Interpretable procedural material graph generation via diffusion models from reference images Interpretable procedural material graph generation via diffusion models from reference images
Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering capabilities. Despite these merits, constructing procedural material graphs remains a labor-intensive task. Recent advancements in generative neural n...
Saved in:
| Published in | The Visual computer Vol. 41; no. 13; pp. 11195 - 11205 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0178-2789 1432-2315 |
| DOI | 10.1007/s00371-025-04096-0 |
Cover
| Abstract | Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering capabilities. Despite these merits, constructing procedural material graphs remains a labor-intensive task. Recent advancements in generative neural networks, particularly diffusion models, have shown promise in automating this process. However, existing methods often struggle with issues related to generation quality, generalization, and interpretability. In this work, we introduce a novel approach for the interpretable generation of procedural material graphs from reference images using diffusion model. Our approach predicts individual nodes in reverse order, leveraging the generative capabilities of diffusion models to achieve significant improvements in generation quality, generalization, and interpretability. Specifically, we employ a two-stage framework: an adapter-based diffusion model predicts procedural nodes, forming an auxiliary graph, which is then refined using a DiffMat-based node parameter optimization method. To validate the effectiveness of our approach, we construct a fine-grained procedural material graph dataset containing extensive data and information defined at the node level. Our code and datasets are available at:
https://github.com/InterS23/IPMGG
. |
|---|---|
| AbstractList | Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering capabilities. Despite these merits, constructing procedural material graphs remains a labor-intensive task. Recent advancements in generative neural networks, particularly diffusion models, have shown promise in automating this process. However, existing methods often struggle with issues related to generation quality, generalization, and interpretability. In this work, we introduce a novel approach for the interpretable generation of procedural material graphs from reference images using diffusion model. Our approach predicts individual nodes in reverse order, leveraging the generative capabilities of diffusion models to achieve significant improvements in generation quality, generalization, and interpretability. Specifically, we employ a two-stage framework: an adapter-based diffusion model predicts procedural nodes, forming an auxiliary graph, which is then refined using a DiffMat-based node parameter optimization method. To validate the effectiveness of our approach, we construct a fine-grained procedural material graph dataset containing extensive data and information defined at the node level. Our code and datasets are available at:
https://github.com/InterS23/IPMGG
. Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering capabilities. Despite these merits, constructing procedural material graphs remains a labor-intensive task. Recent advancements in generative neural networks, particularly diffusion models, have shown promise in automating this process. However, existing methods often struggle with issues related to generation quality, generalization, and interpretability. In this work, we introduce a novel approach for the interpretable generation of procedural material graphs from reference images using diffusion model. Our approach predicts individual nodes in reverse order, leveraging the generative capabilities of diffusion models to achieve significant improvements in generation quality, generalization, and interpretability. Specifically, we employ a two-stage framework: an adapter-based diffusion model predicts procedural nodes, forming an auxiliary graph, which is then refined using a DiffMat-based node parameter optimization method. To validate the effectiveness of our approach, we construct a fine-grained procedural material graph dataset containing extensive data and information defined at the node level. Our code and datasets are available at: https://github.com/InterS23/IPMGG. |
| Author | Wu, Zizhao Lv, Xiaoyu Zeng, Ming Gu, Xiaoling Xu, Jiamin Xu, Weiwei |
| Author_xml | – sequence: 1 givenname: Xiaoyu surname: Lv fullname: Lv, Xiaoyu organization: School of Digital Media Technology, Hangzhou Dianzi University – sequence: 2 givenname: Zizhao orcidid: 0000-0003-2103-5037 surname: Wu fullname: Wu, Zizhao email: wuzizhao@hdu.edu.cn organization: School of Digital Media Technology, Hangzhou Dianzi University – sequence: 3 givenname: Jiamin surname: Xu fullname: Xu, Jiamin organization: School of Computer Science, Hangzhou Dianzi University – sequence: 4 givenname: Xiaoling surname: Gu fullname: Gu, Xiaoling organization: School of Computer Science, Hangzhou Dianzi University – sequence: 5 givenname: Ming surname: Zeng fullname: Zeng, Ming organization: School of Informatics, Xiamen University – sequence: 6 givenname: Weiwei surname: Xu fullname: Xu, Weiwei organization: School of Computer Science, Zhejiang University |
| BookMark | eNp9UMtKBDEQDLKCu6s_4GnAc7STTJKZoyy-YMGLHiVkJ51xlnmZzAj-vVlX8Oapu-iq6qJWZNEPPRJyyeCaAeibCCA0o8AlhRxKReGELFkuOOWCyQVZAtMF5booz8gqxj0krPNySd6e-gnDGHCyuxazMQwVujnYNutsOjRpqYMd37Maewx2aoY--2xs5hrv53hA3eCwjZkPQ5cF9BiwrzBrOltjPCen3rYRL37nmrze371sHun2-eFpc7ulFdd8okUBO4-lY1XlKi2F0EoymUsQ-U6gtmgrUEqBss6VPEfnpVegufIq59p7sSZXR9-U_2PGOJn9MIc-vTSCS1GCELxMLH5kVWGIMWU1Y0g5w5dhYA41mmONJtVofmo0kETiKIqJ3NcY_qz_UX0DAAF4ZQ |
| Cites_doi | 10.1145/2766984 10.1145/3528233.3530733 10.1007/978-3-030-01219-9_5 10.1109/CVPR52688.2022.01042 10.1145/3528233.3530757 10.1609/aaai.v38i5.28226 10.1145/3610548.3618194 10.1145/3687932 10.1109/ICCV51070.2023.00355 10.1007/s00371-024-03717-4 10.1145/3528223.3530173 10.1002/cav.2252 10.1145/3588432.3591520 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00371-025-04096-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1432-2315 |
| EndPage | 11205 |
| ExternalDocumentID | 10_1007_s00371_025_04096_0 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 PUEGO QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c272t-880bfe9d1ccdc75337651545034b3e7aeac066606add924edf5f60726f6427ff3 |
| IEDL.DBID | U2A |
| ISSN | 0178-2789 |
| IngestDate | Fri Sep 26 03:11:00 EDT 2025 Thu Oct 02 04:39:06 EDT 2025 Thu Sep 25 01:11:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | Procedural material Diffusion models Texture generation Procedural models |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-880bfe9d1ccdc75337651545034b3e7aeac066606add924edf5f60726f6427ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2103-5037 |
| PQID | 3253903329 |
| PQPubID | 2043737 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3253903329 crossref_primary_10_1007_s00371_025_04096_0 springer_journals_10_1007_s00371_025_04096_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20251000 2025-10-00 20251001 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251000 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | International Journal of Computer Graphics |
| PublicationTitle | The Visual computer |
| PublicationTitleAbbrev | Vis Comput |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | L Shi (4096_CR25) 2020; 39 B Kawar (4096_CR14) 2022; 35 B Li (4096_CR15) 2024; 43 P Guerrero (4096_CR6) 2022; 41 4096_CR30 4096_CR8 4096_CR7 4096_CR12 Y Hu (4096_CR10) 2019; 38 4096_CR11 4096_CR17 Y Hu (4096_CR13) 2022; 41 4096_CR18 4096_CR19 B Li (4096_CR16) 2023; 42 4096_CR2 4096_CR1 4096_CR4 4096_CR3 J Dumas (4096_CR5) 2015; 34 4096_CR20 4096_CR23 4096_CR24 4096_CR21 4096_CR22 4096_CR27 4096_CR28 4096_CR26 M Zhang (4096_CR29) 2024; 35 X Hu (4096_CR9) 2024 |
| References_xml | – volume: 34 start-page: 1 year: 2015 ident: 4096_CR5 publication-title: ACM Trans. Graph. doi: 10.1145/2766984 – ident: 4096_CR11 doi: 10.1145/3528233.3530733 – volume: 38 start-page: 1 year: 2019 ident: 4096_CR10 publication-title: ACM Trans. Graph. – ident: 4096_CR27 – volume: 41 start-page: 1 year: 2022 ident: 4096_CR13 publication-title: ACM Trans. Graph. – volume: 35 start-page: 23593 year: 2022 ident: 4096_CR14 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 4096_CR18 doi: 10.1007/978-3-030-01219-9_5 – ident: 4096_CR7 – ident: 4096_CR17 – ident: 4096_CR22 doi: 10.1109/CVPR52688.2022.01042 – ident: 4096_CR23 doi: 10.1145/3528233.3530757 – ident: 4096_CR2 – ident: 4096_CR3 – ident: 4096_CR19 doi: 10.1609/aaai.v38i5.28226 – ident: 4096_CR24 doi: 10.1145/3610548.3618194 – ident: 4096_CR20 – volume: 43 start-page: 1 year: 2024 ident: 4096_CR15 publication-title: ACM Trans. Graph. doi: 10.1145/3687932 – volume: 42 start-page: 1 year: 2023 ident: 4096_CR16 publication-title: ACM Trans. Graph. – ident: 4096_CR26 – ident: 4096_CR8 – ident: 4096_CR28 doi: 10.1109/ICCV51070.2023.00355 – ident: 4096_CR30 doi: 10.1007/s00371-024-03717-4 – volume: 41 start-page: 1 year: 2022 ident: 4096_CR6 publication-title: ACM Trans. Graph. doi: 10.1145/3528223.3530173 – ident: 4096_CR1 – ident: 4096_CR4 – volume: 35 year: 2024 ident: 4096_CR29 publication-title: Comput. Anim. Virt. Worlds doi: 10.1002/cav.2252 – volume: 39 start-page: 1 year: 2020 ident: 4096_CR25 publication-title: ACM Trans. Graph. – volume-title: Msembgan: Multi-stitch embroidery synthesis via region-aware texture generation year: 2024 ident: 4096_CR9 – ident: 4096_CR21 – ident: 4096_CR12 doi: 10.1145/3588432.3591520 |
| SSID | ssj0017749 |
| Score | 2.4106603 |
| Snippet | Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability, and real-time rendering... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 11195 |
| SubjectTerms | Artificial Intelligence Computer Graphics Computer Science Datasets Diffusion models Graphs Image Processing and Computer Vision Methods Neural networks Nodes Optimization techniques Real time Semantics |
| Subtitle | Interpretable procedural material graph generation via diffusion models from reference images |
| Title | Interpretable procedural material graph generation via diffusion models from reference images |
| URI | https://link.springer.com/article/10.1007/s00371-025-04096-0 https://www.proquest.com/docview/3253903329 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG0RK7DzHFrVUIDpRqQwoshMbVYKCSMvv585NUkAwMEXKw8P5fP4uvvs-gHOlvVgpKRyTqdzxpfKc2HDlcGKCDAXedak5-W4cjib-zTSYlk1hRVXtXh1J2khdN7tZdjmH5FfR8ah0dhOaAdF5oRdPeK8-O0BAY0Gvh_kR9XmWrTK_j_F9O1pjzB_Hona3Ge7BTgkTWW81r_uwoect2K0kGFi5Iluw_YVP8AAe1yWE6lkzuznlxKvBEJdaV2OWoJo9WbJpmhP2MZOMVFKW9NuMWWGcglHTCasVSNjsBaNOcQiT4eD-auSU-glOxiO-cHBpKqOT3MuyPMO0BGNJQIjJFb4SOpIYcyl7cUOMcZiG6dwEJnQjHhpMSiJjxBE05q9zfQxMxplSirRJJKeP48SNjYykJ3Ue-7low0VlxvRtRZOR1oTI1ugpGj21Rk_dNnQqS6flkilSwQORuELwpA2XlfXXj_8e7eR_r5_CFicHsAV5HWgs3pf6DIHFQnWh2Rv2-2O6Xj_cDrrWrz4BQTrJdQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADhQKiUMADG6RK7DSPsUIthT6mVioDsuzERhVQEEkZ-PXYbpJCBUPXvJT4zufv4rvvA7jkwgk4Z8SSEY8tl3HHCiTmFtZMkB5RR23dnDwYet2xez9pTrKmsCSvds-3JE2kLprdDLucpeVXlePp0tlNKLsqQcElKLduH3rtYvdAQRoDex2VIelOz6xZ5u-n_F6QlihzZWPUrDedCozzN12UmTw35ilvRF8rJI7rfsoe7GYAFLUWHrMPG2JWhUou7oCyuV6FnR9MhQfwuCxO5C8CmWUv1owdSCFe48TIUF-jJ0Njra2NPqcMaf2Vuf4hh4zkToJ0OwsqtE3Q9FXFs-QQxp326KZrZcoMVoR9nFpq0nMpwtiJojhSCY-KUk2NxWziciJ8pqK5zotsT0VPleCJWDalZ_vYkyrd8aUkR1Cavc3EMSAWRJxzrXrCsL45CO1AMp85TMSBG5MaXOXmoe8LAg5aUC2bcaRqHKkZR2rXoJ5bkGaTMaEEN0loE4LDGlznBlme_v9pJ-tdfgFb3dGgT_t3w94pbGNtX1P2V4dS-jEXZwq-pPw889ZvombmPg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbBCR2HmOFVCVV8VApS7IshMbVYJQ0ZTfj89N0oJgYE1iD-fz-bv47vsATqXyYikFc3QqM8cX0nNiTaVDkQkyZOapi83JD_2wN_Bvh8FwoYvfVrtXV5KzngZkacqLi3GmL-rGN8s056AUq3FCLKNdhhUfiRKMRw9op75HMODGAmDP5ErY81m2zfw-x_ejaY43f1yR2pOnuwUbJWQkndkab8OSypuwWckxkHJ3NmF9gVtwB57n5YTyVRF7UGXIsUEMRrVuRyxZNXmxxNO4PuRzJAgqpkzxFxqxIjkTgg0opFYjIaM3E4EmuzDoXj9d9pxSS8FJaUQLx2xTqVWSeWmapSZFMXElQPTkMl8yFQkTfzGTcUMT70xKpjId6NCNaKhNghJpzfagkb_nah-IiFMpJeqUCIqD48SNtYiEJ1QW-xlrwVllRj6eUWbwmhzZGp0bo3NrdO62oF1ZmpfbZ8IZDVjiMkaTFpxX1p-__nu2g_99fgKrj1ddfn_TvzuENYq-YOv02tAoPqbqyOCNQh5bl_oCA7XNjQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+procedural+material+graph+generation+via+diffusion+models+from+reference+images&rft.jtitle=The+Visual+computer&rft.au=Lv%2C+Xiaoyu&rft.au=Wu%2C+Zizhao&rft.au=Xu%2C+Jiamin&rft.au=Gu%2C+Xiaoling&rft.date=2025-10-01&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=41&rft.issue=13&rft.spage=11195&rft.epage=11205&rft_id=info:doi/10.1007%2Fs00371-025-04096-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00371_025_04096_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |