Interpretable procedural material graph generation via diffusion models from reference images Interpretable procedural material graph generation via diffusion models from reference images

Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering capabilities. Despite these merits, constructing procedural material graphs remains a labor-intensive task. Recent advancements in generative neural n...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 41; no. 13; pp. 11195 - 11205
Main Authors Lv, Xiaoyu, Wu, Zizhao, Xu, Jiamin, Gu, Xiaoling, Zeng, Ming, Xu, Weiwei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-2789
1432-2315
DOI10.1007/s00371-025-04096-0

Cover

Abstract Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering capabilities. Despite these merits, constructing procedural material graphs remains a labor-intensive task. Recent advancements in generative neural networks, particularly diffusion models, have shown promise in automating this process. However, existing methods often struggle with issues related to generation quality, generalization, and interpretability. In this work, we introduce a novel approach for the interpretable generation of procedural material graphs from reference images using diffusion model. Our approach predicts individual nodes in reverse order, leveraging the generative capabilities of diffusion models to achieve significant improvements in generation quality, generalization, and interpretability. Specifically, we employ a two-stage framework: an adapter-based diffusion model predicts procedural nodes, forming an auxiliary graph, which is then refined using a DiffMat-based node parameter optimization method. To validate the effectiveness of our approach, we construct a fine-grained procedural material graph dataset containing extensive data and information defined at the node level. Our code and datasets are available at: https://github.com/InterS23/IPMGG .
AbstractList Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering capabilities. Despite these merits, constructing procedural material graphs remains a labor-intensive task. Recent advancements in generative neural networks, particularly diffusion models, have shown promise in automating this process. However, existing methods often struggle with issues related to generation quality, generalization, and interpretability. In this work, we introduce a novel approach for the interpretable generation of procedural material graphs from reference images using diffusion model. Our approach predicts individual nodes in reverse order, leveraging the generative capabilities of diffusion models to achieve significant improvements in generation quality, generalization, and interpretability. Specifically, we employ a two-stage framework: an adapter-based diffusion model predicts procedural nodes, forming an auxiliary graph, which is then refined using a DiffMat-based node parameter optimization method. To validate the effectiveness of our approach, we construct a fine-grained procedural material graph dataset containing extensive data and information defined at the node level. Our code and datasets are available at: https://github.com/InterS23/IPMGG .
Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering capabilities. Despite these merits, constructing procedural material graphs remains a labor-intensive task. Recent advancements in generative neural networks, particularly diffusion models, have shown promise in automating this process. However, existing methods often struggle with issues related to generation quality, generalization, and interpretability. In this work, we introduce a novel approach for the interpretable generation of procedural material graphs from reference images using diffusion model. Our approach predicts individual nodes in reverse order, leveraging the generative capabilities of diffusion models to achieve significant improvements in generation quality, generalization, and interpretability. Specifically, we employ a two-stage framework: an adapter-based diffusion model predicts procedural nodes, forming an auxiliary graph, which is then refined using a DiffMat-based node parameter optimization method. To validate the effectiveness of our approach, we construct a fine-grained procedural material graph dataset containing extensive data and information defined at the node level. Our code and datasets are available at: https://github.com/InterS23/IPMGG.
Author Wu, Zizhao
Lv, Xiaoyu
Zeng, Ming
Gu, Xiaoling
Xu, Jiamin
Xu, Weiwei
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Lv
  fullname: Lv, Xiaoyu
  organization: School of Digital Media Technology, Hangzhou Dianzi University
– sequence: 2
  givenname: Zizhao
  orcidid: 0000-0003-2103-5037
  surname: Wu
  fullname: Wu, Zizhao
  email: wuzizhao@hdu.edu.cn
  organization: School of Digital Media Technology, Hangzhou Dianzi University
– sequence: 3
  givenname: Jiamin
  surname: Xu
  fullname: Xu, Jiamin
  organization: School of Computer Science, Hangzhou Dianzi University
– sequence: 4
  givenname: Xiaoling
  surname: Gu
  fullname: Gu, Xiaoling
  organization: School of Computer Science, Hangzhou Dianzi University
– sequence: 5
  givenname: Ming
  surname: Zeng
  fullname: Zeng, Ming
  organization: School of Informatics, Xiamen University
– sequence: 6
  givenname: Weiwei
  surname: Xu
  fullname: Xu, Weiwei
  organization: School of Computer Science, Zhejiang University
BookMark eNp9UMtKBDEQDLKCu6s_4GnAc7STTJKZoyy-YMGLHiVkJ51xlnmZzAj-vVlX8Oapu-iq6qJWZNEPPRJyyeCaAeibCCA0o8AlhRxKReGELFkuOOWCyQVZAtMF5booz8gqxj0krPNySd6e-gnDGHCyuxazMQwVujnYNutsOjRpqYMd37Maewx2aoY--2xs5hrv53hA3eCwjZkPQ5cF9BiwrzBrOltjPCen3rYRL37nmrze371sHun2-eFpc7ulFdd8okUBO4-lY1XlKi2F0EoymUsQ-U6gtmgrUEqBss6VPEfnpVegufIq59p7sSZXR9-U_2PGOJn9MIc-vTSCS1GCELxMLH5kVWGIMWU1Y0g5w5dhYA41mmONJtVofmo0kETiKIqJ3NcY_qz_UX0DAAF4ZQ
Cites_doi 10.1145/2766984
10.1145/3528233.3530733
10.1007/978-3-030-01219-9_5
10.1109/CVPR52688.2022.01042
10.1145/3528233.3530757
10.1609/aaai.v38i5.28226
10.1145/3610548.3618194
10.1145/3687932
10.1109/ICCV51070.2023.00355
10.1007/s00371-024-03717-4
10.1145/3528223.3530173
10.1002/cav.2252
10.1145/3588432.3591520
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00371-025-04096-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 11205
ExternalDocumentID 10_1007_s00371_025_04096_0
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PUEGO
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c272t-880bfe9d1ccdc75337651545034b3e7aeac066606add924edf5f60726f6427ff3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Fri Sep 26 03:11:00 EDT 2025
Thu Oct 02 04:39:06 EDT 2025
Thu Sep 25 01:11:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Procedural material
Diffusion models
Texture generation
Procedural models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-880bfe9d1ccdc75337651545034b3e7aeac066606add924edf5f60726f6427ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2103-5037
PQID 3253903329
PQPubID 2043737
PageCount 11
ParticipantIDs proquest_journals_3253903329
crossref_primary_10_1007_s00371_025_04096_0
springer_journals_10_1007_s00371_025_04096_0
PublicationCentury 2000
PublicationDate 20251000
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 20251000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References L Shi (4096_CR25) 2020; 39
B Kawar (4096_CR14) 2022; 35
B Li (4096_CR15) 2024; 43
P Guerrero (4096_CR6) 2022; 41
4096_CR30
4096_CR8
4096_CR7
4096_CR12
Y Hu (4096_CR10) 2019; 38
4096_CR11
4096_CR17
Y Hu (4096_CR13) 2022; 41
4096_CR18
4096_CR19
B Li (4096_CR16) 2023; 42
4096_CR2
4096_CR1
4096_CR4
4096_CR3
J Dumas (4096_CR5) 2015; 34
4096_CR20
4096_CR23
4096_CR24
4096_CR21
4096_CR22
4096_CR27
4096_CR28
4096_CR26
M Zhang (4096_CR29) 2024; 35
X Hu (4096_CR9) 2024
References_xml – volume: 34
  start-page: 1
  year: 2015
  ident: 4096_CR5
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2766984
– ident: 4096_CR11
  doi: 10.1145/3528233.3530733
– volume: 38
  start-page: 1
  year: 2019
  ident: 4096_CR10
  publication-title: ACM Trans. Graph.
– ident: 4096_CR27
– volume: 41
  start-page: 1
  year: 2022
  ident: 4096_CR13
  publication-title: ACM Trans. Graph.
– volume: 35
  start-page: 23593
  year: 2022
  ident: 4096_CR14
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 4096_CR18
  doi: 10.1007/978-3-030-01219-9_5
– ident: 4096_CR7
– ident: 4096_CR17
– ident: 4096_CR22
  doi: 10.1109/CVPR52688.2022.01042
– ident: 4096_CR23
  doi: 10.1145/3528233.3530757
– ident: 4096_CR2
– ident: 4096_CR3
– ident: 4096_CR19
  doi: 10.1609/aaai.v38i5.28226
– ident: 4096_CR24
  doi: 10.1145/3610548.3618194
– ident: 4096_CR20
– volume: 43
  start-page: 1
  year: 2024
  ident: 4096_CR15
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3687932
– volume: 42
  start-page: 1
  year: 2023
  ident: 4096_CR16
  publication-title: ACM Trans. Graph.
– ident: 4096_CR26
– ident: 4096_CR8
– ident: 4096_CR28
  doi: 10.1109/ICCV51070.2023.00355
– ident: 4096_CR30
  doi: 10.1007/s00371-024-03717-4
– volume: 41
  start-page: 1
  year: 2022
  ident: 4096_CR6
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3528223.3530173
– ident: 4096_CR1
– ident: 4096_CR4
– volume: 35
  year: 2024
  ident: 4096_CR29
  publication-title: Comput. Anim. Virt. Worlds
  doi: 10.1002/cav.2252
– volume: 39
  start-page: 1
  year: 2020
  ident: 4096_CR25
  publication-title: ACM Trans. Graph.
– volume-title: Msembgan: Multi-stitch embroidery synthesis via region-aware texture generation
  year: 2024
  ident: 4096_CR9
– ident: 4096_CR21
– ident: 4096_CR12
  doi: 10.1145/3588432.3591520
SSID ssj0017749
Score 2.4106603
Snippet Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 11195
SubjectTerms Artificial Intelligence
Computer Graphics
Computer Science
Datasets
Diffusion models
Graphs
Image Processing and Computer Vision
Methods
Neural networks
Nodes
Optimization techniques
Real time
Semantics
Subtitle Interpretable procedural material graph generation via diffusion models from reference images
Title Interpretable procedural material graph generation via diffusion models from reference images
URI https://link.springer.com/article/10.1007/s00371-025-04096-0
https://www.proquest.com/docview/3253903329
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG0RK7DzHFrVUIDpRqQwoshMbVYKCSMvv585NUkAwMEXKw8P5fP4uvvs-gHOlvVgpKRyTqdzxpfKc2HDlcGKCDAXedak5-W4cjib-zTSYlk1hRVXtXh1J2khdN7tZdjmH5FfR8ah0dhOaAdF5oRdPeK8-O0BAY0Gvh_kR9XmWrTK_j_F9O1pjzB_Hona3Ge7BTgkTWW81r_uwoect2K0kGFi5Iluw_YVP8AAe1yWE6lkzuznlxKvBEJdaV2OWoJo9WbJpmhP2MZOMVFKW9NuMWWGcglHTCasVSNjsBaNOcQiT4eD-auSU-glOxiO-cHBpKqOT3MuyPMO0BGNJQIjJFb4SOpIYcyl7cUOMcZiG6dwEJnQjHhpMSiJjxBE05q9zfQxMxplSirRJJKeP48SNjYykJ3Ue-7low0VlxvRtRZOR1oTI1ugpGj21Rk_dNnQqS6flkilSwQORuELwpA2XlfXXj_8e7eR_r5_CFicHsAV5HWgs3pf6DIHFQnWh2Rv2-2O6Xj_cDrrWrz4BQTrJdQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADhQKiUMADG6RK7DSPsUIthT6mVioDsuzERhVQEEkZ-PXYbpJCBUPXvJT4zufv4rvvA7jkwgk4Z8SSEY8tl3HHCiTmFtZMkB5RR23dnDwYet2xez9pTrKmsCSvds-3JE2kLprdDLucpeVXlePp0tlNKLsqQcElKLduH3rtYvdAQRoDex2VIelOz6xZ5u-n_F6QlihzZWPUrDedCozzN12UmTw35ilvRF8rJI7rfsoe7GYAFLUWHrMPG2JWhUou7oCyuV6FnR9MhQfwuCxO5C8CmWUv1owdSCFe48TIUF-jJ0Njra2NPqcMaf2Vuf4hh4zkToJ0OwsqtE3Q9FXFs-QQxp326KZrZcoMVoR9nFpq0nMpwtiJojhSCY-KUk2NxWziciJ8pqK5zotsT0VPleCJWDalZ_vYkyrd8aUkR1Cavc3EMSAWRJxzrXrCsL45CO1AMp85TMSBG5MaXOXmoe8LAg5aUC2bcaRqHKkZR2rXoJ5bkGaTMaEEN0loE4LDGlznBlme_v9pJ-tdfgFb3dGgT_t3w94pbGNtX1P2V4dS-jEXZwq-pPw889ZvombmPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbBCR2HmOFVCVV8VApS7IshMbVYJQ0ZTfj89N0oJgYE1iD-fz-bv47vsATqXyYikFc3QqM8cX0nNiTaVDkQkyZOapi83JD_2wN_Bvh8FwoYvfVrtXV5KzngZkacqLi3GmL-rGN8s056AUq3FCLKNdhhUfiRKMRw9op75HMODGAmDP5ErY81m2zfw-x_ejaY43f1yR2pOnuwUbJWQkndkab8OSypuwWckxkHJ3NmF9gVtwB57n5YTyVRF7UGXIsUEMRrVuRyxZNXmxxNO4PuRzJAgqpkzxFxqxIjkTgg0opFYjIaM3E4EmuzDoXj9d9pxSS8FJaUQLx2xTqVWSeWmapSZFMXElQPTkMl8yFQkTfzGTcUMT70xKpjId6NCNaKhNghJpzfagkb_nah-IiFMpJeqUCIqD48SNtYiEJ1QW-xlrwVllRj6eUWbwmhzZGp0bo3NrdO62oF1ZmpfbZ8IZDVjiMkaTFpxX1p-__nu2g_99fgKrj1ddfn_TvzuENYq-YOv02tAoPqbqyOCNQh5bl_oCA7XNjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+procedural+material+graph+generation+via+diffusion+models+from+reference+images&rft.jtitle=The+Visual+computer&rft.au=Lv%2C+Xiaoyu&rft.au=Wu%2C+Zizhao&rft.au=Xu%2C+Jiamin&rft.au=Gu%2C+Xiaoling&rft.date=2025-10-01&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=41&rft.issue=13&rft.spage=11195&rft.epage=11205&rft_id=info:doi/10.1007%2Fs00371-025-04096-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00371_025_04096_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon