Clustering Hybrid Data Using a Neighborhood Rough Set Based Algorithm and Expounding its Application
In recent times, an enumerable number of clustering algorithms have been developed whose main function is to make sets of objects have almost the same features. But due to the presence of categorical data values, these algorithms face a challenge in their implementation. Also, some algorithms which...
        Saved in:
      
    
          | Published in | International journal of fuzzy system applications Vol. 8; no. 4; pp. 84 - 100 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IGI Global
    
        01.10.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2156-177X 2156-1761  | 
| DOI | 10.4018/IJFSA.2019100105 | 
Cover
| Abstract | In recent times, an enumerable number of clustering algorithms have been developed whose main function is to make sets of objects have almost the same features. But due to the presence of categorical data values, these algorithms face a challenge in their implementation. Also, some algorithms which are able to take care of categorical data are not able to process uncertainty in the values and therefore have stability issues. Thus, handling categorical data along with uncertainty has been made necessary owing to such difficulties. So, in 2007 an MMR algorithm was developed which was based on basic rough set theory. MMeR was proposed in 2009 which surpassed the results of MMR in taking care of categorical data but cannot be used robustly for hybrid data. In this article, the authors generalize the MMeR algorithm with neighborhood relations and make it a neighborhood rough set model which this article calls MMeNR (Min Mean Neighborhood Roughness). It takes care of the heterogeneous data. Also, the authors have extended the MMeNR method to make it suitable for various applications like geospatial data analysis and epidemiology. | 
    
|---|---|
| AbstractList | In recent times, an enumerable number of clustering algorithms have been developed whose main function is to make sets of objects have almost the same features. But due to the presence of categorical data values, these algorithms face a challenge in their implementation. Also, some algorithms which are able to take care of categorical data are not able to process uncertainty in the values and therefore have stability issues. Thus, handling categorical data along with uncertainty has been made necessary owing to such difficulties. So, in 2007 an MMR algorithm was developed which was based on basic rough set theory. MMeR was proposed in 2009 which surpassed the results of MMR in taking care of categorical data but cannot be used robustly for hybrid data. In this article, the authors generalize the MMeR algorithm with neighborhood relations and make it a neighborhood rough set model which this article calls MMeNR (Min Mean Neighborhood Roughness). It takes care of the heterogeneous data. Also, the authors have extended the MMeNR method to make it suitable for various applications like geospatial data analysis and epidemiology. | 
    
| Audience | Academic | 
    
| Author | Goyal, Akarsh Chowdhury, Rahul  | 
    
| AuthorAffiliation | VIT University, Vellore, India Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, USA  | 
    
| AuthorAffiliation_xml | – name: Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, USA – name: VIT University, Vellore, India  | 
    
| Author_xml | – sequence: 1 givenname: Akarsh surname: Goyal fullname: Goyal, Akarsh organization: Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, USA – sequence: 2 givenname: Rahul surname: Chowdhury fullname: Chowdhury, Rahul organization: VIT University, Vellore, India  | 
    
| BookMark | eNp1kc9P2zAcxa0JpLHCnaOlXXZYwT8SxzlmhfJDFUgDJG6WE9upqzSObEda__u5ZIIhNh9sy_q8r_Xe-wIOetdrAE4xOssQ5uc3t8uH6owgXGKEMMo_gSOCczbHBcMHr_fi-TM4CWGD0sozjig5AmrRjSFqb_sWXu9qbxW8kFHCp7B_kfBO23ZdO792TsGfbmzX8EFH-EMGrWDVtc7buN5C2St4-WtwY6_2OhsDrIahs42M1vXH4NDILuiTP-cMPC0vHxfX89X91c2iWs0bUpA454bTnJkm-ShIjrShZZNTlTGqS06YVJQSwmVJa1ZiUnKeFaZgHDOTcVZzSWfg6zS3lZ0WtjcuetlsbWhEVTBEygzxPFHf_6LqMTnVIW0hOY2hlWMI73E04Y13IXhtxODtVvqdwEjs0xcv6Yu39JPk2ySxrRUbN_o-uf6AiUGZhC7_gU6FiKkQsS9EvBTy3y85_Q0zvZtC | 
    
| Cites_doi | 10.1023/A:1009769707641 10.1080/13658810902960079 10.1007/s00500-016-2080-7 10.1109/TNS.2002.998752 10.1109/17.233190 10.1007/s007780050005 10.4018/978-1-4666-2518-1.ch012 10.1109/TGRS.1989.35943 10.1016/S0306-4379(00)00022-3 10.3109/14639238809010096 10.1007/s11113-007-9051-8 10.1111/j.1467-8306.2004.09402005.x 10.1016/j.puhe.2005.02.003 10.1109/TKDE.2004.68 10.1016/j.ins.2008.05.024 10.1504/IJRAPIDM.2009.029382 10.2471/BLT.06.030247 10.4018/IJHISI.2017010103 10.1177/147323000703500117 10.1016/j.datak.2007.05.005  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2019 IGI Global | 
    
| Copyright_xml | – notice: COPYRIGHT 2019 IGI Global | 
    
| DBID | AAYXX CITATION N95  | 
    
| DOI | 10.4018/IJFSA.2019100105 | 
    
| DatabaseName | CrossRef Gale Business: Insights  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2156-1761 | 
    
| EndPage | 100 | 
    
| ExternalDocumentID | A760294085 10_4018_IJFSA_2019100105 tering_Hybrid_Data_Using_10_4018_IJFSA_20191001058  | 
    
| GroupedDBID | 0R ABEPT ADEKF ALMA_UNASSIGNED_HOLDINGS COVLG EBS EJD H13 HZ JRD MV1 NEEBM O9- RIF 0R~ 4.4 AAYVP AAYXX ABJCF ACOJC ADMLS AFKRA ARAPS BAAKF BENPR BGLVJ BYHXH CBWLS CCPQU CDTDJ CITATION CKMBR CNQXE CTSEY HCIFZ HZ~ IAO ICD ITC K7- M7S N95 PHGZM PHGZT PQGLB PTHSS PUEGO  | 
    
| ID | FETCH-LOGICAL-c272t-8f8356fc2017250ef39c53d463e9826ad33228a93b691298847f76816f486b8a3 | 
    
| ISSN | 2156-177X | 
    
| IngestDate | Mon Oct 20 22:16:07 EDT 2025 Fri May 23 01:04:28 EDT 2025 Wed Oct 01 03:41:54 EDT 2025 Tue Jan 05 23:30:55 EST 2021 Fri Jan 15 00:54:01 EST 2021  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c272t-8f8356fc2017250ef39c53d463e9826ad33228a93b691298847f76816f486b8a3 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | gale_businessinsightsgauss_A760294085 crossref_primary_10_4018_IJFSA_2019100105 igi_journals_tering_Hybrid_Data_Using_10_4018_IJFSA_20191001058 gale_infotracmisc_A760294085  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-10-01T00:00:00 2019-10-1 20191001  | 
    
| PublicationDateYYYYMMDD | 2019-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01T00:00:00 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | International journal of fuzzy system applications | 
    
| PublicationYear | 2019 | 
    
| Publisher | IGI Global | 
    
| Publisher_xml | – name: IGI Global | 
    
| References | IJFSA.2019100105-1 IJFSA.2019100105-17 IJFSA.2019100105-19 IJFSA.2019100105-0 IJFSA.2019100105-18 IJFSA.2019100105-5 IJFSA.2019100105-13 IJFSA.2019100105-6 IJFSA.2019100105-12 IJFSA.2019100105-23 IJFSA.2019100105-3 IJFSA.2019100105-15 IJFSA.2019100105-4 IJFSA.2019100105-14 IJFSA.2019100105-20 Z.Pawlak (IJFSA.2019100105-16) 1982; 11 IJFSA.2019100105-11 IJFSA.2019100105-22 IJFSA.2019100105-10 IJFSA.2019100105-21 IJFSA.2019100105-9 A. P.Dempster (IJFSA.2019100105-2) 1977 IJFSA.2019100105-7 IJFSA.2019100105-8  | 
    
| References_xml | – ident: IJFSA.2019100105-9 – ident: IJFSA.2019100105-7 doi: 10.1023/A:1009769707641 – volume: 11 start-page: 341 issue: 5 year: 1982 ident: IJFSA.2019100105-16 article-title: Rough sets. publication-title: International Journal of Parallel Programming – ident: IJFSA.2019100105-0 doi: 10.1080/13658810902960079 – ident: IJFSA.2019100105-11 doi: 10.1007/s00500-016-2080-7 – ident: IJFSA.2019100105-23 doi: 10.1109/TNS.2002.998752 – ident: IJFSA.2019100105-12 doi: 10.1109/17.233190 – ident: IJFSA.2019100105-3 doi: 10.1007/s007780050005 – ident: IJFSA.2019100105-20 doi: 10.4018/978-1-4666-2518-1.ch012 – ident: IJFSA.2019100105-5 doi: 10.1109/TGRS.1989.35943 – ident: IJFSA.2019100105-4 doi: 10.1016/S0306-4379(00)00022-3 – ident: IJFSA.2019100105-18 doi: 10.3109/14639238809010096 – ident: IJFSA.2019100105-1 doi: 10.1007/s11113-007-9051-8 – ident: IJFSA.2019100105-14 doi: 10.1111/j.1467-8306.2004.09402005.x – ident: IJFSA.2019100105-13 doi: 10.1016/j.puhe.2005.02.003 – ident: IJFSA.2019100105-8 doi: 10.1109/TKDE.2004.68 – ident: IJFSA.2019100105-6 doi: 10.1016/j.ins.2008.05.024 – ident: IJFSA.2019100105-10 doi: 10.1504/IJRAPIDM.2009.029382 – ident: IJFSA.2019100105-22 doi: 10.2471/BLT.06.030247 – start-page: 1 year: 1977 ident: IJFSA.2019100105-2 article-title: Maximum likelihood from incomplete data via the EM algorithm. publication-title: Journal of the Royal Statistical Society. Series B. Methodological – ident: IJFSA.2019100105-19 doi: 10.4018/IJHISI.2017010103 – ident: IJFSA.2019100105-17 – ident: IJFSA.2019100105-21 doi: 10.1177/147323000703500117 – ident: IJFSA.2019100105-15 doi: 10.1016/j.datak.2007.05.005  | 
    
| SSID | ssj0000548032 | 
    
| Score | 2.1093705 | 
    
| Snippet | In recent times, an enumerable number of clustering algorithms have been developed whose main function is to make sets of objects have almost the same... | 
    
| SourceID | gale crossref igi  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 84 | 
    
| SubjectTerms | Algorithms Epidemiology Geospatial data  | 
    
| Title | Clustering Hybrid Data Using a Neighborhood Rough Set Based Algorithm and Expounding its Application | 
    
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJFSA.2019100105 | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2156-1761 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000548032 issn: 2156-177X databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2156-1761 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0000548032 issn: 2156-177X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY9wIPaHyJwkBGggdUBZovx35CXdXRTaJC3Sb1zXLipC1MbdWkYutfz_ljcTqGNHixKsdqLP9-Od-dfXcIvWdCgFUgpBcnkniwX8cejeLCi-JQSkYzJnV49LcRGV5Ep5N44sql6uiSKv2Ube-MK_kfVKEPcFVRsv-AbP2n0AG_AV9oAWFo74Vx_3Kj8hwoa394rUKvAMRKdMw1AAECDCxvwFhnLh7rcjxnedU5go1LdnqX0-V6Xs1MiYzB1UrVV9IBLlVpdNPMgfbD3Xd37sNG0olis91e26zQneaZeH29R3kptBz6CZZ07YLuz5a_5Mwe5Y_FzN5StF4In9X32axl-vWkY4oUOPkFygTx_CSZNIUtbXAqukuEg72nwhJOTo_PeurmHfN1EU-3Xd0c0Y_YrU6TxTch3YCptG17aD8ASd9tof2jwej7uPa8dVWKO125rp6hOb9Wr_58-8U7-ordtffm03lDCzk_QI-t-YB7hgtP0IN88RQ9aiSVfIakYwU2rMCKFVizAgvcZAXWrMDACqxZgWtWYGAFdqzAwArcYMVzdHE8OO8PPVtLw8uCJKg8WoCqTYosUDZ_3M2LkGXwOUYkzBlYmEKGINmpYGFKGKiAFJSWAixRnxQRJSkV4QvUWiwX-UuEWSRpAMO7QshIFlGaRalKAhVQkvsJEW308WbF-MqkTOFgaqrV5Xp1uVvdNvqglpTbiqvQlMonVU7Fpiy5A7ONDvU4xZRqrUpyldnO43cACbe8L_94DV_Joo2-7IwxQHADBFdAcA3EX-dKX91zsq_RQ_eJHKJWtd7kb0B1rdK3lou_ATfDmMI | 
    
| linkProvider | ProQuest | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Hybrid+Data+Using+a+Neighborhood+Rough+Set+Based+Algorithm+and+Expounding+its+Application&rft.jtitle=International+journal+of+fuzzy+system+applications&rft.au=Goyal%2C+Akarsh&rft.au=Chowdhury%2C+Rahul&rft.date=2019-10-01&rft.pub=IGI+Global&rft.issn=2156-177X&rft.volume=8&rft.issue=4&rft_id=info:doi/10.4018%2FIJFSA.2019100105&rft.externalDBID=N95&rft.externalDocID=A760294085 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-177X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-177X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-177X&client=summon |