Variational analysis of nonlocal Dirichlet problems in periodically perforated domains

In this paper we consider a family of non local functionals of convolution-type depending on a small parameter and -converging to local functionals defined on Sobolev spaces as . We study the asymptotic behaviour of the functionals when the order parameter is subject to Dirichlet conditions on a per...

Full description

Saved in:
Bibliographic Details
Published inCalculus of variations and partial differential equations Vol. 64; no. 7; p. 232
Main Authors Alicandro, Roberto, Gelli, Maria Stella, Leone, Chiara
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-2669
1432-0835
DOI10.1007/s00526-025-03071-w

Cover

Abstract In this paper we consider a family of non local functionals of convolution-type depending on a small parameter and -converging to local functionals defined on Sobolev spaces as . We study the asymptotic behaviour of the functionals when the order parameter is subject to Dirichlet conditions on a periodically perforated domains, given by a periodic array of small balls of radius centered on a –periodic lattice, being an additional small parameter and . We highlight differences and analogies with the local case, according to the interplay between the three scales , and . A fundamental tool in our analysis turns out to be a non local variant of the classical Gagliardo–Nirenberg–Sobolev inequality in Sobolev spaces which may be of independent interest and useful for other applications.
AbstractList In this paper we consider a family of non local functionals of convolution-type depending on a small parameter and -converging to local functionals defined on Sobolev spaces as . We study the asymptotic behaviour of the functionals when the order parameter is subject to Dirichlet conditions on a periodically perforated domains, given by a periodic array of small balls of radius centered on a –periodic lattice, being an additional small parameter and . We highlight differences and analogies with the local case, according to the interplay between the three scales , and . A fundamental tool in our analysis turns out to be a non local variant of the classical Gagliardo–Nirenberg–Sobolev inequality in Sobolev spaces which may be of independent interest and useful for other applications.
In this paper we consider a family of non local functionals of convolution-type depending on a small parameter and -converging to local functionals defined on Sobolev spaces as . We study the asymptotic behaviour of the functionals when the order parameter is subject to Dirichlet conditions on a periodically perforated domains, given by a periodic array of small balls of radius centered on a –periodic lattice, being an additional small parameter and . We highlight differences and analogies with the local case, according to the interplay between the three scales , and . A fundamental tool in our analysis turns out to be a non local variant of the classical Gagliardo–Nirenberg–Sobolev inequality in Sobolev spaces which may be of independent interest and useful for other applications.
ArticleNumber 232
Author Alicandro, Roberto
Gelli, Maria Stella
Leone, Chiara
Author_xml – sequence: 1
  givenname: Roberto
  surname: Alicandro
  fullname: Alicandro, Roberto
  organization: Dipartimento di Matematica “R. Caccioppoli”, Università di Napoli Federico II
– sequence: 2
  givenname: Maria Stella
  orcidid: 0000-0002-0932-7582
  surname: Gelli
  fullname: Gelli, Maria Stella
  email: maria.stella.gelli@unipi.it
  organization: Dipartimento di Matematica, Università di Pisa
– sequence: 3
  givenname: Chiara
  surname: Leone
  fullname: Leone, Chiara
  organization: Dipartimento di Matematica “R. Caccioppoli”, Università di Napoli Federico II
BookMark eNp9kEtLAzEQx4NUsK1-AU8LnqOT1z6OUrUKBS_aa8hrNWW7qcmW0m9v6grevMwww_8_j98MTfrQO4SuCdwSgOouAQhaYqACA4OK4MMZmhLOKIaaiQmaQsM5pmXZXKBZShsAImrKp2i9VtGrwYdedYXK4Zh8KkJb5AVdMLn54KM3n50bil0MunPbVPi-2Lnog_VZ0B1PRRuiGpwtbNgq36dLdN6qLrmr3zxH70-Pb4tnvHpdvizuV9jQig6YUdbWmhnrrNUlcNCaEC2Aclu3BFSlmCJWi9Jq5XTNKeOmMQbAAClF5dgc3Yxz821fe5cGuQn7mN9IklEhamiaqs4qOqpMDClF18pd9FsVj5KAPPGTIz-Z-ckffvKQTWw0pSzuP1z8G_2P6xvUoncN
Cites_doi 10.3934/nhm.2008.3.523
10.1017/S0956792598003453
10.1016/j.matpur.2004.11.005
10.1137/23M1563438
10.1016/S0022-5096(99)00029-0
10.1016/j.anihpc.2012.01.006
10.1016/j.aim.2010.06.014
10.1088/0951-7715/28/11/3999
10.1007/s40818-018-0044-1
10.1137/S0036141003426471
10.1137/070698592
10.1007/s00440-024-01320-1
10.1007/978-981-99-0685-7
10.1016/S0021-7824(01)01226-0
10.1017/prm.2018.130
10.3934/nhm.2012.7.543
10.1007/s00526-003-0195-z
10.1007/s00526-015-0839-9
10.1007/BF02198476
10.1016/j.jfa.2011.11.005
10.1007/978-1-4612-0327-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00526-025-03071-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
ExternalDocumentID 10_1007_s00526_025_03071_w
GrantInformation_xml – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca
  grantid: PRIN project 2022J4FYNJ; PRIN Project 2022E9CF89; PRIN PNRR Project P2022WJW9H
  funderid: http://dx.doi.org/10.13039/501100003407
– fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC - 2047/1 - 390685813
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Ministero dell’Istruzione, dell’Università e della Ricerca
  grantid: PRIN Project 2022E9CF89
  funderid: http://dx.doi.org/10.13039/501100003407
GroupedDBID -~C
-~X
.86
.VR
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
88I
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFGCZ
AGGDS
AGQPQ
AJBLW
AMVHM
BBWZM
BDATZ
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
K7-
KOW
M2P
M4Y
M7S
N2Q
NDZJH
NU0
O9-
PHGZM
PHGZT
PQGLB
PTHSS
Q2X
R4E
RNI
RZK
S26
S28
SCLPG
T16
UZXMN
VFIZW
ZWQNP
JQ2
ID FETCH-LOGICAL-c272t-323f8b3cdeddb6040bb11b5024d8f10a7a3a1db56dbaeb84234c9cc00c01657e3
IEDL.DBID U2A
ISSN 0944-2669
IngestDate Wed Oct 01 06:55:56 EDT 2025
Wed Oct 01 05:26:48 EDT 2025
Sun Aug 24 01:10:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords 49J45
49J55
35B27
35B40
74Q05
45E10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-323f8b3cdeddb6040bb11b5024d8f10a7a3a1db56dbaeb84234c9cc00c01657e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0932-7582
PQID 3255809978
PQPubID 32028
ParticipantIDs proquest_journals_3255809978
crossref_primary_10_1007_s00526_025_03071_w
springer_journals_10_1007_s00526_025_03071_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References T Mengesha (3071_CR20) 2015; 28
N Ansini (3071_CR5) 2002; 81
R Alicandro (3071_CR3) 2004; 36
MC Pereira (3071_CR21) 2020; 150
R Alicandro (3071_CR4) 2000; 29
M Focardi (3071_CR17) 2010; 225
3071_CR13
JC Bellido (3071_CR7) 2015; 54
J Heinonen (3071_CR19) 1993
AC Ponce (3071_CR22) 2004; 19
G Alberti (3071_CR1) 1998; 9
SA Silling (3071_CR27) 2000; 48
L Caffarelli (3071_CR12) 2008; 3
3071_CR6
L Sigalotti (3071_CR26) 2008; 15
L Sigalotti (3071_CR25) 2012; 7
R Alicandro (3071_CR2) 2023
D Finkelshtein (3071_CR16) 2012; 262
G Dal Maso (3071_CR14) 1993
3071_CR24
J Bourgain (3071_CR8) 2001
G Gilboa (3071_CR18) 2008; 7
3071_CR28
H Brezis (3071_CR11) 2018; 4
O Savin (3071_CR23) 2012; 29
A Braides (3071_CR10) 1996; 135
A Braides (3071_CR9) 2002
LC Evans (3071_CR15) 1992
References_xml – volume: 3
  start-page: 523
  year: 2008
  ident: 3071_CR12
  publication-title: Netw. Heterog. Media
  doi: 10.3934/nhm.2008.3.523
– volume: 9
  start-page: 261
  year: 1998
  ident: 3071_CR1
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S0956792598003453
– ident: 3071_CR6
  doi: 10.1016/j.matpur.2004.11.005
– volume-title: Measure Theory and Fine Properties of Funtions
  year: 1992
  ident: 3071_CR15
– volume: 15
  start-page: 655
  year: 2008
  ident: 3071_CR26
  publication-title: J. Convex Anal.
– ident: 3071_CR28
  doi: 10.1137/23M1563438
– volume-title: Nonlinear Potential Theory of Degenerate Elliptic Equations
  year: 1993
  ident: 3071_CR19
– volume: 48
  start-page: 175
  year: 2000
  ident: 3071_CR27
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00029-0
– ident: 3071_CR13
– volume: 29
  start-page: 479
  year: 2012
  ident: 3071_CR23
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2012.01.006
– volume: 225
  start-page: 3502
  year: 2010
  ident: 3071_CR17
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2010.06.014
– volume-title: -Convergence for Beginners, Oxford Lecture Series in Mathematics and Its Applications$$\Gamma $$
  year: 2002
  ident: 3071_CR9
– volume: 28
  start-page: 3999
  year: 2015
  ident: 3071_CR20
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/28/11/3999
– start-page: 439
  volume-title: Another Look at Sobolev Spaces, Optimal Control and Partial Differential Equations
  year: 2001
  ident: 3071_CR8
– volume: 4
  start-page: 1
  year: 2018
  ident: 3071_CR11
  publication-title: Ann. PDE
  doi: 10.1007/s40818-018-0044-1
– volume: 36
  start-page: 1
  year: 2004
  ident: 3071_CR3
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141003426471
– volume: 7
  start-page: 1005
  year: 2008
  ident: 3071_CR18
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/070698592
– ident: 3071_CR24
  doi: 10.1007/s00440-024-01320-1
– volume-title: A Variational Theory of Convolution-type Functionals. SpringerBriefs on PDEs and Data Science
  year: 2023
  ident: 3071_CR2
  doi: 10.1007/978-981-99-0685-7
– volume: 81
  start-page: 439
  year: 2002
  ident: 3071_CR5
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/S0021-7824(01)01226-0
– volume: 150
  start-page: 305
  year: 2020
  ident: 3071_CR21
  publication-title: Proc. R. Soc. Edinb.
  doi: 10.1017/prm.2018.130
– volume: 7
  start-page: 543
  year: 2012
  ident: 3071_CR25
  publication-title: Netw. Heterog. Media
  doi: 10.3934/nhm.2012.7.543
– volume: 19
  start-page: 229
  year: 2004
  ident: 3071_CR22
  publication-title: Calc. Var. Partial. Differ. Equ.
  doi: 10.1007/s00526-003-0195-z
– volume: 54
  start-page: 1643
  year: 2015
  ident: 3071_CR7
  publication-title: Calc. Var. Partial. Differ. Equ.
  doi: 10.1007/s00526-015-0839-9
– volume: 135
  start-page: 297
  year: 1996
  ident: 3071_CR10
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF02198476
– volume: 262
  start-page: 1274
  year: 2012
  ident: 3071_CR16
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2011.11.005
– volume: 29
  start-page: 671
  year: 2000
  ident: 3071_CR4
  publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci.
– volume-title: An Introduction to $$\Gamma $$-Convergence
  year: 1993
  ident: 3071_CR14
  doi: 10.1007/978-1-4612-0327-8
SSID ssj0015824
Score 2.4021366
Snippet In this paper we consider a family of non local functionals of convolution-type depending on a small parameter and -converging to local functionals defined on...
In this paper we consider a family of non local functionals of convolution-type depending on a small parameter and -converging to local functionals defined on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 232
SubjectTerms Analysis
Asymptotic properties
Calculus of Variations and Optimal Control; Optimization
Control
Convergence
Dirichlet problem
Homogenization
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Order parameters
Sobolev space
Systems Theory
Theoretical
Title Variational analysis of nonlocal Dirichlet problems in periodically perforated domains
URI https://link.springer.com/article/10.1007/s00526-025-03071-w
https://www.proquest.com/docview/3255809978
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: AFBBN
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RSDMeXADSK1TR_ZcUIbE2ic2DROVRKnYhJsiA5N_HucLO0EggPHqpUVfbFju44_E3IJUovQAGdBVkQslmHKZAGKaRApQFDE2k0tGT2kw3F8N02mvimsrG67VyVJd1LXzW6OmoTZ8atWMUO22ibNxNJ5oRaPo15dO0iEG2WLeUvM0P10favM7zK-u6NNjPmjLOq8zWCf7PkwkfbW-3pAtsz8kOyOao7V8ohMJpjm-l95VHpuEbooKCb0zkNRPM5m-hk3hvqxMSWdzamlNl646szLp30orBIYoLB4lbN5eUzGg_7jzZD5KQlMR1m0ZDzihVBcgwFQKdqkUmGoEvS9IIowkJnkMgSVpKCkUQLDp1h3tQ4CbTuZMsNPSAMXZk4JTSSPZACZtOV4FWMmgfYvUgUyDrsgRYtcVWDlb2syjLymPXbQ5ght7qDNVy3SrvDMvWGUOccURthuXRR2XWG8ef23tLP_fX5OdiK3zfY2WJs0lu8f5gLDh6XqkGbv9um-33Fa8wU0A7_4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD-rB-Iwoag_etMl2u49yJEaCCpyAcGvaTjeSKBgXQ_z3tqUL0ejB42Y3k-abTmdmp_MNQtcgNacGGInyIiaJpBmRBSiigWcAUZFoP7Wk1886w-RxnI5DU1hZ3XavSpL-pF41u3lqEuLGr7qNScliE205AivHmD-MW6vaQcr9KFubtyTEup9maJX5XcZ3d7SOMX-URb23ae-jvRAm4tZSrwdow0wP0W5vxbFaHqHRyKa54VceloFbBM8KbBN676GwPc4m-tkqBoexMSWeTLGjNp756szLp3so3CYwgGH2KifT8hgN2_eDuw4JUxKIjvN4TljMCq6YBgOgMmuTSlGqUut7gRc0krlkkoJKM1DSKG7Dp0Q3tY4i7TqZcsNOUM0uzJwinEoWywhy6crxKrGZhLV_nimQCW2C5HV0U4El3pZkGGJFe-yhFRZa4aEVizpqVHiKYBilYDaF4a5b1wq7rTBev_5b2tn_Pr9C251Bryu6D_2nc7QTe5W7m2ENVJu_f5gLG0rM1aXfOV9MUsFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDMiBG0Tru9lxAqbx2MSBTbtFSdyKSdBNtGji3-NkXQcIDhyrVlZkO7Fd5_tMyDlIzd0EfObEqccC6UZMpqCYBh4BOGmg7dSSXj_qDoK7UTj6guK3t90XLck5psGwNGVFcwppswK-WZoSZkaxGid12WyVrAWGKAE9euC1qz5CyO1YW6xhAoahqFXCZn6X8T00LfPNHy1SG3k622SrTBlpe27jHbKSZLtks1fxreZ7ZDjEkrf8rUdlyTNCJynF4t5GK4pH21g_o5FoOUImp-OMGprjie3UvHyYh9Q4RAIUJq9ynOX7ZNC5ebrqsnJiAtNe7BXM9_yUK19DAqAi3J9Kua4KMQ4DT11HxtKXLqgwAiUTxTGVCnRLa8fRBtUUJ_4BqeHCkkNCQ-l70oFYmta8CrCqwLOARwpk4LZA8jq5WChLTOfEGKKiQLaqFahaYVUrZnXSWOhTlJskFz6WM9wgd1HY5ULHy9d_Szv63-dnZP3xuiMebvv3x2TDsxY3l8QapFa8vScnmFUU6tQ6zies1cWM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+analysis+of+nonlocal+Dirichlet+problems+in+periodically+perforated+domains&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Alicandro%2C+Roberto&rft.au=Gelli%2C+Maria+Stella&rft.au=Leone%2C+Chiara&rft.date=2025-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=64&rft.issue=7&rft_id=info:doi/10.1007%2Fs00526-025-03071-w&rft.externalDocID=10_1007_s00526_025_03071_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon