CEM-YOLO: multi-branch residual feature fusion and convolutional maxpooling downsampling for real-time vehicle detection in night scenarios
Real-time vehicle detection at night faces significant challenges: ineffective low-light feature extraction, low computational efficiency hampering real-time performance, subpar detection of small and occluded vehicles, and limited cross-scenario generalization. To address these issues, this paper p...
Saved in:
Published in | Signal, image and video processing Vol. 19; no. 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.09.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1863-1703 1863-1711 |
DOI | 10.1007/s11760-025-04313-2 |
Cover
Abstract | Real-time vehicle detection at night faces significant challenges: ineffective low-light feature extraction, low computational efficiency hampering real-time performance, subpar detection of small and occluded vehicles, and limited cross-scenario generalization. To address these issues, this paper presents CEM-YOLO, an enhanced YOLO algorithm leveraging deep learning for nighttime vehicle detection. Two novel modules, Convolutional Maxpooling Downsampling and Multi-branch Residual Feature Fusion, are introduced to mitigate model complexity, reduce feature redundancy, and safeguard input features. Additionally, the Efficient Multi-Scale Attention Module is integrated into the Neck network’s detection layers. Extensive experiments and ablation studies on benchmark datasets demonstrate that CEM-YOLO excels in nighttime scenarios, achieving an optimal speed-accuracy balance for real-time applications. |
---|---|
AbstractList | Real-time vehicle detection at night faces significant challenges: ineffective low-light feature extraction, low computational efficiency hampering real-time performance, subpar detection of small and occluded vehicles, and limited cross-scenario generalization. To address these issues, this paper presents CEM-YOLO, an enhanced YOLO algorithm leveraging deep learning for nighttime vehicle detection. Two novel modules, Convolutional Maxpooling Downsampling and Multi-branch Residual Feature Fusion, are introduced to mitigate model complexity, reduce feature redundancy, and safeguard input features. Additionally, the Efficient Multi-Scale Attention Module is integrated into the Neck network’s detection layers. Extensive experiments and ablation studies on benchmark datasets demonstrate that CEM-YOLO excels in nighttime scenarios, achieving an optimal speed-accuracy balance for real-time applications. |
ArticleNumber | 740 |
Author | Jia, Rushi Karimi, Hamid Reza Liu, Li-Juan |
Author_xml | – sequence: 1 givenname: Li-Juan surname: Liu fullname: Liu, Li-Juan organization: School of Railway Intelligent Engineering, Dalian Jiaotong University, School of Information Science, Beijing Language and Culture University – sequence: 2 givenname: Rushi surname: Jia fullname: Jia, Rushi organization: School of Railway Intelligent Engineering, Dalian Jiaotong University – sequence: 3 givenname: Hamid Reza surname: Karimi fullname: Karimi, Hamid Reza email: hamidreza.karimi@polimi.it organization: Department of Mechanical Engineering, Politecnico di Milano |
BookMark | eNp9kM1OHDEQhK2ISCGEF-BkKWcH_8x4ltyiFQGkRXshB05Wj93eNZqxF3uGwDPw0jEsCjf60l1SVUn9fSUHMUUk5ETwH4Lz7rQI0WnOuGwZb5RQTH4ih2KhFROdEAf_b66-kONS7ngdJbuFXhyS5-X5Nbtdr9Y_6TgPU2B9hmi3NGMJboaBeoRpzkj9XEKKFKKjNsWHNMxT1dUwwuMupSHEDXXpbyww7l6FT7m2wMCmMCJ9wG2wA1KHE9qXJA2RxrDZTrRYjJBDKt_IZw9DweO3fUT-_D6_WV6y1friavlrxazs5MRAo1R9y62y1kHbdxyg79VZo7h03nGOqulBKA9Yl154dHAmfO9A67bRWh2R7_veXU73M5bJ3KU511-KUVJK1ciGt9Ul9y6bUykZvdnlMEJ-MoKbF-5mz91U7uaVu5E1pPahUs1xg_m9-oPUPyNUitY |
Cites_doi | 10.3390/s24051563 10.1007/s11760-024-03576-5 10.1109/cvpr.2016.91 10.1201/9781420089653-10 10.1016/j.imavis.2024.105052 10.3390/s25071959 10.1007/978-3-319-10602-1_48 10.1007/978-3-030-20887-5_43 10.1016/j.cviu.2020.102907 10.1109/tpami.2016.2577031 10.1007/s11760-025-03868-4 10.1016/j.aej.2024.07.011 10.1016/j.optlastec.2025.112802 10.1109/icassp49357.2023.10096516 10.1109/CISAT62382.2024.10695254 10.48550/arXiv.1502.03167 10.1109/cvpr42600.2020.00271 10.20165/j.cnki.ISSN1673-629X.2024.0283 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s11760-025-04313-2 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1863-1711 |
ExternalDocumentID | 10_1007_s11760_025_04313_2 |
GrantInformation_xml | – fundername: Research Foundation of Liaoning Province grantid: No.LJKQZ20222447 |
GroupedDBID | .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHWEU AHYZX AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 ZMTXR ~A9 -Y2 2VQ AARHV AAYXX ABRTQ ABULA ACBXY AEBTG AFGCZ AGJBK AHSBF AIAKS AJBLW BDATZ CAG CITATION COF EJD FINBP FSGXE H13 O9- JQ2 |
ID | FETCH-LOGICAL-c272t-a6e23b50c3ccda5b70aabb394302dfd00e34ba13faeba168feda91fbda6654663 |
IEDL.DBID | AGYKE |
ISSN | 1863-1703 |
IngestDate | Thu Sep 25 00:57:17 EDT 2025 Wed Oct 01 05:47:51 EDT 2025 Fri Jul 04 01:22:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Deep learning Convolutional Maxpooling Downsampling Real-time vehicle detection MobileViT Multi-branch Residual Feature Fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-a6e23b50c3ccda5b70aabb394302dfd00e34ba13faeba168feda91fbda6654663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3222342405 |
PQPubID | 2044169 |
ParticipantIDs | proquest_journals_3222342405 crossref_primary_10_1007_s11760_025_04313_2 springer_journals_10_1007_s11760_025_04313_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Signal, image and video processing |
PublicationTitleAbbrev | SIViP |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | 4313_CR19 Y Wang (4313_CR13) 2025; 187 4313_CR15 4313_CR14 4313_CR16 J Liu (4313_CR12) 2024; 34 4313_CR11 4313_CR10 R Zhao (4313_CR6) 2024; 106 S Ren (4313_CR25) 2017; 39 4313_CR26 W Wang (4313_CR5) 2024; 147 L Guo (4313_CR17) 2025; 19 L Wen (4313_CR8) 2020; 193 4313_CR4 Z Wang (4313_CR18) 2025; 25 4313_CR3 4313_CR2 4313_CR1 4313_CR22 4313_CR7 4313_CR21 4313_CR24 4313_CR23 4313_CR20 4313_CR9 |
References_xml | – ident: 4313_CR4 doi: 10.3390/s24051563 – ident: 4313_CR19 – ident: 4313_CR15 doi: 10.1007/s11760-024-03576-5 – ident: 4313_CR11 – ident: 4313_CR14 doi: 10.1109/cvpr.2016.91 – ident: 4313_CR3 doi: 10.1201/9781420089653-10 – volume: 147 year: 2024 ident: 4313_CR5 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2024.105052 – volume: 25 start-page: 1959 year: 2025 ident: 4313_CR18 publication-title: Sensors doi: 10.3390/s25071959 – ident: 4313_CR23 – ident: 4313_CR21 – ident: 4313_CR9 doi: 10.1007/978-3-319-10602-1_48 – ident: 4313_CR1 – ident: 4313_CR10 doi: 10.1007/978-3-030-20887-5_43 – volume: 193 year: 2020 ident: 4313_CR8 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2020.102907 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 4313_CR25 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2016.2577031 – volume: 19 start-page: 299 year: 2025 ident: 4313_CR17 publication-title: SIViP doi: 10.1007/s11760-025-03868-4 – volume: 106 start-page: 298 year: 2024 ident: 4313_CR6 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2024.07.011 – volume: 187 year: 2025 ident: 4313_CR13 publication-title: Optics & Laser Technology doi: 10.1016/j.optlastec.2025.112802 – ident: 4313_CR24 doi: 10.1109/icassp49357.2023.10096516 – ident: 4313_CR16 doi: 10.1109/CISAT62382.2024.10695254 – ident: 4313_CR22 doi: 10.48550/arXiv.1502.03167 – ident: 4313_CR26 – ident: 4313_CR7 doi: 10.1109/cvpr42600.2020.00271 – volume: 34 start-page: 87 issue: 12 year: 2024 ident: 4313_CR12 publication-title: Comp. Tech. Develop. doi: 10.20165/j.cnki.ISSN1673-629X.2024.0283 – ident: 4313_CR20 – ident: 4313_CR2 |
SSID | ssj0000327868 |
Score | 2.3539734 |
Snippet | Real-time vehicle detection at night faces significant challenges: ineffective low-light feature extraction, low computational efficiency hampering real-time... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Ablation Computer Imaging Computer Science Feature extraction Image Processing and Computer Vision Machine learning Modules Multimedia Information Systems Night Object recognition Original Paper Pattern Recognition and Graphics Real time Redundancy Signal,Image and Speech Processing Vision |
Title | CEM-YOLO: multi-branch residual feature fusion and convolutional maxpooling downsampling for real-time vehicle detection in night scenarios |
URI | https://link.springer.com/article/10.1007/s11760-025-04313-2 https://www.proquest.com/docview/3222342405 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: AFBBN dateStart: 20070401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: U2A dateStart: 20070401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3B9gIHCgXEQln5wA1cJXac7HLbVl0qoO2FldpT5I-xiqBpxWYR4i_wp5nxJgpUcOgpimKNnPHYfmPPvAF4FQqT47TU5JsYlIUuo5wVGc0rQgtRlyG3yLnDxyfl0bJ4f2bOuqSwVR_t3l9JppV6SHbLqzKTXH6VCWG0pIV3y7CDMoKt-bvzD8PZSqZVNd1kwXE3crLqLl_m34L-3pMGoHnjbjRtOYttWPad3USafNlbt27P_7zB43jbv3kIDzoMKuYbo3kEd7DZge2-voPopvsO3P-DrPAx_Do4PJbnpx9P34oUhSgd1-S4EOSvp4QuETGRhIq45hM4YZsgOKa9s21qcGl_cEUvkiYCH2pbjmanF8LNJMV-lVzoXnzHC-6WCNimMLFGfG5E4jsRzDxFvv3V6gksF4efDo5kV8pBelWpVtoSlXYm89r7YI2rMmud08z9rkIMWYa6cDbX0SI9ymnEYGd5dMFydWRCRU9h1Fw1-AyEx6owBPLQR4JywThP4mzwCouIs6wcw-t-MOvrDWNHPXAzs9Zr0nqdtF6rMez24113s3dV8-2TLgjrmDG86Ydv-Px_ac9v1_wF3FPJAjhkbRdG7bc1viSM07oJmfRif_9k0pn2BO4u1fw39p_2zA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2h7QE4UCggFgr4wA1cJbHzsb1VVctCd9tLV2pPkT_GKgJSxGZR1b_An-6MN1GggkNPURRr5Nhj-9meeQ_gndd5ilWhaG-So9SqCHKiExpXhBaCKnxqkHOH58fFdKE_n-VnXVLYso92768k40w9JLulZZFIll9lQhglaeLd0GlV6RFs7H08PxrOVhKVldU6C46rkZJXd_ky_zb095o0AM1bd6NxyTnchEVf2XWkydedVWt33PUtHse7_s1jeNRhULG3dponcA-bLdjs9R1EN9y34OEfZIVP4ff-wVyen8xOdkWMQpSWNTkuBO3XY0KXCBhJQkVY8QmcMI0XHNPe-TYV-G6uWNGLrAnPh9qGo9nphXAzWTHfJAvdi194wdUSHtsYJtaIL42IfCeCmadob3-5fAaLw4PT_anspByky8qslabATNk8cco5b3JbJsZYq5j7PfPBJwkqbU2qgkF6FFVAbyZpsN6wOjKhoucwai4bfAHCYalzAnnoAkE5n1tH5ox3GeqAk6QYw_u-M-sfa8aOeuBm5lavqdXr2Op1Nobtvr_rbvQua759UpqwTj6GD333DZ__b-3l3Yq_hfvT0_msnn06PnoFD7LoDRy-tg2j9ucKXxPeae2bzr1vADH591g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHrwLa7PHLxpsE3SdtebqItvPbigp5I0ExS0ilbxP_inncm2rooePJXSMJTOpPkmmfk-xtadTmJopwpzkwSEVqkXHR3hvEK04FXqYgPUO3x6lh709NFVcvWliz9UuzdHkv2eBmJpKqutR-e3Bo1vcZZGgqRYiRxGCfwJj2hcqyn96smdz12WSMms3e-HoxeKMb7rzpnfzXxfnQaQ88cpaVh8ulNsokaNfKfv5mk2BOUMm2wUGXg9QWfY-Bd6wVn2vrt_Kq7PT863eagbFJZUNG44ZtihBYt7CLSe3L_Qnhk3peNUhV5HIw64N2-kwYXWuKNtaEP153iDSBetmDtB0vT8FW7otbiDKhR2lfy25IGhhBNXFGbjD89zrNfdv9w9ELX4gihkJithUpDKJlGhisKZxGaRMdYqYmuXzrsoAqWtiZU3gJe07cGZTuytM6RnjDhmng2XDyUsMF5AphOEZVB4BF8usQWaM66QoD10orTFNpqPnj_2OTbyAZsyuShHF-XBRblsseXGL3k9355zOi9SGtFJ0mKbja8Gj_-2tvi_4Wts9GKvm58cnh0vsTEZIofqzZbZcPX0AisIUCq7GmLwA2oL3qk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CEM-YOLO%3A+multi-branch+residual+feature+fusion+and+convolutional+maxpooling+downsampling+for+real-time+vehicle+detection+in+night+scenarios&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Liu%2C+Li-Juan&rft.au=Jia%2C+Rushi&rft.au=Karimi%2C+Hamid+Reza&rft.date=2025-09-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=19&rft.issue=9&rft_id=info:doi/10.1007%2Fs11760-025-04313-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_025_04313_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |