Clustering Hybrid Data Using a Neighborhood Rough Set Based Algorithm and Expounding its Application

In recent times, an enumerable number of clustering algorithms have been developed whose main function is to make sets of objects have almost the same features. But due to the presence of categorical data values, these algorithms face a challenge in their implementation. Also, some algorithms which...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fuzzy system applications Vol. 8; no. 4; pp. 84 - 100
Main Authors Goyal, Akarsh, Chowdhury, Rahul
Format Journal Article
LanguageEnglish
Published IGI Global 01.10.2019
Subjects
Online AccessGet full text
ISSN2156-177X
2156-1761
DOI10.4018/IJFSA.2019100105

Cover

Abstract In recent times, an enumerable number of clustering algorithms have been developed whose main function is to make sets of objects have almost the same features. But due to the presence of categorical data values, these algorithms face a challenge in their implementation. Also, some algorithms which are able to take care of categorical data are not able to process uncertainty in the values and therefore have stability issues. Thus, handling categorical data along with uncertainty has been made necessary owing to such difficulties. So, in 2007 an MMR algorithm was developed which was based on basic rough set theory. MMeR was proposed in 2009 which surpassed the results of MMR in taking care of categorical data but cannot be used robustly for hybrid data. In this article, the authors generalize the MMeR algorithm with neighborhood relations and make it a neighborhood rough set model which this article calls MMeNR (Min Mean Neighborhood Roughness). It takes care of the heterogeneous data. Also, the authors have extended the MMeNR method to make it suitable for various applications like geospatial data analysis and epidemiology.
AbstractList In recent times, an enumerable number of clustering algorithms have been developed whose main function is to make sets of objects have almost the same features. But due to the presence of categorical data values, these algorithms face a challenge in their implementation. Also, some algorithms which are able to take care of categorical data are not able to process uncertainty in the values and therefore have stability issues. Thus, handling categorical data along with uncertainty has been made necessary owing to such difficulties. So, in 2007 an MMR algorithm was developed which was based on basic rough set theory. MMeR was proposed in 2009 which surpassed the results of MMR in taking care of categorical data but cannot be used robustly for hybrid data. In this article, the authors generalize the MMeR algorithm with neighborhood relations and make it a neighborhood rough set model which this article calls MMeNR (Min Mean Neighborhood Roughness). It takes care of the heterogeneous data. Also, the authors have extended the MMeNR method to make it suitable for various applications like geospatial data analysis and epidemiology.
Audience Academic
Author Goyal, Akarsh
Chowdhury, Rahul
AuthorAffiliation VIT University, Vellore, India
Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
AuthorAffiliation_xml – name: Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
– name: VIT University, Vellore, India
Author_xml – sequence: 1
  givenname: Akarsh
  surname: Goyal
  fullname: Goyal, Akarsh
  organization: Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
– sequence: 2
  givenname: Rahul
  surname: Chowdhury
  fullname: Chowdhury, Rahul
  organization: VIT University, Vellore, India
BookMark eNp1kc9P2zAcxa0JpLHCnaOlXXZYwT8SxzlmhfJDFUgDJG6WE9upqzSObEda__u5ZIIhNh9sy_q8r_Xe-wIOetdrAE4xOssQ5uc3t8uH6owgXGKEMMo_gSOCczbHBcMHr_fi-TM4CWGD0sozjig5AmrRjSFqb_sWXu9qbxW8kFHCp7B_kfBO23ZdO792TsGfbmzX8EFH-EMGrWDVtc7buN5C2St4-WtwY6_2OhsDrIahs42M1vXH4NDILuiTP-cMPC0vHxfX89X91c2iWs0bUpA454bTnJkm-ShIjrShZZNTlTGqS06YVJQSwmVJa1ZiUnKeFaZgHDOTcVZzSWfg6zS3lZ0WtjcuetlsbWhEVTBEygzxPFHf_6LqMTnVIW0hOY2hlWMI73E04Y13IXhtxODtVvqdwEjs0xcv6Yu39JPk2ySxrRUbN_o-uf6AiUGZhC7_gU6FiKkQsS9EvBTy3y85_Q0zvZtC
Cites_doi 10.1023/A:1009769707641
10.1080/13658810902960079
10.1007/s00500-016-2080-7
10.1109/TNS.2002.998752
10.1109/17.233190
10.1007/s007780050005
10.4018/978-1-4666-2518-1.ch012
10.1109/TGRS.1989.35943
10.1016/S0306-4379(00)00022-3
10.3109/14639238809010096
10.1007/s11113-007-9051-8
10.1111/j.1467-8306.2004.09402005.x
10.1016/j.puhe.2005.02.003
10.1109/TKDE.2004.68
10.1016/j.ins.2008.05.024
10.1504/IJRAPIDM.2009.029382
10.2471/BLT.06.030247
10.4018/IJHISI.2017010103
10.1177/147323000703500117
10.1016/j.datak.2007.05.005
ContentType Journal Article
Copyright COPYRIGHT 2019 IGI Global
Copyright_xml – notice: COPYRIGHT 2019 IGI Global
DBID AAYXX
CITATION
N95
DOI 10.4018/IJFSA.2019100105
DatabaseName CrossRef
Gale Business: Insights
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2156-1761
EndPage 100
ExternalDocumentID A760294085
10_4018_IJFSA_2019100105
tering_Hybrid_Data_Using_10_4018_IJFSA_20191001058
GroupedDBID 0R
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
EJD
H13
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
4.4
AAYVP
AAYXX
ABJCF
ACOJC
ADMLS
AFKRA
ARAPS
BAAKF
BENPR
BGLVJ
BYHXH
CBWLS
CCPQU
CDTDJ
CITATION
CKMBR
CNQXE
CTSEY
HCIFZ
HZ~
IAO
ICD
ITC
K7-
M7S
N95
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
ID FETCH-LOGICAL-c272t-8f8356fc2017250ef39c53d463e9826ad33228a93b691298847f76816f486b8a3
ISSN 2156-177X
IngestDate Mon Oct 20 22:16:07 EDT 2025
Fri May 23 01:04:28 EDT 2025
Wed Oct 01 03:41:54 EDT 2025
Tue Jan 05 23:30:55 EST 2021
Fri Jan 15 00:54:01 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-8f8356fc2017250ef39c53d463e9826ad33228a93b691298847f76816f486b8a3
PageCount 17
ParticipantIDs gale_businessinsightsgauss_A760294085
crossref_primary_10_4018_IJFSA_2019100105
igi_journals_tering_Hybrid_Data_Using_10_4018_IJFSA_20191001058
gale_infotracmisc_A760294085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01T00:00:00
2019-10-1
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01T00:00:00
  day: 01
PublicationDecade 2010
PublicationTitle International journal of fuzzy system applications
PublicationYear 2019
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJFSA.2019100105-1
IJFSA.2019100105-17
IJFSA.2019100105-19
IJFSA.2019100105-0
IJFSA.2019100105-18
IJFSA.2019100105-5
IJFSA.2019100105-13
IJFSA.2019100105-6
IJFSA.2019100105-12
IJFSA.2019100105-23
IJFSA.2019100105-3
IJFSA.2019100105-15
IJFSA.2019100105-4
IJFSA.2019100105-14
IJFSA.2019100105-20
Z.Pawlak (IJFSA.2019100105-16) 1982; 11
IJFSA.2019100105-11
IJFSA.2019100105-22
IJFSA.2019100105-10
IJFSA.2019100105-21
IJFSA.2019100105-9
A. P.Dempster (IJFSA.2019100105-2) 1977
IJFSA.2019100105-7
IJFSA.2019100105-8
References_xml – ident: IJFSA.2019100105-9
– ident: IJFSA.2019100105-7
  doi: 10.1023/A:1009769707641
– volume: 11
  start-page: 341
  issue: 5
  year: 1982
  ident: IJFSA.2019100105-16
  article-title: Rough sets.
  publication-title: International Journal of Parallel Programming
– ident: IJFSA.2019100105-0
  doi: 10.1080/13658810902960079
– ident: IJFSA.2019100105-11
  doi: 10.1007/s00500-016-2080-7
– ident: IJFSA.2019100105-23
  doi: 10.1109/TNS.2002.998752
– ident: IJFSA.2019100105-12
  doi: 10.1109/17.233190
– ident: IJFSA.2019100105-3
  doi: 10.1007/s007780050005
– ident: IJFSA.2019100105-20
  doi: 10.4018/978-1-4666-2518-1.ch012
– ident: IJFSA.2019100105-5
  doi: 10.1109/TGRS.1989.35943
– ident: IJFSA.2019100105-4
  doi: 10.1016/S0306-4379(00)00022-3
– ident: IJFSA.2019100105-18
  doi: 10.3109/14639238809010096
– ident: IJFSA.2019100105-1
  doi: 10.1007/s11113-007-9051-8
– ident: IJFSA.2019100105-14
  doi: 10.1111/j.1467-8306.2004.09402005.x
– ident: IJFSA.2019100105-13
  doi: 10.1016/j.puhe.2005.02.003
– ident: IJFSA.2019100105-8
  doi: 10.1109/TKDE.2004.68
– ident: IJFSA.2019100105-6
  doi: 10.1016/j.ins.2008.05.024
– ident: IJFSA.2019100105-10
  doi: 10.1504/IJRAPIDM.2009.029382
– ident: IJFSA.2019100105-22
  doi: 10.2471/BLT.06.030247
– start-page: 1
  year: 1977
  ident: IJFSA.2019100105-2
  article-title: Maximum likelihood from incomplete data via the EM algorithm.
  publication-title: Journal of the Royal Statistical Society. Series B. Methodological
– ident: IJFSA.2019100105-19
  doi: 10.4018/IJHISI.2017010103
– ident: IJFSA.2019100105-17
– ident: IJFSA.2019100105-21
  doi: 10.1177/147323000703500117
– ident: IJFSA.2019100105-15
  doi: 10.1016/j.datak.2007.05.005
SSID ssj0000548032
Score 2.1093705
Snippet In recent times, an enumerable number of clustering algorithms have been developed whose main function is to make sets of objects have almost the same...
SourceID gale
crossref
igi
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Algorithms
Epidemiology
Geospatial data
Title Clustering Hybrid Data Using a Neighborhood Rough Set Based Algorithm and Expounding its Application
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJFSA.2019100105
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2156-1761
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000548032
  issn: 2156-177X
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-1761
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0000548032
  issn: 2156-177X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY9wIPaHyJwkBGggdUBZovx35CXdXRTaJC3Sb1zXLipC1MbdWkYutfz_ljcTqGNHixKsdqLP9-Od-dfXcIvWdCgFUgpBcnkniwX8cejeLCi-JQSkYzJnV49LcRGV5Ep5N44sql6uiSKv2Ube-MK_kfVKEPcFVRsv-AbP2n0AG_AV9oAWFo74Vx_3Kj8hwoa394rUKvAMRKdMw1AAECDCxvwFhnLh7rcjxnedU5go1LdnqX0-V6Xs1MiYzB1UrVV9IBLlVpdNPMgfbD3Xd37sNG0olis91e26zQneaZeH29R3kptBz6CZZ07YLuz5a_5Mwe5Y_FzN5StF4In9X32axl-vWkY4oUOPkFygTx_CSZNIUtbXAqukuEg72nwhJOTo_PeurmHfN1EU-3Xd0c0Y_YrU6TxTch3YCptG17aD8ASd9tof2jwej7uPa8dVWKO125rp6hOb9Wr_58-8U7-ordtffm03lDCzk_QI-t-YB7hgtP0IN88RQ9aiSVfIakYwU2rMCKFVizAgvcZAXWrMDACqxZgWtWYGAFdqzAwArcYMVzdHE8OO8PPVtLw8uCJKg8WoCqTYosUDZ_3M2LkGXwOUYkzBlYmEKGINmpYGFKGKiAFJSWAixRnxQRJSkV4QvUWiwX-UuEWSRpAMO7QshIFlGaRalKAhVQkvsJEW308WbF-MqkTOFgaqrV5Xp1uVvdNvqglpTbiqvQlMonVU7Fpiy5A7ONDvU4xZRqrUpyldnO43cACbe8L_94DV_Joo2-7IwxQHADBFdAcA3EX-dKX91zsq_RQ_eJHKJWtd7kb0B1rdK3lou_ATfDmMI
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Hybrid+Data+Using+a+Neighborhood+Rough+Set+Based+Algorithm+and+Expounding+its+Application&rft.jtitle=International+journal+of+fuzzy+system+applications&rft.au=Goyal%2C+Akarsh&rft.au=Chowdhury%2C+Rahul&rft.date=2019-10-01&rft.pub=IGI+Global&rft.issn=2156-177X&rft.volume=8&rft.issue=4&rft_id=info:doi/10.4018%2FIJFSA.2019100105&rft.externalDBID=N95&rft.externalDocID=A760294085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-177X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-177X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-177X&client=summon