadTmJopwpzkwSEVqkXHR3hvEK04FXqYgPUO3x6lh709NFVcvWliz9UuzdHkv2eBmJpKqutR-e3Bo1vcZZGgqRYiRxGCfwJj2hcqyn96smdz12WSMms3e-HoxeKMb7rzpnfzXxfnQaQ88cpaVh8ulNsokaNfKfv5mk2BOUMm2wUGXg9QWfY-Bd6wVn2vrt_Kq7PT863eagbFJZUNG44ZtihBYt7CLSe3L_Qnhk3peNUhV5HIw64N2-kwYXWuKNtaEP153iDSBetmDtB0vT8FW7otbiDKhR2lfy25IGhhBNXFGbjD89zrNfdv9w9ELX4gihkJithUpDKJlGhisKZxGaRMdYqYmuXzrsoAqWtiZU3gJe07cGZTuytM6RnjDhmng2XDyUsMF5AphOEZVB4BF8usQWaM66QoD10orTFNpqPnj_2OTbyAZsyuShHF-XBRblsseXGL3k9355zOi9SGtFJ0mKbja8Gj_-2tvi_4Wts9GKvm58cnh0vsTEZIofqzZbZcPX0AisIUCq7GmLwA2oL3qk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CEM-YOLO%3A+multi-branch+residual+feature+fusion+and+convolutional+maxpooling+downsampling+for+real-time+vehicle+detection+in+night+scenarios&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Liu%2C+Li-Juan&rft.au=Jia%2C+Rushi&rft.au=Karimi%2C+Hamid+Reza&rft.date=2025-09-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=19&rft.issue=9&rft_id=info:doi/10.1007%2Fs11760-025-04313-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_025_04313_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon